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Simple Summary: Cancer cell dissemination exhibits organ preference or organotropism. Although
the influence of intrinsic biochemical factors on organotropism has been intensely studied, little
is known about the roles of mechanical properties of metastatic cancer cells. Our study suggests
that there may be a correlation between cell cytoskeleton/stiffness and organotropism. We find
that the cytoskeleton and stiffness of breast cancer cell subpopulations with different metastatic
preference match the mechanics of the metastasized organs. The modification of cell cytoskeleton
significantly influences the organotropism-related gene expression pattern and mechanoresponses
on soft substrates which mimic brain tissue stiffness. These findings highlight the key role of cell
cytoskeleton in specific organ metastasis, which may not only reflect but also impact the metastatic
organ preference.

Abstract: Tumor metastasis involves the dissemination of tumor cells from the primary lesion to
other organs and the subsequent formation of secondary tumors, which leads to the majority of
cancer-related deaths. Clinical findings show that cancer cell dissemination is not random but
exhibits organ preference or organotropism. While intrinsic biochemical factors of cancer cells have
been extensively studied in organotropism, much less is known about the role of cell cytoskeleton
and mechanics. Herein, we demonstrate that cell cytoskeleton and mechanics are correlated with
organotropism. The result of cell stiffness measurements shows that breast cancer cells with bone
tropism are much stiffer with enhanced F-actin, while tumor cells with brain tropism are softer with
lower F-actin than their parental cells. The difference in cellular stiffness matches the difference in the
rigidity of their metastasized organs. Further, disrupting the cytoskeleton of breast cancer cells with
bone tropism not only elevates the expressions of brain metastasis-related genes but also increases
cell spreading and proliferation on soft substrates mimicking the stiffness of brain tissue. Stabilizing
the cytoskeleton of cancer cells with brain tropism upregulates bone metastasis-related genes while
reduces the mechanoadaptation ability on soft substrates. Taken together, these findings demonstrate
that cell cytoskeleton and biophysical properties of breast cancer subpopulations correlate with their
metastatic preference in terms of gene expression pattern and mechanoadaptation ability, implying
the potential role of cell cytoskeleton in organotropism.

Keywords: cell stiffness; organotropism; cytoskeleton; cell mechanics; mechanoadaptation

1. Introduction

Metastasis is the leading cause of cancer-related death [1]. Cancer cells do not ran-
domly disseminate to and colonize other organs but rather have the preferred metastatic
sites for each cancer, which is defined as organotropism. Different cancer types and sub-
populations show different organotropisms. For example, prostate cancer tends to relapse
in bones, while uveal melanoma typically metastasizes to the liver [2]. Breast cancer tends
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to metastasize distantly to the bone, brain, liver, lung, and distant lymph-nodes [3]. The
most common breast cancer metastasis is bone metastases, which occurs in about 50% of
metastatic breast cancer patients [4]. About 25% and 20% of breast cancer relapse is found
in liver and lung and brain, respectively [4,5]. A variety of both intrinsic and extrinsic
factors has been demonstrated to play important roles in the organotropism of cancer cells,
including circulation patterns, intrinsic characteristics of cancer cells, organ specificity,
ecological niche, and the microenvironment (ME) of tumor cells and the host [6,7]. How-
ever, the molecular mechanisms remain unclear. Therefore, understanding the underlying
mechanisms of organotropic metastasis helps develop better diagnosis and/or treatment
strategies and eventually improve the outcomes of cancer patients.

The influence of intrinsic biochemical factors on tumor organotropic metastasis has
been intensely studied. Metastatic cancer cells derived from specific organs show pref-
erence to disseminate to the same site [5]. Intrinsic properties of cancer cells, such as
organotropism gene signatures and pathways, are involved in organ-specific extravasation
and colonization [8–12]. Dickkopf-1 secreted by breast cancer cells had distinct effects on
lung metastasis and bone metastasis, which promoted bone metastasis through canonical
Wnt signaling but inhibited lung metastasis via noncanonical Wnt signaling [13]. The
COX2-MMP1/CCL7 axis enhances brain metastasis ability of breast cancer cells by pro-
moting blood–brain barrier permeability and the growth of tumor-initiating cells [14]. It is
well known that mechanical properties of cancer cells, as important intrinsic characteristics,
are strongly correlated with their malignancy [15,16]. Malignant transformation driven by
genetic mutations is accompanied by specific changes in cellular mechanical properties
(such as stiffness and viscosity) [17]. Many previous studies show that the stiffness of tumor
cells is lower than that of the corresponding normal cells. For example, normal breast
epithelial cells become significantly softer after transformation [18,19]. The mechanical
stiffness of tumor cells is highly heterogeneous [20] and significantly correlated with their
malignant ability [15]. Cell softness is a unique mechanical signature of highly tumorigenic
and metastatic tumor cells [21]. Low stiffness of tumor cells can help undergo extravasation
during metastasis [22]. Softening tumor cells upregulates their self-renewal capacity [23,24].
Although the correlation between cell stiffness and tumor cell malignancy has been demon-
strated, the relationship between cellular mechanical properties and metastatic preference
remains unclear.

The mechanical property of a cell is mainly determined by its cytoskeleton and related
proteins, including three major components: actin filaments, intermediate filaments, and
microtubules [25]. Among them, actin filaments are believed to be one main contributor to
cell stiffness [26]. A close correlation between actin filaments and cell stiffness has been
well demonstrated by using disruptive pharmacological agents, such as cytochalasin D
(Cyto D) [27]. In addition, it is well known that most adherent cells are under prestress state
and exert contractile traction on substrates to sense substrate properties [28]. There are
studies showing that cell contractility directly contributes to cell mechanics [29,30]. Myosin
II binds to actin filaments and generates cellular contractility and its activity is regulated by
myosin light-chain kinase (MLCK) and Rho-associated protein kinase (ROCK) [31]. Tumor
cells with defective myosin bundles show an enhanced deformation ability compared to
control cells [32,33]. Therefore, cellular stiffness can be effectively modulated by targeting
cell cytoskeleton and contractility. However, very few studies investigate the role of actin
cytoskeleton and cellular contractility in tumor organotropism.

In this study, the cytoskeleton and stiffness of various breast cancer cell subpopulations
with distinct metastatic tropism were measured by immunofluorescent staining and atomic
force microscopy. To explore the role of cell cytoskeleton in organotropism, the cytoskeleton
was stabilized and disrupted in breast cancer cells with brain and bone tropism, respectively.
The expressions of the genes specifically related to brain/bone metastasis were examined.
The mechanosensitivity of these treated cells was tested on soft substrates that mimicked
the stiffness of brain tissue, including cell spreading and proliferation.
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2. Materials and Methods
2.1. Cell Culture

MDA-MB-231 (231 for short), MDA231-BrM2-831 (231-BrM for short), MDA-BoM-1833
(231-BoM for short), and MDA231-LM2-4175 (231-LM for short) cells were purchased from
Memorial Sloan Kettering Cancer Center. All experiments were performed on parental
231 breast cancer cells, 231-BrM breast cancer cells that specifically metastasize to the brain,
231-BoM breast cancer cells that specifically metastasize to the bone, and 231-LM breast
cancer cells that specifically metastasize to the lung tissue [8–10]. All cells were maintained
in Dulbecco’s Modified Eagle Medium (DMEM) supplemented with 10% fetal bovine
serum (FBS) and 1% penicillin/streptomycin in T25 flask at 37 ◦C and 5% CO2. All culture
reagents were purchased from HyClone.

2.2. Pharmacologic Treatment

In brief, cells were seeded in a 6-well plate until ~70% of confluency reached. Cells
were then treated with 2 or 6 µM Y-27632 (Selleck Chemicals), 2 or 6 µM blebbistatin
(Sigma-Aldrich, St. Louis, MO, USA), 0.1 or 0.3 µM cytochalasin D (Tocris Bioscience,
Manchester, UK), 5 or 50 nM narciclasine (Selleck Chemicals, Houston, TX, USA), 30 or
100 nM jasplakinolide (Selleck Chemicals, Houston, TX, USA) for 24 h without washing
before total RNA extraction and F-actin staining. For the morphology measurement and
proliferation assay, cells were pretreated with this drug for 24 h, which was washed
away before harvesting the treated cells and reseeding them on tissue culture plates or
polyacrylamide hydrogels for 24 h incubation. All the drugs were dissolved in DMSO
to prepare the stock solution following the manufacturer’s instructions and then diluted
with the full medium into working solution. DMSO was used as the vehicle to treat the
control groups.

2.3. Polyacrylamide Hydrogels (PA gels) Preparation

Hydrogel manufacturing was performed as previously described [34,35]. Briefly,
acrylamide and bis-acrylamide were mixed to their desired concentrations in distilled H2O.
1 % v/v ammonium persulfate (APS, Sigma-Aldrich, St. Louis, MO, USA), and 0.1% v/v
methylethylenediamine (TEMED, Sigma-Aldrich, St. Louis, MO, USA) were added to gel
solution and vortexed quickly. Twenty-five µL gel solution was quickly pipetted onto the
chloro-silanated side of the glass slides, and the amino-silanated coverslips were covered.
The gel was allowed to polymerize for 5 to 30 min. The PA gels were coated with 0.2 mg/mL
rat-tail collagen type I (Sigma-Aldrich, St. Louis, MO, USA) via sulfosuccinimidyl 6-(4′-
azido-2′-nitrophenylamino)hexanoate (sulfo-SANPAH; Sigma-Aldrich, St. Louis, MO,
USA) crosslinker. Collagen-coated PA gels were sterilized with UV for 15 min and then
soaked in the full medium for at least 30 min immediately prior to use.

2.4. AFM Measurements

Atomic force microscope (AFM, Bruker, Billerica, MA, USA) with silicon nitride
cantilevers of spring constant k at 0.02 N/m (MLCT, Bruker, Billerica, MA, USA) was used
to measured cell stiffness at room temperature [36]. The force F between tip and cell was
the product of the cantilever deflection δ and k, i.e., F = k × δ. The cell Young’s modulus
E was determined by fitting force-indentation curves with Sneddon’s modification of the
Hertzian model for a pyramidal tip, i.e., F = 2/π × tan(α) × E/(1 − v2) × d2, where d
was the indentation depth, α was the half tip angle, v was 0.5. In addition, d was kept
within 500 nm at 1 Hz to avoid the possible effects of substrate and cell injury. Five force
curves per cell were measured in the perinuclear region of cells (to avoid the potential
influence from the substrate at the thin-cell periphery). The stiffness values were averaged
for individual cells. An inverted microscope (Nikon, Tokyo, Japan) was combined with the
AFM to be able to control tip and sample positioning.
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2.5. Cell Morphology Analysis

Cells after treatment were seeded on tissue culture plates or polyacrylamide hydrogels
for 24 h. Then brightfield images were captured by using an inverted microscope (Nikon,
Tokyo, Japan) without fixation, from which cell boundary was traced using the software
ImageJ (NIH, Bethesda, MD, USA). The parameters of cell morphology (area, circularity,
and aspect ratio) were then analyzed using ImageJ as well.

2.6. Proliferation Assay

EdU stock solution (Beyotime, Shanghai, China) was added to the cell culture medium
in 1:500 to prepare 2× working solution. After being preheated at 37 ◦C, the working
solution was added to an equal volume of cell-culture medium, which was then used to
incubate the cells for 2 h at 37 ◦C. These cells were detached, fixed, and permeabilized.
Next, 0.5 mL of Click reaction reagent was added to stain the cells for 30 min in dark. The
cells were stained with DAPI for 10 min. After washing, the percentage of EdU positive
cells were analyzed by flow cytometry.

2.7. Quantitative RT-PCR Analysis

Total mRNAs were extracted by the E.Z.N.A.® Total RNA Kit (Omega, Norcross, GA,
USA), and complementary DNAs were synthesized using the RevertAid First Strand cDNA
Synthesis Kit (Thermo, Waltham, MA, USA) following manufacturers’ recommended
protocols, respectively. Quantitative RT-PCR was carried out using the Forget-Me-Not
EvaGreen qPCR Master Mix with Rox (Biotium, San Francisco, CA, USA) and CFX96
Real-Time System (Bio-Rad, Hercules, CA, USA). All sequences of primers were designed
using the National Centre for Biotechnology Information (NCBI, Bethesda, MD, USA)
database and listed in Table S1. Relative gene expression was evaluated by using the
∆∆CT method and normalized to the expression of human glyceraldehyde 3-phosphate
dehydrogenase (GAPDH).

2.8. F-actin Staining

CytoPainter F-actin labeling kit (Abcam, Cambridge, MA, USA) was used to stain
F-actin. Briefly, cells were fixed with 4.0% formaldehyde in PBS at room temperature
for 10–30 min and permeabilized with 0.1% Triton X-100 in PBS for 5 min. Next, cells
were stained with 1× green fluorescent Phalloidin conjugate working solution at room
temperature for 60 min. Cells were rinsed gently with PBS 2–3 times to remove excess dye
and stained with DAPI before imaging by the inverted fluorescent microscope (Nikon)
using FITC and DAPI channel, respectively. Fluorescence intensity was quantified using
ImageJ (NIH).

2.9. Transfection

Cells were transfected with the appropriate quantity of small-interfering RNA (siRNA) us-
ing Lipofectamine 3000 (Life Technologies, Carlsbad, CA, USA) following the manufacturer’s rec-
ommended protocol. In brief, cells were seeded in a 6-well plate until 70–90% confluency before
transfection. Lipofectamine 3000 reagent and siRNA were diluted in Opti-MEM medium, respec-
tively. Then, the diluted siRNA was added into diluted lipofectamine 3000 reagent at 1:1 ratio and
incubated for 10–15 min at room temperature. The siRNA-lipid complex was added to cells for
2 day before the assays. The siRNA specific for mDia1 (5′-AAAGGCAGAGCCACACUUCCU-
3′) and control siRNA (5′-AUUGUAUGCGAUCGCAGAC-3′) were designed and synthesized
by Hanbio Biotechnology.

2.10. Statistical Analysis

All the results were expressed as mean± SEM in this study. At least three independent
tests were used for each experiment. A two-tailed Student’s t-test was used to analyze the
comparisons between the two groups. ANOVA analysis was used for the statistics among
multiple group comparisons. The post hoc Tukey or Bonferroni test was adopted in the
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ANOVA analysis for the comparisons with equal or unequal sample sizes, respectively.
The significance level was set at p < 0.05.

3. Results
3.1. Biophysical Properties of Breast Cancer Cells Subpopulations Are Correlated with Their
Metastatic Preference

Cell mechanics are related to various cellular functions [37]. However, the relationship
between mechanical properties of cancer cells and organotropism remains unclear. To
address this question, we measured the stiffness of parental MDA-MB-231 cells (231) and
the derivatives with the preference to metastasize to bone (MDA-BoM-1833, 231-BoM
for short), lung (MDA231-LM2-4175, 231-LM for short), and brain (MDA231-BrM2-831,
231-BrM for short) by atomic force microscopy (AFM) [8–10]. The result shows that 231-
BrM cells exhibited lower cellular stiffness than parental 231 cells (Figure 1A,B), while
231-LM and 231-BoM cells had higher stiffness. In addition, 231-BoM cells showed the
highest cell stiffness among these groups. These experimental findings indicate that the
stiffness of 231-BrM, 231-LM, and 231-BoM cells exhibits a progressive elevation, which is
correlated with the increasing stiffness of their preferred metastatic organs (Figure 1A,B).
As a key cytoskeletal element, actin filament network is crucial in the determination of
cell stiffness [38]. Then, F-actin was measured by FITC-phalloidin immunofluorescence
staining in breast cancer cells with different organotropism. Consistent with the finding of
cell stiffness, 231-BrM cells had the lowest level of F-actin, whereas 231-BoM cells showed
the highest level of F-actin (Figure 1C,D). There also was a significant increasing trend for F-
actin levels from 231-BrM, 231-LM, to 231-BoM cells. All these data demonstrate that breast
cancer cell subpopulations with different metastatic preference exhibit distinct biophysical
properties and that cell cytoskeleton and softness may reflect the organotropism of breast
cancer cells.
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Figure 1. MDA-MB-231 (231) derivatives with the metastatic preference to brain (231-BrM), lung (231-LM), and bone
(231-BoM) exhibit increasing F-actin and cellular stiffness. (A) Cellular stiffness of 231-BrM cells is lower than that of 231-LM
cells that are softer than 231-BoM cells. Tumor cell stiffness was measured by atomic force microscopy. Three independent
experiments. (B) The histogram of tumor cell stiffness in (A). The Young’s modulus distribution was fitted with Gaussian
functions (lines). (C) The fluorescence imaging of F-actin in 231 derivatives with different metastatic preference. Tumor cells
were stained with phalloidin (green) and DAPI (blue). The outlined regions in the top panel were enlarged in the second
panel. The representative images were presented. (D) Quantification of the fluorescence intensity of F-actin in (C). Scale bar:
100 µm. Three independent experiments. The data represent mean ± SEM. * p < 0.05; and *** p < 0.001.
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3.2. Cell Cytoskeleton Influences the Organotropism-Related Gene Expression Pattern

We have demonstrated the correlation between cellular mechanical properties and
metastatic organotropism. However, the role of cancer cell biophysical properties in
metastatic tropism remains unclear. We hypothesized that cell cytoskeleton might influence
the organotropism of breast cancer cells. To test this idea, the effect of cell cytoskeleton on
the gene expression pattern related to brain and bone metastasis was investigated. F-actin
inhibitor Cyto D, ROCK inhibitor Y27632, or myosin II inhibitor blebbistatin were used
to disrupt the cytoskeleton of 231-BoM cells. On the other hand, F-actin polymerization
activator jasplakinolide (Jas) and Rho activator narciclasine (Narci) were used to stabi-
lize the cytoskeleton of 231-BrM cells. The expressions of the brain and bone metastasis
gene signatures that have been identified previously were examined [8–10,14,39]. The
data show that disrupting the cytoskeleton of 231-BoM cells using Cyto D or Y27632 had
a minimal effect on bone metastasis-related genes beside a few exceptions (ADAMTS1,
OPN, and PTHrP). In contrast, these pharmacologic treatments notably upregulated most
brain metastasis-related genes in 231-BoM cells (COX2, ANGPTL4, SERPIN B2, LTBP1
PIEZO2, EREG, HBEGF, and ITGB3; Figure 2A,B). However, blebbistatin did not affect
the expressions of both bone and brain metastasis-related genes. When 231-BrM cells
were treated with Jas, the expressions of bone and brain metastasis-related genes were
not obviously affected. In comparison, Narci treatment significantly enhanced five out of
nine bone metastasis-related genes (CXCR4, FGF5, ADAMTS1, FST, and PTHrP; Figure 2C)
and had minimal effects on the expressions of brain metastasis-related genes except the
unexpected upregulation of COX2 and Serpin B2 (Figure 2D). To examine the efficacy of
the pharmacologic perturbation, we measured the F-actin by FITC-phalloidin immunofluo-
rescence staining after drug treatment. There was a significant decrease of F-actin level in
231-BoM cells treated with Cyto D. However, Y27632 and blebbistatin treatment did not
decrease the F-actin level in 231-BoM cells and led to the minor effect on organotropism-
related gene expression, which may be due to the low dosage of these drugs. Both the
treatment of Jas and Narci enhanced the F-actin level in 231-BrM cells (Figure S1A–D).
Our results indicate that pharmacologically disrupting/stabilizing the cytoskeleton of
breast cancer cell subpopulations with bone/brain tropism influences the expressions of
organotropism-related genes.
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3.3. Cell Spreading and Proliferation of Breast Cancer Subpopulations with Distinct Metastatic
Tropism Respond to Substrate Rigidity Dependent on Cell Cytoskeleton

Our results have shown that cell cytoskeleton impacts the expressions of gene signa-
tures related to organotropism. We next explored the influence of cell cytoskeleton on the
response of breast cancer subpopulations with different organotropism to substrate rigidity.
Notably, 231-BrM, 231-LM, and 231-BoM cells specifically metastasize to brain (0.1–1.0 kPa),
lung (0.44 to 7.5 kPa), and bone (25–40 kPa) with distinct tissue stiffness [34,40]. To this end,
the cytoskeleton of 231-BrM cells was stabilized by Narci, while the cytoskeleton 231-BoM
cells was disrupted by Cyto D. These treated cancer cells were then cultured on tissue
culture plates (TCPs) or polyacrylamide hydrogels with the stiffness of 0.6 kPa, which
mimicked the mechanical stiffness of brain tissue. Cell spreading and morphology are
positively correlated with cell proliferation and motility and thus can be used as effective
indicators to determine whether the microenvironment is supportive of tumor cells [41,42].
The results show that when 231-BrM cells were treated with Narci, the circularity/aspect
ratio was increased/decreased on soft substrates, although the spreading area was not
affected. In contrast, disrupting the cytoskeleton of 231-BoM cells enhanced cell spreading
area, aspect ratio but not circularity on both TCPs and soft substrates (Figure 3A,B). Cell
proliferation is essential for disseminated tumor cells to develop into secondary tumors
upon the arrival at distant organs. We found that 25 nM Narci treatment decreased cell
proliferation rate on soft substrates but not on TCP. 50 nM Narci treatment increased cell
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proliferation on TCP, whereas this effect was abolished on soft substrates (Figure 3C,D).
Modulating the cytoskeleton of 231-BoM cells with Cyto D had no obvious effect on their
proliferation on TCPs. In contrast, inhibiting the cytoskeleton of 231-BoM cells increased
their proliferation on soft substrates (Figure 3E,F). Taken together, these findings demon-
strate that cell cytoskeleton may be a novel regulator of mechanical preference of breast
cancer cells with distinct organotropism on soft substrates.
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3.4. Silencing mDia 1 Enhances the Characteristics of Brain Metastasis in 231-BoM Cells

mDia1, a downstream effector of RhoA, is a key driver for actin polymerization,
which contributes to cell mechanics [43,44]. Previous studies show that the Piezo2-RhoA-
mDia pathway is necessary for the homeostatic regulation of actin cytoskeleton and force
transduction in 231-BrM cells [39]. To further explore the role of cell cytoskeleton and
mechanics, 231-BoM cells were transfected with mDia1 siRNAs (Figure 4A) and their gene
expression and cell proliferation were examined. We found that silencing mDia1 in 231-
BoM cells did not alter the expressions of bone metastasis genes consistently, where three
out of nine bone metastasis genes were upregulated (IMPG1, OPN, and PTHrP), while
FST was downregulated (Figure 4B). In contrast, inhibiting mDia1 upregulated seven out
of nine brain metastasis genes remarkably in 231-BoM cells (ANGPTL4, LTBP1, PIEZO2,
EREG, ITGAV, ITGB3; Figure 4C). Furthermore, knocking down mDia1 at low dose (1 nM)
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promoted cell proliferation on soft substrates but not on TCPs (Figure 4D,E). These data
suggest that silencing mDia1 enhances the expressions of brain metastasis genes and cell
proliferation on soft substrates in 231-BoM cells, which indicate the increase of their brain
metastasis ability.
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4. Discussion

Many cancers show an organ-specific pattern of metastases. This phenomenon was
first explained by the “seed and soil” theory proposed by Steven Paget [45], in which “seed”
refers to cancer cells with the ability to metastasize, while “soil” refers to the organs with
the supportive microenvironment. When the “seed” and “soil” fit each other, it is then
possible for the organ-specific metastases to be developed. Both cancer cells and tumor
microenvironment determine the inefficiency of the metastasis process [6,7]. In cancer
cells, the key factors include the gene signature, stemness, tumor dormancy state, and
tumor-secreted factors that play pivotal roles in mediating organ-specific metastasis [46].
Except for these biochemical mechanisms, mechanical cues play important roles in tu-
mor metastasis [47], including tumor cell mechanics. It is well accepted that mechanical
properties of tumor cells are linked to the invasive potential in pancreatic, ovarian, and
breast cancer [15,48,49]. Highly invasive and metastatic cancer cells are more deformable
than their less invasive counterparts, which may help cancer cells transit through narrow
constrictions during the metastasis process. Our previous studies show that the reduced
cytoskeleton and thus cell mechanics enhance the survival of circulating tumor cells under
fluid shear force in the circulation system and promote their chemoresistance ability [50,51].
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However, the role of tumor cell cytoskeleton and mechanics in organotropism remains
unclear. The current study establishes the correlation between cancer cell cytoskeleton
and organotropism. Breast cancer cell subpopulations with different organ preference
have distinct F-actin and cell stiffness that match the stiffness of their targeted organs.
Importantly, disrupting the cytoskeleton of breast cancer cell subpopulations with bone
tropism upregulates brain metastasis-related genes and promotes their spreading and
proliferation on soft substrates. On the other hand, stabilizing the cytoskeleton of breast
cancer cell subpopulations with brain tropism upregulates bone metastasis-related genes
and suppresses the spreading and proliferation on soft substrates. These findings suggest
that cell cytoskeleton may not only correlate with but also influence organotropism and
that cell cytoskeleton that matches the organ mechanics may enhance the ability of tumor
cells to adapt to the metastasized organ, which may unveil a new role of cell cytoskeleton
in tumor metastasis. Nevertheless, our results show that the Cyto D treatment could upreg-
ulate several bone metastasis-related genes, including ADAMTS1, OPN, and PTHrP, while
silencing mDia1 increases the expressions of OPN and PTHrP. On the other hand, Narci
and Jas treatment could enhance the expression of brain metastasis-related gene SERPIN
B2 in 231-BrM cells. The unexpected changes of gene expression after the modulation in
cell cytoskeleton may be due to the fact that the pharmacological treatment and genetic
modification not only lead to the change in cell cytoskeleton but also mediate a series of
alterations in their downstream signaling and cytoskeletal reorganization.

It is worthy to note that cell cytoskeleton and stiffness can be influenced by various
extracellular signals [52]. Extracellular vesicles (EVs) secreted by cancer-associated fibrob-
lasts can influence the mechanical state of cancer cells [53]. Mechanical microenvironments
can also provide various cues that enable a cell to regulate its cytoskeleton and alter its
mechanical state [52]. Many studies have shown that cells adapt their stiffness to match the
compliance of their substrates through cytoskeletal reorganization [35,54]. In line with this
notion, various degrees of stiffness of tumor cells within the same tumor tissue may be due
to the heterogeneity of the tumor mechanical microenvironment [20]. The MDA-MB-231
derivatives were established through collecting metastatic cells from the secondary tumors
in brain, lung, and bone with distinct tissue mechanics. Thus, it raises a question whether
the unique cell cytoskeleton and stiffness of these derivatives are due to their adaption to
the special mechanical microenvironment of the targeted organ or due to their intrinsic
features regardless of extracellular factors. Furthermore, these metastatic cells have been
cultured on TCPs for a long time after cell extraction, which may impact the cytoskeleton
and stiffness of the corresponding primary metastatic cells. These important issues need to
be rigorously investigated in the future.

The cytoskeleton provides the essential structure to transduce the external mechanical
cues from the cell membrane to the nucleus, which regulates various cell functions [55].
Actin polymerization and actomyosin contractility synergistically regulate cell morphol-
ogy, motility, division, and protein secretion [56]. Our previous results demonstrate that
modulating cell cytoskeleton and contractility influences the expressions of the genes
related to survival and drug resistance and regulates the apoptosis of circulating tumor
cells under shear flow and the chemoresistance ability [50]. In this study, when 231-BrM
cells were treated with Narci, the circularity/aspect ratio was increased/decreased on soft
substrates, although spreading area was not affected. In contrast, disrupting the cytoskele-
ton of 231-BoM cells enhanced cell spreading area, aspect ratio but not circularity on both
TCPs and soft substrates. Cytoskeleton-mediated mechanical signals have been linked
closely to cell proliferation [57]. Our data show that targeting actin network might have
distinct effect on tumor cells on substrates with different stiffness, as 50 nM Narci treatment
increased cell proliferation on TCP, whereas this effect was abolished on soft substrates.
Cyto D enhanced proliferation of 231-BoM cells on soft substrates but not TCP. Note that
although the brain tissue is mechanically heterogeneous, the stiffness of the brain regions
where tumor cell may infiltrate is below 1kPa, including cortex, cerebellum, and corpus
callosum [58–60]. Therefore, it is reasonable to utilize 0.6 kPa-substrate to represent the
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mechanical microenvironment of the brain tissue and investigate the influence on the fate
of tumor cells at the early stage of brain metastasis.

It is well known that cytoskeleton and actomyosin-mediated contractility contribute
to cell mechanical stiffness. Disrupting the cytoskeleton or inhibiting myosin activity
reduces cell stiffness, while stabilizing cytoskeleton or activating myosin activity increases
mechanical stiffness [29,30,61,62]. To examine the role of cell cytoskeleton in organotropism,
several pharmacological inhibitors that interfere the dynamics of actin cytoskeleton and
cellular contractility are used in our study. Cyto D can inhibit actin polymerization by
blocking the fast-growing barbed ends of actin filaments. Jas binds actin filaments and
suppresses their disassembly. Narci triggers actin stress fiber formation by activating
small GTPase RhoA. Blebbistatin directly inhibits myosin II activity to reduce cytoskeletal
contractility, whereas Y27632 inhibits myosin II activator ROCK. Therefore, these drugs
influence cell cytoskeleton and stiffness through different mechanisms. Consistently, our
results show that Cyto D treatment but not the low dose of blebbistatin and Y-27632
significantly reduces F-actin amount, while Jas and Narci enhance the F-actin level. We
find that Cyto D affects gene expression significantly, whereas blebbistatin and Y-27632
show minor effect on gene expression pattern in 231-BoM cells. This phenomenon may
be due to the distinct working mechanisms of these pharmacologic treatments and low
dosage of the drugs used in our study, since the adopted dose of Cyto D but not Y-
27632/blebbistatin significantly reduces the F-actin amount (Figure S1). Moreover, previous
studies show that cytoskeleton influences the differentiation of human pluripotent stem
cells toward pancreatic β cells. However, the authors found that not all the drugs targeting
cytoskeleton could induce endocrine differentiation [63]. This discrepancy is likely due to
the different mechanistic effects of these compounds on the cytoskeleton [64]. Therefore,
this effect cannot be excluded in the current study and may possibly contribute to the
distinct influence of different pharmacologic treatments on the gene expression.

The response of tumor cells to mechanical cues is crucial for their outgrowth in the
metastasized organs and depends on both intracellular structure and mechanical properties.
Moreover, the cytoskeleton and stiffness of a cell should match the microenvironmental
mechanics to sense and respond to the surrounding mechanical cues properly [65–67],
suggesting that it is likely for soft/stiff tumor cells to survive and grow well in a soft/stiff
niche. This idea is supported by the finding that cloning and multiplying breast cancer cells
that are prone to bone and lung metastasis on the substrates with corresponding stiffness
can significantly improve cell proliferation and migration [68]. Our study has investigated
the role of cell cytoskeleton in the response of tumor cells with different metastatic tropism
to the soft matrix. Stabilizing the cytoskeleton of 231-BrM cells decreases cell spreading
and proliferation on soft substrates, while disrupting the cytoskeleton of 231-BoM cells
enhances the spreading and proliferation. These data suggest that the deregulation of
cell cytoskeleton may confer cells the outgrowth advantages in soft brain tissue, which
should be further investigated. Although gene expression and mechanoadaptation ability
to substrate rigidity can indicate organotropism to some extent, the direct evidence should
be provided in the future to demonstrate the effect of cell cytoskeleton and stiffness on
organ tropism, especially the test of organotropism using animal models after intracardiac
injection of tumor cells with modulated cell cytoskeleton and mechanics.

5. Conclusions

In summary, this study suggests that there may be a correlation between cell cytoskele-
ton/stiffness and organotropism. The stiffness of breast cancer cell subpopulations with
different metastatic preference matches the mechanics of the metastasized organs. Cell
cytoskeleton significantly influences the organotropism-related gene expression pattern
and mechanoresponses to soft substrates which mimic brain tissue stiffness. These findings
highlight the key role of cell cytoskeleton in specific organ metastasis, which may not only
reflect but also impact the metastatic organ preference.
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