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Abstract 

 

The Mass Transit Railway (MTR) serves as the backbone of the Hong Kong public transportation 

network and continues to be expanded in phases. Nevertheless, occasional but severe disruptions 

have raised concerns about whether the proposed MTR expansions will benefit the system 

resilience. To assess the value of each stage of MTR network expansion, it is key to identify the 

distributive effects of new metro lines on both accessibility and resilience. This paper applies the 

route diversity index, a relatively new accessibility indicator, to assess the effects of new lines 

and evaluate their spatial distribution, variation, and changes at nodal, dyadic, and network levels. 

The results indicate that the effects on accessibility and resilience will differ between each stage 

of MTR expansion. On the accessibility front, the benefits of reduced travel times and increased 

route diversity will be successively extended to more districts with each MTR expansion, and the 

spatial equity will also be improved gradually by the expansion, especially in isolated regions 

such as the northern and western New Territories. In contrast, on the resilience front, although 

the overall network vulnerability will be reduced, the vulnerability of certain parts of the network 

will be increased, which might necessitate additional resources to protect these stations. 

However, some new lines will reduce this vulnerability and provide a complementary solution to 

enhance network resilience. Overall, the insights from this study could assist in cost-effective 

resource allocation and informed decision-making for the prioritization of future railway 

investments and cost-effective resource allocation. 
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1. Introduction 

 

The Hong Kong Mass Transit Railway (MTR) serves as the backbone of the Hong Kong public 

transportation network, accounting for 43.4% of daily public transportation trips on average 

(Transport Department, 2019). The system is still under expansion to increase its coverage and 

service quality, and the passenger modal share is projected to rise to approximately 45%–50% in 

2031 with the completion of several new lines (Transport and Housing Bureau, 2014). 

Nevertheless, occasional disruptions have caused the public to doubt the network’s resilience. In 

particular, natural disasters (Bono and Gutiérrez, 2011; Lu et al., 2014) and manmade activities 

(Loo and Leung, 2017; Lordan et al., 2014; Parkes et al., 2016) may put stations or lines 

temporarily out of service, thus affecting the overall efficiency of the rail network. For example, 

on February 10, 2017, an arson attack in Tsim Sha Tsui Station resulted in a station closure for 

more than six hours. On August 5, 2017, an electrical power failure led to the closure of six 

stations for more than two hours. On September 16, 2018, a super typhoon led to bus service 

suspension due to extensive road closures, and the MTR faced overwhelming passenger flows 

for more than 10 hours. On March 18, 2019, a train collision on the Tsuen Wan Line occurred in 

Central Station, one of the largest transfer stations, and caused the partial closure of the Tsuen 

Wan line for two days. On September 17, 2019, a train derailed between the Mong Kok East and 

Hung Hom stations, leading to a service suspension on the East Rail Line for a day. Unlike road 

network accidents, rail accidents not only cause traffic delays on the lines involved but also have 

a broader effect on passengers at other stations along the lines, or even passengers at stations on 

other lines, and thus generally cause greater social disruption. 

 

During the MTR’s more than 100-year history, the prevention of network failures and system 

disruptions through investments in new infrastructure (e.g., construction of new lines, 

replacement of old signal systems) has been a major endeavor. On the research front, meanwhile, 

graph theory and complex network theory have emerged in the past 10 years in analyses of the 

effects of new transit lines on the resilience and vulnerability of existing urban rail networks. 

Jenelius and Cats (2015) evaluated the robustness of a new cross-radial line in Stockholm, 

Sweden in terms of travel times under disruptions caused by supply and demand uncertainties. 

Subsequently, Cats (2016) studied the network development plan in Stockholm and concluded 

that it would improve network robustness by reducing the average travel time losses during 

disruptions. It is widely understood that new lines do not necessarily bring equal benefits to all 

parts of such a network. However, studies that use a disaggregate assessment approach remain 

relatively limited. 

 

This study aims to provide evidence for the necessity of studying the distributive effect of 

network expansions by a disaggregate assessment approach. In this context, by supplementing 

traditional measures of increased utility due to shorter travel times, we adopt a relatively new 

accessibility indicator—route diversity—to evaluate network performance in terms of the number 

of behaviorally effective paths during disruptions explicitly from the travelers’ perspective (Xu 

et al., 2018a). Within this analytical framework of route diversity, we assess the effects of new 

lines and evaluate their spatial distribution, variation, and changes at the nodal, dyadic, and 

network levels in a case study of the Hong Kong MTR system. 

 

Although the concepts of reliability and resilience are closely related to the general subject of 

vulnerability (Gu et al., 2020), these terms have different research scopes. Reliability focuses on 

the probability of providing a certain level of performance, whereas resilience concerns the 

susceptibility of a network to perturbations (i.e., changes in network performance) without 

accounting for the probability component. Although the MTR reports a high reliability of 99.9% 
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(MTR, 2019), there is a salient possibility of low resilience, which is therefore investigated in 

this paper. 

 

2. Literature Review 

 

2.1 Network resilience/ vulnerability analysis 

 

There is no single definition of transportation resilience, but it is commonly understood to relate 

to system performance under perturbations (Gu et al., 2020). Bruneau et al. (2003) introduced 

four concepts of resilience applicable to transportation studies, namely robustness, redundancy, 

resourcefulness, and rapidity, and this interpretation has been widely adopted in the context of 

transportation. Robustness and redundancy represent the static aspect of resilience, namely, a 

system’s capability to maintain its function, whereas resourcefulness and rapidity represent the 

dynamic aspect by emphasizing the rate at which a system returns to equilibrium after a 

disturbance (Jenelius and Mattsson, 2020). Within the broad concept of transportation resilience, 

a vulnerability analysis is often the first step to assess the ability of a network to resist the effects 

of perturbations. Indeed, vulnerability is a component enshrined in the concept of resilience.  

 

Network topology influences network resilience in terms of resistance and recovery abilities 

(Zhang et al., 2015). Many studies have investigated the topological characteristics of metro 

networks by using graph theory and complex network indices to evaluate the network 

performance. In graph theory, a real transportation network is represented by an abstract graph 

composed of a set of nodes connected by links (Kansky, 1963). The network could be undirected 

or directed (i.e., edges without or with direction, respectively) and unweighted or weighted (edges 

without or with a numerical value attached, respectively), depending on the applications. Several 

measures and indices are used to assess the efficiency of transportation networks in terms of 

connectivity and accessibility (Zhang et al., 2015). The Alpha, Beta, and Gamma indices 

represent the connectivity and complexity of a network. The Alpha index considers the 

relationship between the number of cycles and the maximum number of cycles, the Beta index is 

expressed by the ratio between the number of links and the number of nodes, and the Gamma 

index quantifies the relationship between the number of observed links and the maximum 

possible number of links. The above indices are also used to quantify network growth in terms of 

connectivity improvement (Chen et al., 2014; Wang et al., 2014). As they are solely based on the 

numbers of nodes and links, those three indices have a limited capacity to reveal structural 

differences between networks of equal size (Rodrigue, 2020). The limitations of these measures 

have led to the development of new metrics by introducing transportation engineering 

characteristics into a network-based methodology. López et al. (2017) conducted an accessibility-

based network vulnerability analysis by investigating the changes in node closeness and 

betweenness in different disrupted scenarios. Sarlas et al. (2020) proposed a new centrality 

measure called betweenness-accessibility to measure the accessibility of stations during 

disruptions. The estimation of the above static performance measures depends on two main 

parameters: the link/node weight and the shortest path length.  

 

On the other hand, studies regarding dynamic resilience of transportation networks often requires 

more information, such as travel demand and supply data, to represent the service supply 

dynamics and passengers’ responses to such events. Cats and Jenelius (2014) extended the 

measure of betweenness centrality with real-time traffic information to account for interactions 

between supply and demand and the accumulated effect of disruptions on the system 

performances of public transportation networks. Sun et al. (2018) extended the purely topological 

analysis by using passenger flows as link weights and used the weighted network as the basis for 
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a dynamic model of cascading failures due to flow overloads following an initial disruption at a 

station. Cats and Jenelius (2018) and Malandri et al. (2018) demonstrated an advanced approach 

with an agent-based behavioral model, by which travelers’ responses to disruptions and their 

further repercussions for other travelers could be simulated reasonably well. The richer set-up of 

these studies allows the definition of more intuitive effect measures and the capture of a wider 

spectrum of consequences of disruptive events. However, the availability of data and models 

determines what can be studied in a concrete situation. Moreover, it is difficult to study how the 

vulnerability of a network develops over time (Mattsson and Jenelius, 2015), especially with 

future expansion, as this would require predicting the future travel demand and changes in land 

use in an as-yet nonexistent situation, which may change in practice after the project’s completion.  

 

Using a plethora of approaches, researchers have attempted to overcome some of these limitations 

of topological studies. Recent studies extended various graph-based metrics by relaxing the 

assumption that all passengers have perfect knowledge of the system conditions and that they 

always choose the shortest path available. Derrible and Kennedy (2010) suggested that the 

number of cyclic paths available in a subway network is correlated with the vulnerability of the 

system and thus represents the number of alternatives from the aggregate perspective of the whole 

network. El-Rashidy and Grant-Muller (2016) evaluated road network redundancy by using the 

clustering coefficient, (i.e., transitivity), which represents an alternative possibility that measures 

the overall probability that the network would have interconnected adjacent nodes. Cats and 

Jenelius (2014) developed alternative formulations of the betweenness index based on the 

probabilistic route choice and the dynamic demand and supply environment. Lam (2016) defined 

the resilience of a node in the infrastructure network as the weighted sum of all reliable 

independent paths of all nodes in the network. Hawas et al. (2016) presented an approach to 

measure network effectiveness based on route diversity that represents the number of all possible 

routes to and from different regions via transit services. Wang et al. (2017) used several 

robustness metrics that emphasize alternative paths and their lengths.  

 

Some studies started with a more realistic description of the travelers’ responses to the provision 

of optional routes between the origins and destinations during disruptive events. Xu et al. (2018a) 

presented route diversity measures based on the concept of reasonable routes, taking the view 

that travelers would be unlikely to consider all possible routes as realistic alternatives. Thus, only 

routes that are reasonably quick relative to the shortest path are considered when assessing the 

network accessibility performance. This is especially useful for vulnerability analysis by 

accounting for the fact that commuters are more likely to consider shorter detoured routes, given 

an acceptable travel cost, as reasonable alternatives when the primary or secondary route is not 

available. Yang et al. (2017) demonstrated the feasibility of route diversity metrics for the Beijing 

metro network and identified the vulnerable stations. Jing et al. (2019) showed how such metrics 

could better uncover the existence of alternative paths compared with the standard measures of 

network connectivity for four different metro networks. Although the route diversity measure is 

based on the topology network, it considers the travelers’ route choice behavior and enables us 

to explicitly describe the effective connections and rerouting opportunities provided to travelers. 

 

In this paper, we adopt the route diversity measure, which fulfills various purposes: (1) reflecting 

the reality that passengers may not reroute immediately and optimally when networks change due 

to new lines or disruptions and (2) providing disaggregate information at the dyadic level to reveal 

the disparate topological effects of different new lines for each origin–destination (O-D) pair. 

Following the direction of Xu et al. (2018), we customize the route diversity measures to our 

longitudinal analysis of the evolutions of networks. The details of the algorithmic procedure can 

be found in Section 4.  
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2.2 Resilience effect of new lines 

 

A recent trend in transportation planning is to argue that new lines add value in terms of 

robustness and redundancy and thus contribute to a more resilient transportation system. 

However, railway construction represents a significant change to the local area and affects a 

considerable population. The potentially huge effects of new metro lines have attracted interest 

from researchers in a variety of fields, who study issues such as travel behaviors (Loo, 2009; 

Weckström et al., 2019) and land use (Mejia-Dorantes et al., 2012; Tan et al., 2019). In the context 

of network performance, both traditional utility assessments during normal operations and 

vulnerability assessments during disruption scenarios have been studied. 

 

Regarding utility assessments during normal operations, some studies have examined network 

robustness from the perspective that graph-based metrics can reveal the network efficiency and 

thus contribute to network robustness. Chen et al. (2014) investigated the metro network in 

Guangzhou, China and found that the gains from network development in terms of connectivity 

and accessibility were not spread evenly among the regions, which emphasized the importance 

of matching developments with different regional situations. Kim and Song (2015) examined the 

longitudinal changes in network accessibility and reliability in relation to different evolutionary 

stages of the subway system in Seoul, South Korea. Cats (2017) conducted a longitudinal analysis 

of the topological evolution of a multimodal rail network by investigating the dynamics of its 

topology and network indicators for the case of Stockholm during 1950–2025. Song et al. (2018) 

examined the distributive benefits in terms of the spatial coverage and service levels from a major 

expansion of the transit network in Gwangju, South Korea. Dai et al. (2018) investigated the 

evolving structure of the Southeast Asian air transportation network during 1979–2012 from a 

complex network perspective. Yang and Chen (2018) adopted machine learning theory to identify 

future trends in the metro network of Shanghai, China based on topological data and metrics in 

complex network theory. Weckström et al. (2019) investigated the metro extension in Helsinki, 

Finland and argued that the unequal distribution of benefits and burdens in terms of travel times 

and transfers had been overlooked due to the use of an aggregate approach.  

 

Regarding vulnerability assessments during disruption scenarios, studies have examined how 

building new lines enables a public transportation network to better withstand disruptive events 

and their consequences. De-Los-Santos et al. (2012) studied the network efficiency under 

disruption scenarios in the commuter system of Madrid, Spain and proposed potential new links 

that could increase the passenger robustness of the network. Jenelius and Cats (2015) evaluated 

the robustness of a new cross-radial line in Stockholm in terms of the travel times under 

disruptions of supply and demand. Cats (2016) studied the network development plan in 

Stockholm and concluded that it would improve the network robustness by reducing the average 

travel time losses during disruptions. Hong et al. (2017) investigated the effects of different 

expansion plans on the vulnerability of the subway network in Wuhan, China and identified the 

optimal plan from the network redundancy perspective. Zhu et al. (2018) investigated the 

appraisal of alternative lines and their effects on network performance during adverse events, 

using the case of line extension of a network in Beijing, China. Nian et al. (2019) evaluated the 

benefits of different alignments of new lines with respect to reducing network vulnerability in 

Shanghai. Cats and Krishnakumari (2020) investigated network performances under disruption 

scenarios for the short and long development patterns of metro networks in London (U.K.), 

Shanghai, and the Randstad (Netherlands). That study provided more nuanced evidence on the 

relation of the network structure and development pattern with its robustness.  
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Although the above review of existing studies is by no means exhaustive, it does indicate that 

building new transit lines is a crucial consideration in the growing field of transportation 

resilience. Among those studies, some (Nian et al., 2019; Song et al., 2018; Weckström et al., 

2019) provided evidence for the need to study the distribution of network extension effects in 

detail. This would require a disaggregate assessment approach. However, the findings of those 

studies may not be universally applicable because of the specific features of their cases and 

research contexts. This review highlights that more empirical evidence is needed to assess the 

distribution of the effects of new lines on resilience.  

 

2.3 Distributive effect of new lines 

 

The distributive dimension of a public transportation provision has long been recognized as a key 

aspect of transportation equity (Banister, 2018; Hay, 1993; Pereira et al., 2017; Verlinghieri and 

Schwanen, 2020). The past decade has witnessed growing concerns over the equity effects of 

public transportation investments (Bocarejo and Oviedo, 2012; Golub and Martens, 2014; Karou 

and Hull, 2014), particularly railway transit projects, which are increasingly being constructed 

worldwide (Bhandari et al., 2009; Bianco et al., 2015; Dorantes et al., 2011; Kim and Sultana, 

2015; Weckström et al., 2019). In general, equity refers to the fairness and justice with which the 

benefits and costs of transportation projects are distributed. One useful approach for measuring 

transportation equity as a target is to distinguish horizontal from vertical equity (Litman, 2002). 

Horizontal equity, also known as spatial equity, focuses on the equal distribution of benefits from 

public service to all target groups or locations. Vertical equity, also known as social equity, 

considers the geographical unevenness of socioeconomic conditions and focuses on whether the 

relative service quality benefits transport-disadvantaged populations (Foth et al., 2013). In this 

paper, we focus solely on the spatial scale and evaluate the equity effects of the metro expansion 

plan at different stages by examining the uneven distribution of benefits in the metro network. 

 

To evaluate transportation equity, it is important to measure the benefits from new additions to 

the public transit service. From the passengers’ viewpoint, the degree of benefits from new lines 

is commonly represented by accessibility (i.e., access to the intended destination) and resilience 

(i.e., maintenance of travel quality under perturbations), as discussed in the previous section. 

However, the diversity of possible benefits from public transportation and the numerous 

definitions of equity, combined with the difficulty of matching executive plans to these 

definitions, have complicated both the theoretical and practical aspects of public transportation 

equity (Foth et al., 2013). This study investigates the inequity of route choice (route diversity) 

resulting from the specific circumstances of a metro network and how the topological effects of 

different new lines might improve this situation. In terms of the availability of travel alternatives, 

users can be divided into two groups: choice and captive transit users (Mortazavi and Akbarzadeh, 

2017). Choice users are those who have access to at least two motorized travel modes, whereas 

captive users have access to only one motorized mode to accomplish their urban trips. Although 

this concept is most commonly applied to distinguish between users who can or cannot select 

between a transit and a paratransit mode, a similar distinction could be applied to users’ route 

choices within a transit mode (i.e., whether users have reasonable alternatives, and if so, how 

many, when the primary route is not available), which is the focus of this paper. 

 

Various approaches to the quantification of the equity concept are proposed in the literature. The 

Gini coefficient is a well-known inequity measure applied in various contexts (Delbosc and 

Currie, 2011; Guzman et al., 2017; Jang et al., 2017; Ricciardi et al., 2015). This measure of 

statistical dispersion is intended to represent inequities of services and benefits within any group 

in a population. Some studies have attempted to analyze spatially extended inequity effects. 
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Mortazavi and Akbarzadeh (2017) evaluated the imbalance between service provision and local 

travel needs for public transportation by assessing their conformity to one another using 

Spearman correlation ranks and the Gini index. They studied the public transportation network 

in Isfahan, Iran and found that the new bus rapid transit lines would not improve the Gini index 

but would improve the Spearman rank correlation, indicating that the Spearman correlation can 

capture another angle of transportation equity. Jenelius (2010) presented a rare example of a 

vulnerability study by comparing an efficiency-based measure with an equity-based measure of 

the uneven increases in travel times distributed among travelers. Notably, when identifying the 

most important links in a road network, the equity-based measure was able to distinguish certain 

local roads from the largest and busiest roads, the latter of which are usually identified as the 

more critical components in a network vulnerability analysis. Inspired by the above research, we 

assume that the distribution of station vulnerability with respect to local hazards reflects local 

needs, and that stations with greater needs receive a greater enhancement of resilience. To this 

end, we investigate the conformity between the need for and the benefit from new lines in terms 

of resilience. 

 

The inclusion of the resilience and equity effects of a public transportation investment is 

increasingly in demand from policy makers (Jenelius and Cats, 2015; Manaugh and El-Geneidy, 

2012), suggesting that this aspect of the Hong Kong MTR merits further evaluation. In this paper, 

the route diversity measure is explored to evaluate the extent to which metro expansion plans in 

the Railway Development Strategy (Transport and Housing Bureau, 2014) provide equitable 

value in two respects: (1) the distributive effect of each new line in terms of the potential time 

savings and route diversity improvement across O-D pairs, and (2) the distribution of need 

(station vulnerability) and benefit (resilience enhancement) from each new line throughout the 

metro network. 

 

3  Case study 

 

Hong Kong adopts a transit-oriented development approach with its self-financing public 

transportation. Approximately 90% of the 12.9 million daily motorized trips in Hong Kong are 

made by public transportation (Transport Department, 2019), one of the highest rates of any 

developed region worldwide. With the government’s stated policy of “using railways as the 

backbone of Hong Kong’s public transportation system,” the Hong Kong MTR accounts for 

43.4% of the average daily public transportation trips (Transport Department, 2019). Fig. 1 shows 

the general spatial structure of the city, which comprises Hong Kong Island, Kowloon, and the 

New Territories. The main urban areas of the city lie on either side of Victoria Harbour. As of 

2019, the MTR has 10 operational lines and 93 stations with a total length of 187.4 km. The MTR 

is experiencing rapid expansion to meet the increased travel demand in recent years. Herein, the 

five major line expansions recommended by the Railway Development Strategy (Transport and 

Housing Bureau, 2014) are used as the case study (Fig. 1). Several new lines are planned to be in 

operation by 2031, bringing the total railway length to 235.3 km, as shown in Table 1. The rail 

share of overall daily motorized trips will increase to approximately 50% with the completion of 

these projects. However, metro networks are vulnerable to incidents that threaten the efficiency 

of the overall system. Recently, such failure events have occurred more frequently in Hong Kong 

(RTHK News, 2019a, 2019b), and the regularity of serious disruptions has prompted the public 

to wonder whether the new lines will add redundancy (i.e., alternative routes) to the existing MTR 

system. 
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Table 1  

The spatial expansion of the MTR network in Hong Kong (Transport and Housing Bureau, 

2014). 
Year Lines Stations 

(1) 
Link

s 
Route 

length (km) 
Average travel 

time 𝑇𝑁 (mins) 

Route diversity 

𝐷𝑁 

P [1] New railway lines 

2019 10 93 99 187.4 29.47 1.116 .587 - 
2021 10 98 114 204.4 27.01 (-8.35%) 1.137 (+1.88%) .567 Shatin to Central Link (2) 

2023 11    101(3) 118 215.1 27.93 (+3.41%) 1.145 (+.70%) .566 Northern Link (NOL) 

2025 12 105 123 222.9 27.63 (-.01%) 1.147 (+.17%) .547 East Kowloon Line (EKL) 
2026 13 110 129 23.3 27.93 (+.01%) 1.151 (+.35%) .533 South Island Line West (SILW) 

2031 14 112 133 235.3 26.67 (-.05%) 1.165 (+1.22%) .555 North Island Line (NOL) 

Note: (1) Not including the Light Rail and the Airport Express; (2) comprising two parts of the 

extended segments of the existing East Rail Line and Ma On Shan Line; (3) including new 

stations at Hung Shui Kiu, Tuen Mun South (TMS), and Tung Chung West (TCW). 

 

 
Fig. 1. Map of the Hong Kong MTR system in 2031 

 

To better illustrate the ring-radial network structure, following the study of Roberts et al. (2016), 

we transform the MTR map into a concentric circle map as shown in Fig. 2. In a radial-centric 

network, each radial segment connects two outer-city areas as it passes through the city center. 

However, such a network can also contain circumferential segments, which intersect the radial 

lines to allow transfer between them, thus constituting a route-diverse network. This network 

structure generates bottlenecks along the circumferential line segments where branches merge 

and lines intersect. As we can see, most of the new lines will be in the circumferential form. The 

Northern Link (NOL), East Kowloon Line (EKL), South Island Line West (SILW), and North 

Island Line (NIL) can be considered as forming a partial ring that integrates the network by 

allowing shortcuts, thus enhancing robustness. The only exceptions are the new line segments 

named the Shatin to Central Link (SCL). These consist of two parts: a southern extension of the 

Ma On Shan Line (MOL) connecting with the West Rail Line (WRL) to form the new Tuen Ma 

Acronyms of Existing Lines

New Territories

ur
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Line (TML), and a southern extension of the East Rail Line (ERL) to the Island Line (ISL) to 

form the new North-South Line (NSL). The SCL will improve the connections between the 

northern and western inner suburbs and provide a more direct cross-Harbour alternative for the 

northern area. 

 

 
Fig. 2. Concentric circle representation of the Hong Kong MTR system in 2031. 

 

4  Methodology 

 

A method to analyze the value of new metro lines with respect to the topology of the network is 

proposed. This method entails performance evaluation of route diversity and travel time under 

normal operating conditions, and vulnerability analysis by a full consideration of possible station 

failure scenarios. The following sub-sections describe the network representation and the set of 

routes, followed by the measures of performance and station vulnerability deployed in this study.  

 

4.1 Network representation and basic topological properties  

 

The MTR network is represented by a weighted matrix M (N, A), where N is a finite set of nodes 

(stations) and A is a finite set of links (connections between adjacent stations). Any node in N can 

be an origin or a destination of an O-D trip. Each link in A is weighted with the time cost attribute 

ca. This representation is based on the L-space graph commonly used in studies of public 

transportation networks from the complex network perspective (Luo et al., 2019). Similar to the 

representation used by Sun et al. (2015) and Jing et al. (2019), each interchange station in the 

network matrix is divided into virtual nodes, each of which has a particular node degree. These 

virtual nodes are considered to be located on separate MTR lines, and the virtual links between 
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those lines determine the required transfer times, including transfer walking and average waiting 

times (assumed to be half of the service headways). We assume the access and egress walking 

times to/from the origin and destination stations to be uniformly 1 minute. This assumption is 

consistent with the trip planner service on the official website (MTR, 2020). The graph 

representation has two key features: (1) it enables simulation by allowing one to add both in-

vehicle and transfer time attributes when evaluating the set of reasonable routes, under the 

assumption that travelers choose their routes based on the time cost; and (2) it enables comparison 

by allowing simple modification of graphs when existing stations become new interchange 

stations through the addition of virtual stations and links as new connections. 

 

4.2 Assessment of route diversity 

 

We are interested in the route set of each O-D pair in both regular operation and disruptive events. 

Considering that travelers do not necessarily choose the shortest path, the route choice factors, 

which are related to the travelers’ level of knowledge about the alternative routes, are implicitly 

considered. This accommodates the likelihood that some travelers will choose their routes with 

imprecise knowledge of the disrupted network during an actual event, and there may well be 

some heterogeneity in the routes chosen.  

 

A reasonable route between an O-D pair (m, n) is defined as a route whose links are reasonably 

short relative to the shortest path (Leurent, 1997; Xu et al., 2018a). The link constraint can be 

described mathematically as: 

(1 + 𝜏𝑚
𝑎 )(𝑐𝑚(𝑎ℎ) − 𝑐𝑚(𝑎𝑡)) ≥ 𝑐𝑎,      ∀𝑎 ∈ 𝐴𝑘, 𝑚 ∈ 𝑁 (1) 

 

where ah and at are the head and tail nodes, respectively, of link a; cm(ah) and cm(at) are the 

minimum time costs from origin m to the head and tail of link a, respectively; 𝜏𝑚
𝑎  is an acceptable 

elongation ratio for link a with respect to origin m, with 𝜏 usually set to 1.5 for urban areas 

(Tagliacozzo and Pirzio, 1973), consistent with similar studies of route diversity (Jing et al., 2019, 

2020; Yang et al., 2017); and Ak is the set of links in route k. 

 

The sets of reasonable routes for each O-D pair (m, n) Kmn = {R1, R2, …, Ri}, are obtained using 

Eq. (1). With the travel time of each reasonable route ti, the average travel time Tmn is calculated 

as: 

𝑇𝑚𝑛 =
1

𝑅𝑚𝑛
∑ 𝑡𝑖 (2) 

 

When quantifying the size of route sets, we take route overlapping into consideration to enable 

comparison among travelers’ route choices. We adopt the similarity coefficient SCkh (Russo and 

Vitetta, 2003) to penalize the links shared by multiple routes in calculating the route diversity. 

Hence, with the number of reasonable routes Rmn, the route diversity Dmn for each O-D pair is 

calculated as: 

𝐷𝑚𝑛 =  𝑅𝑚𝑛 − ∑ 𝑆𝐶𝑘ℎ

𝑘≠ℎ∈𝐾𝑚𝑛

, ∀𝑚 ≠ 𝑛 ∈ 𝑁 (3) 

𝑆𝐶𝑘ℎ =
𝑐𝑘ℎ

√𝑐𝑘𝑐ℎ

, ∀𝑘 ≠ ℎ ∈ 𝐾𝑚𝑛, 𝑚 ≠ 𝑛 ∈ 𝑁 (4) 

where ckh is the length of common links between routes k and h; ck and ch are the lengths of routes 

k and h, respectively; and Kmn is the set of reasonable routes for O-D pair (m, n).  
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We aggregate the route diversity into the network level to enable the comparison of disruption 

scenarios and extended networks. The aggregate route diversity is defined as the average of the 

route diversity for all O-D pairs: 

 

𝐷𝑁 =
1

|𝑁|(|𝑁| − 1)
∑ 𝐷𝑚𝑛

𝑚≠𝑛∈𝑁

, ∀𝑚 ≠ 𝑛 ∈ 𝑁 (5) 

 

Similarly, the performance of the network in terms of average travel time is: 

 

𝑇𝑁 =
1

|𝑁|(|𝑁| − 1)
∑ 𝑇𝑚𝑛

𝑚≠𝑛∈𝑁

, ∀𝑚 ≠ 𝑛 ∈ 𝑁 (6) 

 

The detailed process of the solution algorithm for the aforementioned calculations is summarized 

in Table 2. 

 

Table 2 

Pseudocode for algorithm for network performance calculation 
Initialization: Input all nodes {𝒎 ∈ 𝑵}, all links {𝒂 ∈ 𝑨}, and the time cost matrix u 

Procedure:  

   Step 1.1: obtain a reasonable adjacency matrix 𝒖𝒎 by deleting unreasonable links (i.e., links that do not fulfill the criteria in Eq. (1)) 

   for 𝟏 ≤ 𝒎 ≤ |𝑵| do 

      set 𝒖𝒎 = 𝒖 

      for 𝟏 ≤ 𝒂 ≤ |𝑨𝒎| do 

         Calculate the shortest route cost from origin r to head 𝒂𝒉 and tail 𝒂𝒕 with the Dijkstra algorithm 

            if  (𝟏 + 𝝉𝒎
𝒂 )(𝒄𝒎(𝒂𝒉) − 𝒄𝒎(𝒂𝒕)) ≥ 𝒄𝒂,      ∀𝒂 ∈ 𝑨𝒌 

               then 𝒖𝒎(𝒂𝒕, 𝒂𝒉) = 𝟎 

            else 

               keep 𝒖𝒎(𝒂𝒕, 𝒂𝒉) 

            end if 

        end for 

        Step 1.2: construct the route set 𝑲𝒎𝒏 by obtaining all possible routes from origin 𝒎 to all nodes with 𝒖𝒎 

𝑫𝑭𝑺(𝒖𝒎, 𝒎)  

   set 𝑺 an empty stack 

      for 𝟏 ≤ 𝒋 ≤ |𝑵| do 

         set visited [𝒋] = false 

         push 𝑺, 𝒗 

         while 𝑺 is not empty do  

            𝒖 = pop 𝑺 

            if not visited [𝒋] 

            then visited [𝒋] = true 

               for each unvisited neighbor 𝒊 of 𝒋  

                  push 𝑺, 𝒎 

               end for 

            end if  

         end while 

      end for 

 end 𝑫𝑭𝑺() 

 Step 1.3a: calculate the number of reasonable routes 𝑹𝒎𝒏  for each O-D pair (m, n) using Eq. (1) 

 Step 1.3b: calculate the average travel time from 𝒎 to all nodes 𝒏,  𝑻𝒎𝒏 using Eq. (2) 

 Step 1.3c: calculate the similarity coefficient 𝑺𝑪𝒌𝒉 and the route diversity 𝑫𝒎𝒏 from 𝒎 to all nodes 𝒏 using Eqs. (3-4) 

   end for 

   Step 2a: calculate the network-level route diversity 𝑫𝑵 using Eq. (5)  

   Step 2b: calculate the network-level travel time 𝑻𝑵 using Eq. (6) 

   outputs 

    O-D-level performance index: route diversity 𝑫𝒎𝒏 and average travel time 𝑻𝒎𝒏 

    Network-level performance index: route diversity 𝑫𝑵 and average travel time 𝑻𝑵 
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4.3 Resilience effects of new lines 

 

The benefit of a network expansion under normal operating conditions is evaluated as the 

difference in network performance between the extended and reference networks. Two indicators 

are used: route diversity DN and average travel time TN. A new line can serve as a complement 

(adding redundancy through route diversity) or a substitute (raising efficiency through reduced 

travel time) to other lines. Thus, the value of a network expansion is first evaluated in terms of 

the overall effect on passengers.  

 

In parallel with the network performance analysis, we perform the vulnerability analysis of each 

station to illuminate the variations between stations and identify the strategic importance of each 

station’s served area. Conceptually, identifying vulnerable components and investigating their 

temporal evolution under different development projects can help cost-effective resource 

allocation to enhance the network’s resiliency. Identifying critical elements is a standard 

assessment procedure in vulnerability analysis, which can effectively reveal the weaknesses of 

the network (Jiang et al., 2018; Mattsson and Jenelius, 2015; Xu et al., 2018b; Zhang et al., 2019).  

 

When a station is closed, some passengers may be redirected to a smaller set of alternatives. For 

the vulnerability analysis, when a station is disrupted, it is assumed that the travel time remains 

constant for the non-disrupted components, as in the study by Rodríguez-Núñez and García-

Palomares (2014). The nodal vulnerability Vr for station r is based on the overall effect of the 

disruption on the number of available routes, and is defined as:  

 

𝑉𝑟 =
𝐷𝑁(𝑂) − 𝐷𝑁(𝑟)

𝐷𝑁(𝑂)
, ∀𝑟 ∈ 𝑁 (7) 

 

where DN (O) and DN (r) are the network route diversity during normal operations and with 

closure of station r, respectively.  

 

Network expansion generally benefits passengers under both normal and disrupted conditions, in 

terms of shortening travel times and increasing route diversity. However, it does not necessarily 

benefit passengers to the same extent under both conditions, meaning that some areas may be 

more vulnerable to the effects of disruptions. The value of a network expansion for individual 

station r under disrupted conditions is evaluated as the difference between the station’s 

vulnerability during disruption in the extended network M+ and the reference network M0: 

 

𝑈  𝑟(∆𝑀) = 𝑉𝑟(𝑀+) − 𝑉𝑟(𝑀0) (8) 

 

4.4 Distributive effect of new lines 

 

4.4.1 Network level: Gini coefficient 

 

The overall distribution of the benefits of the new lines among passengers is analyzed by 

calculating the Gini coefficient (Allison, 1978). This measure of statistical dispersion indicates 

the distance of the current situation from the ideal situation, i.e., a situation of complete equity in 

which all process gains are equally distributed among travelers. The Gini coefficient has a value 

between 0 (perfect equity) and 1 (perfect inequity). A Gini value of less than 0.20 denotes low 

inequity, a value between 0.20 and 0.50 indicates medium inequity, and a value above 0.50 

represents high inequity (Haidich and Ioannidis, 2004). In this way, the distribution of Lorenz 
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curves at different stages of development, a visual representation of equity, can be compared 

mathematically. The Gini coefficient G is calculated as follows (Delbosc and Currie, 2011):  

 

𝐺 = 1 − ∑ (𝑋𝑘 − 𝑋𝑘−1)(𝑌𝑘 − 𝑌𝑘−1)
𝑛

𝑘=1
 (9) 

 

where Xk and Yk are the cumulative proportion of the population and public transport service 

variable respectively, for k = 0, 1, 2, ... , n, with X0, Y0 = 0 and Xn, Yn = 1.  

 

4.4.2 Dyadic level: Two-step clustering 

 

As mentioned earlier, a new line could benefit different groups of passengers in different ways: 

as a complement providing a reasonable alternative route or as a substitute providing a superior 

alternative route. Other than the measures that are computed at the network level, indicators 

defined at the dyadic level (Eqs. (2)–(3)) allow investigation of the spatial disparity of topological 

characteristics among O-D pairs. Spatial clustering is commonly used to evaluate the differential 

effects of a transportation infrastructure investment (González-González and Nogués, 2019; 

Pereira et al., 2019), and passengers are often clustered into several groups based on their origins 

and destinations (Kroon et al., 2015; van der Hurk et al., 2018). In this paper, a two-step cluster 

analysis is applied to differentiate O-D pair clusters with two major continuous variables: changes 

in travel time and route diversity.  

 

The cluster analysis involves two steps (pre-cluster and cluster steps) and is effective for very 

large datasets with both continuous and categorical variables (Tkaczynski, 2017). In the first step, 

observations are pre-clustered using log-likelihood distances to create a cluster-feature tree. In 

calculating the log-likelihood, the continuous variables are assumed to be normally distributed, 

and the categorical variables are assumed to follow multinomial distributions. The resulting sub-

clusters are further grouped in the second step by comparing their distances to a specified 

threshold or pre-defined number of clusters. The distance D (j, s) between two clusters j and s is 

defined as the decrease in log-likelihood due to the merging of the two clusters:  

 

𝐷 (𝑗, 𝑠) = 𝜁𝑗 + 𝜁𝑠 − 𝜁⟨𝑗,𝑠⟩ (10) 

where  

𝜁𝑗 = −𝑁𝑗 [∑
1

2
log(�̂�𝑘

2 + �̂�𝑗𝑘
2 ) + ∑ �̂�𝑗𝑘

𝐾𝐵

𝑘=1

𝐾𝐴

𝑘=1

] (11) 

and  

�̂�𝑗𝑘 = − ∑
𝑁𝑗𝑘𝑙

𝑁𝑗

𝐿𝑘

𝑙=1

log
𝑁𝑗𝑘𝑙

𝑁𝑗
 (12) 

 

where KA is the total number of continuous variables used, KB is the total number of categorical 

variables, LK is the number of levels for the kth categorical variable, Nj is the number of 

observations in cluster j, �̂�𝑘
2 is the variance of the kth continuous variable in the original data set, 

�̂�𝑗𝑘
2  is the variance of the kth continuous variable in cluster j, Njkl is the number of observations in 

cluster j for which the kth categorical variable takes the lth level, and ⟨𝑗, 𝑠⟩ represents the cluster 

formed by merging clusters j and s. Because all variables in this study are continuous, the above 

𝜁𝑗  can be reduced to −𝑁𝑗 [∑
1

2
log(�̂�𝑘

2 + �̂�𝑗𝑘
2 )𝐾𝐴

𝑘=1 ] . 

 



 

 14 

The two-step cluster component in IBM SPSS Statistics 26 is used to find the correct number of 

clusters by running a simulation, which determines the clusters automatically, accurately, and 

quickly. The two-step process clusters together groups of stations with similar characteristics to 

enable comparative analysis between different new lines. 

 

4.4.3 Nodal level: Spearman’s rank correlation coefficient  

 

In addition to assessing the distributive effects of new lines in normal operation, we assess the 

conformity between the need and benefit in terms of resilience using the Spearman rank 

correlation coefficient. This coefficient has a value between -1 and 1 and indicates the strength 

and direction (negative or positive) of a relationship between two variables. We assume that the 

distribution of nodal vulnerability to hazards reflects the local needs, and thus stations with 

greater needs would require a greater resilience enhancement to reduce the effect of a disruption 

on overall network performance. Once the distribution of the need for vulnerability enhancement 

for each station and the benefits from each new line are evaluated in the vulnerability analysis in 

Section 4.3, we sort the list of stations according to need and benefit. We then assess the 

conformity among the ranked stations in terms of need and benefit by using Spearman’s 

correlation rank-order coefficient ρ:  

 

𝜌 = 1 −
6 × ∑ 𝑑𝑟

2𝑚
𝑟=1

(𝑚3 − 𝑚)
 (13) 

 

where dr indicates the difference between a station’s ranking positions in the two lists (nodal 

vulnerability Vr and received value from new lines Ur) and N indicates the number of stations. ρ 

follows a t-distribution with the degrees of freedom equal to m − 2 and, therefore, its statistical 

significance can be determined (Siegel, 1956).  

 

5  Value of New Lines Assessed with Route Diversity Measures 

 

5.1 Value of new lines for network route diversity 

 

We use the route diversity measures to assess the performance of the Hong Kong MTR network. 

These measures quantify the feasible routes available for travelers. More available routes 

correspond to more alternative routes in the event of disruption. The network-level route diversity 

is first evaluated with the statistic of route availability distribution during normal operation. For 

the existing network, the proportion of all O-D pairs connected by only one reasonable route P[1] 

is calculated as 0.587, and the network-level route diversity index is 1.116. We find that the routes 

with the greatest route diversity (greater than 3) are from East Tsim Sha Tsui to Sham Shui Po 

and from Prince Edward to Austin. This is understandable given that these stations are located at 

the center and serve as a hub for local coverage. Many stations in the center form a grid pattern, 

which increases the number of alternatives. However, due to the high efficiency of the radial lines 

for trips between main urban and suburban areas, the alternative routes provided by the 

circumferential lines are comparatively much less feasible. Trips originating or terminating in the 

outer city generally have fewer alternatives (i.e., lower route diversity). For example, trips 

between the northern and western parts of the New Territories, which on average require more 

than 60 minutes, are considered long journeys. The radial segments of the ERL and WRL provide 

efficient routes for those O-D pairs. Although the circumferential segments provide alternative 

routes, they are not considered reasonable by Eq. (3). Therefore, while some O-D pairs enjoy 

higher route diversity (more choices), others offer a shorter travel time. 
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Fig. 3. Lorenz curves of O-D pairs and travel time (left) and route diversity (right) from 2020 to 

2031 

 

Table 3 

Gini coefficient for different phases of the proposed expansions from 2020 to 2031. 

Station 
Year 

2019 2021 2023 2025 2026 2031 

Gini coefficient 

(Travel time) 
.294 

.299 

(+.005) 

.291 

(-.008) 

.288 

(-.003) 

.284 

(-.004) 

.287 

(+.003) 

Value rank - 5 1 3 2 4 

Gini coefficient  

(Route diversity) 
.083 

.097 

(+.014) 

.101 

(+.004) 

.105 

(+.003) 

.106 

(+.001) 

.113 

(+.007) 

Value rank  5 3 2 1 4 

Value rank (Overall)  5 2 3 1 4 

 

We further examine how the addition of new lines will enhance resilience by improving route 

diversity and reducing travel time, and thus benefit spatial equity, with the above measures. Table 

2 summarizes the extent of the planned MTR expansion from 2019 to 2021, 2023, 2025, 2026, 

and 2031. The cumulative frequency distributions of route diversity and travel time are presented 

in Fig. 3 to further illustrate the association between these two measures at the O-D level. The 

results reveal a gradual improvement of the network in terms of increasing route diversity (where 

lower cumulative proportions are preferable) and reducing travel time (where higher cumulative 

proportions are preferable). This tendency is more distinguishable in 2021 and 2031, suggesting 

that critical transitions occur in those years. The main reason for the considerable enhancement 

of route diversity is the completion of the SCL and NIL, which benefit the network due to their 

location in the inner city and enable a large number of O-D pairs to make use of the new lines. 

They also shorten some existing trips, as indicated by the significant drop in average travel time. 

However, as shown in Table 3 and Fig. 3, the spatial equity of travel time is worsened by the 

expansion, as the improvement in accessibility is concentrated in the main urban area along the 

primary MTR corridor, near the already advantaged central area. Besides the SCL and NIL, the 

other new lines mostly offer local connectivity in disadvantageous suburban areas, and the spatial 
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equity is therefore improved. In contrast, the spatial equity in route diversity would worsen 

gradually from 2020 to 2031. This indicates that the improvement in the provision of redundant 

alternatives for existing O-D trips is not evenly distributed. Notably, the value of P[1] slightly 

increases in 2031. This suggests that the NIL provides such an improvement that previous path 

alternatives for certain O-D pairs become comparatively inferior, which mathematically appears 

as a worsening of resilience and equity. However, it remains difficult to determine exactly how 

much relative significance one should attribute to the two aspects of the value of new lines when 

only information at the network level is available. Thus, disaggregate information is needed to 

delve deeper into the dyadic and nodal levels, as discussed in the following sections.  

 

5.2  Value of new lines for dyadic level route diversity 

 

Although the results show an improvement of overall value as the network complexity increases 

over time, this does not necessarily imply that all users at the dyadic level benefit from the new 

lines. Our assessment of the value of the new lines is therefore carried down to the dyadic level, 

by evaluating the improvements in route availability and time saving for the O-D pairs. This 

investigation focuses on clusters of O-D pairs of the network over different time scales. The 

information is then used to identify the prominent network topologies that contribute to the route 

diversity. Three clusters of O-D pairs are identified (Table 4). Group A represents O-D pairs that 

are provided with faster routes owing to the network expansion, identified by the reduced average 

travel time and route diversity. Travelers in this group enjoy much faster journeys than before. 

As the new routes have much shorter travel times, the previous route sets in the old network 

become unattractive and disfavored. Group B represents O-D pairs for which the number of 

alternative routes increases. This group benefits from the new lines specifically from the route 

diversity perspective. Travelers perceive a new alternative route as an increase in utility, even if 

it does not provide significant time saving. Group C represents O-D pairs that are unaffected in 

terms of route diversity and travel time. This group derives no benefit from the new lines as they 

provide neither significant time saving nor additional reasonable routes between the O-D pairs. 

Although theoretically they might benefit from congestion relief in cases where a new route 

offering a faster journey option removes some passenger flow from the associated routes, a full 

discussion of the passenger flows and congestion is beyond the scope of this paper. Therefore, 

the benefit of new lines at the dyadic level is determined as the total percentage of O-D pairs in 

Groups A and B. 

 

The completion of the SCL in 2021 and NIL in 2031 has an obvious topological effect on the O-

D pairs. The SCL provides a connection between two major areas in the New Territories that are 

served by large numbers of stations. The radial properties of this L-shaped line, which passes 

through the city center, contribute to travel time reduction between the inner and outer cities for 

24.3% of O-D pairs. Due to the radial properties of the new line, its benefits spread indirectly to 

some other O-D pairs (a further 9.0%) by providing alternative routes. In comparison, the NIL 

makes a similar contribution, in terms of travel time reduction and alternative routes, to the O-D 

pairs. However, it acts more like a circumferential line in the main urban area to provide shorter 

connections between radial segments. The other lines, such as the NOL, EKL, and SILW, lie on 

the edge of the network topology. Their effects are more local than those of the SCL and NIL. 

Their topological effects on the network are limited, influencing less than 4% of O-D pairs. 

Overall, the route diversity measure captures the topological effects of the new lines differently 

from the conventional consideration of the path with the shortest travel time, quantitatively 

reflecting the advantages of the new lines in providing alternative routes. 
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Table 4 

Groups of O-D pairs identified in the evolution of the network from 2021 to 2031. 
Group A B C 

Characteristics O-D pairs provided with 

faster routes 

O-D pairs provided with more 

alternatives 

Unaffected O-D pairs 

Year 2021 (SCL)    

Description Benefit: 33.3% of O-D pairs; Value rank: 1  

   Size 2810 (24.3%) 1036 (9.0%) 7709 (66.7%) 

   Route diversity -0.16 (-0.09%) +0.67 (+0.62%) 0.00 (0.00%) 

   Travel time (mins) -5.37 (-0.16%) -0.86 (-0.03%) -0.08 (-0.00%) 

Year 2023 (NOL)    

Description Benefit: 3.3% of O-D pairs; Value rank: 4  

   Size 299 (2.2%) 148 (1.1%) 12893 (96.6%) 

   Route diversity -0.06 (-0.07%) +0.89 (+0.45%) 0.00 (0.00%) 

   Travel time (mins) -18.88 (-0.55%) -0.50 (-0.01%) -0.02 (-0.00%) 

Year 2025 (EKL)    

Description Benefit: 3.6% of O-D pairs; Value rank: 3  

   Size 250 (1.7%) 274 (1.9%) 14238 (96.5%) 

   Route diversity -0.25 (-0.26%) +.56 (+0.30%) 0.00 (0.00%) 

   Travel time (mins) -5.74 (-0.17%) -.20 (-0.01%) 0.00 (0.00%) 

Year 2026 (SILW)    

Description Benefit: 0.2% of O-D pairs; Value rank: 5  

   Size 12 (0.1%) 16 (0.1%) 16228 (99.8%) 

   Route diversity -0.09 (-0.09%) +0.34 (+0.16%) 0.00 (0.00%) 

   Travel time (mins) -3.00 (-0.18%) 0.00 (0.00%) 0.00 (0.00%) 

Year 2031 (NIL)    

Description Benefit: 20.0% of O-D pairs; Value rank: 2  

   Size 2365 (13.1%) 1249 (6.9%) 14476 (80.0%) 

   Route diversity -0.25 (-0.25%) +0.69 (+0.38%) 0.00 (0.00%) 

   Travel time (mins) -6.02 (-.24%) -0.77 (-0.02%) -0.11 (-0.00%) 

 

The spatial variation of the largest topological effects from the construction of SCL and NIL, 

regarding the clusters of O-D pairs, is further illustrated in Fig. 4. Considering Group A, it is 

immediately clear that the existing ERL/MOL and WRL directly benefit from the SCL with 

respect to travel time. In the extended network, the MOL connects with the WRL in the city 

center while the ERL connects with the terminus of the extended MOL. However, unlike the ERL 

and MOL, the WRL not only benefits with respect to time saving but also increased route 

diversity for some O-D pairs. It is interesting that both ends of the new lines should gain the same 

topological benefit from the new expansion. Overall, the topological effect of the SCL is spread 

across the entire network. No part of the network receives a significantly larger or smaller share 

of the benefits, according to the evaluation of route diversity and travel-time saving. In contrast, 

upon the extension of the NIL, the eastern part of the network gains the most topological benefit 

in both travel-time saving and route diversity. Considering that the ERL and TCL connect directly 

to the NIL, it is surprising that neither benefits from the NIL in both respects at once. Rather, the 

ERL only benefits from travel-time saving while the TCL only benefits from the increased route 

diversity for a limited number of O-D pairs. Overall, the topological effect of the NIL is less 

evenly distributed among O-D pairs, although it does affect a significant percentage of O-D pairs 

according to the measures adopted here. 
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Fig. 4. Distribution of the effects of the construction of the SCL and NIL on different O-D pairs. 

Circles with deeper color and larger size indicate higher percentages of O-D pairs originating 

from or terminating at those stations. 

 

5.3  Value of new lines for reducing nodal vulnerability  

 

To further analyze the performance of the MTR network during adverse events, we use the route 

diversity measure as an indicator to evaluate the vulnerability and identify critical stations under 

disruptions. We use a full-scan approach in which each station is disrupted in turn and the 

vulnerability of every other station is calculated with Eq. (7). As shown in Fig. 5 and Table 5, the 

identity of the 10 most vulnerable stations is straightforwardly intuitive, as nearly 80% of the 

vulnerable stations in the selected years are transfer stations in the main urban area. Such stations 

have more lines passing through and are typically considered as the most important. Many of the 

vulnerable stations are located on radial segments in the inner city, reflecting their importance as 

transfer nodes to the circumferential lines. However, not all of the 10 most vulnerable stations 

are transfer stations. This indicates that a station’s location, in addition to its connectivity, may 

play a role in its importance in a metro network. For example, Austin station, ranked 10th, is not 

HONG KONG 

ISLAND

NEW

TERRITORIES

KOWLOON

NIL

HONG KONG 

ISLAND

NEW

TERRITORIES

KOWLOON

NIL

HONG KONG 

ISLAND

NEW

TERRITORIES

KOWLOON

HONG KONG 

ISLAND

NEW

TERRITORIES

KOWLOON

SCL SCL



 

 19 

a transfer station, but is a close neighbor of East Tsim Sha Tsui (ranked 2nd) and is located on a 

radial line connecting the center with the western part of the network. The overall results indicate 

that the radial segments crucially serve as the backbone of the network but are vulnerable to 

disruption due to poor route redundancy. For comparison, Wu et al. (2018) studied the MTR 

network using the metric of betweenness centrality. Although they included some of the same 

stations (e.g., Kowloon Tong and Prince Edward) in the top 10 list, some of the key stations in 

the network were absent. For instance, in our study, Tsim Sha Tsui is ranked 3rd, reflecting its 

role as a transfer station between the Tseun Wan Line (TWL) and WRL. Although the relatively 

long transfer time reduces its importance according to centrality measures, which focus on the 

shortest routes, its role as a transfer station increases the number of reasonable routes for which 

it offers an alternative transfer option. When its transfer role is taken into account, the topological 

advantages of this station emerge, as it can be considered an important transfer node between two 

efficient radial lines. This highlights that the calculation of the shortest path may not fully reflect 

the importance of transfer nodes in the network. As a result, the proposed measures in this study, 

which integrate the characteristics of the travelers’ route choice preferences, are more useful. The 

route diversity measures in this study provide a more comprehensive topological analysis by 

identifying vulnerable stations from the perspective of travelers’ route choices. When considering 

the locations that are most susceptible to disruption, these vulnerable stations emerge as an 

essential focus for future expansion and reconstruction projects. 

 

The vulnerability of stations changes as the network is extended from 2019 through 2031. As 

shown in Table 5, some stations are identified as vulnerable in multiple selected years but ranked 

differently. For example, Admiralty becomes less vulnerable than East Tsim Sha Tsui in 2021, a 

reversal from 2019. The 10 most vulnerable stations, which are all located within Hong Kong’s 

urban area, provide information on the weakness of the metro network. For instance, in 2021, 

two vulnerable components (radial segments in the inner city) gain topological benefits from the 

opening of the SCL, as indicated by the reduction in vulnerability shown in Fig. 5. The extension 

of the ERL to Hong Kong Island offers transfer alternatives between the radial lines, which 

reduces the vulnerability of Tsim Sha Tsui and East Tsim Sha Tsui. However, there are still four 

vulnerable stations located on the radial segments of the ISL, indicating its high vulnerability. 

Meanwhile, some stations remain on the list even after several expansions. Transfer stations like 

Nam Cheong and Tsim Sha Tsui, for example, stay near the top of the list. Admiralty, as a 

transfer hub, also remains high on the list, although its vulnerability is reduced through the 

introduction of new lines. We highlight that Austin, despite being a non-transfer station, remains 

vulnerable over time. These findings may imply blind spots in the planning process. The rise of 

new vulnerable stations (Hong Kong, Kowloon, and Olympic) connecting to the new line NIL 

should not be ignored in future planning.  
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Table 5. Trends in the ranking of station vulnerability in different phases of the proposed 

expansions. Top 10 stations are highlighted for each reference year. Stations are sorted in 

descending order based on the cumulative number of years being ranked in the top 10.  

 

Station 
Year 

2019 2021 2023 2025 2026 2031 

Transfer stations       

Admiralty TWL .058 (1) .040 (6) .040 (7) .037 (8) .038 (7) .036 (9) 

East Tsim Sha Tsui .057 (2) .048 (2) .052 (2) .049 (2) .047 (2) .051 (1) 

Nam Cheong WRL .046 (6) .049 (1) .054 (1) .052 (1) .048 (1) .049 (2) 

Tsim Sha Tsui .052 (3) .039 (8) .040 (8) .037 (7) .037 (8) .034 (13) 

Admiralty ISL .037 (15) .045 (3) .045 (5) .041 (5) .039 (5) .036 (7) 

Mei Foo WRL .148 (-) .140 (-) .049 (3) .045 (4) .045 (3) .047 (4) 

Tsuen Wan West .127 (-) .120 (-) .042 (6) .039 (6) .039 (6) .046 (5) 

Yau Ma Tei TWL .046 (4) .025 (19) .024 (23) .024 (28) .023 (29) .026 (29) 

Kowloon Tong KTL .046 (5) .020 (37) .020 (42) .024 (26) .023 (28) .027 (22) 

Nam Cheong TCL .045 (7) .028 (15) .029 (17) .029 (15) .028 (16) .034 (14) 

Prince Edward KTL .042 (9) .022 (32) .022 (35) .025 (20) .024 (23) .026 (25) 

North Point ISL .027 (26) .039 (10) .037 (14) .034 (12) .032 (12) .025 (37) 

Hung Hom WRL .041 (11) .037 (12) .039 (10) .027 (18) .021 (37) .035 (12) 

Hong Kong .020 (32) .025 (19) .026 (19) .025 (24) .025 (23) .040 (6) 

Non-transfer stations       

Austin .041 (10) .044 (4) .048 (4) .046 (3) .044 (4) .049 (3) 

Wan Chai .028 (23) .041 (5) .040 (9) .036 (9) .034 (9) .024 (40) 

Causeway Bay .028 (24) .040 (7) .039 (11) .035 (10) .033 (10) .023 (52) 

Jordan .044 (8) .024 (21) .023 (27) .023 (31) .022 (34) .025 (31) 

Tin Hau .027 (25) .039 (9) .038 (12) .034 (11) .033 (11) .022 (54) 

Kowloon .020 (33) .023 (25) .024 (24) .023 (33) .023 (31) .036 (8) 

Olympic .021 (31) .022 (30) .023 (29) .022 (37) .022 (35) .036 (10) 

Average vulnerability 

of top 10 stations 
.047 .038 .045 .038 .040 .039 

 

Table 6 

Conformity between ranking positions of need and benefit for different phases of the proposed 

expansions. 

 
Year 

2021 2023 2025 2026 2031 

Spearman’s correlation coefficient .29** .15* .50** .49** .19* 

Value rank 3 5 1 2 4 

** Correlation is significant at the 0.01 level. 

* Correlation is significant at the 0.05 level. 
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Fig. 5. Vulnerable stations and the value of new lines for reducing nodal vulnerability. 
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With a view to improving network resilience, we would like to remedy the existing weaknesses 

by building new lines as long-term adaptive measures. Nevertheless, new lines do not afford 

equal improvements in all disruption scenarios, even though they always increase route diversity. 

In fact, the effects of disruption are not consistently lower in the extended network than in the 

reference network in terms of the station vulnerability. Stations could be more vulnerable in the 

extended network for some cases because the new lines do not necessarily increase route diversity 

to the same extent during disruptions as under normal operating conditions. That is, the new lines 

cannot be fully utilized as an alternative travel route by passengers affected by disturbances. This 

implies that the value of resilience of some new lines is negative for some scenarios. Therefore, 

we investigate the conformity between the ranking positions of need (station vulnerability) and 

benefit (resilience enhancement) for different phases of the proposed expansions using 

Spearman’s rank correlation coefficient. We assume that it is preferable for stations with greater 

vulnerability to receive a greater enhancement of resilience, whereas any negative changes in 

resilience are preferably distributed among stations with low vulnerability.  

 

As shown in Table 6, the EKL in 2025 and SILW in 2026 have the highest conformity, in that 

the stations’ rankings of need are statistically proportional to their rankings in terms of the 

received benefit. The EKL and SILW provide enhancement to the isolated regions of the network, 

namely the eastern New Territories and southern Hong Kong Island, respectively. This greatly 

reduces the vulnerability of stations at cut links (i.e., where disruptions cause some stations to be 

disconnected/isolated from the main part of the network), which require redundant enhancement. 

In addition, the introduction of the EKL and SILW does not cause any stations to become more 

vulnerable. In contrast, the introduction of other new lines does increase vulnerability: for 

example, the SCL adds to the network several new vulnerable stations on the circumferential line 

on Hong Kong Island. The ultimate cause of high vulnerability is always a lack of rerouting 

alternatives in the case of disruption. It is not surprising that there is a lack of redundancy on 

Hong Kong Island. The rise of the vulnerability ranking of these stations shows the necessity of 

providing them with redundant routes. Nevertheless, inspection of the map of planned lines from 

2019 to 2031 suggests that the NIL in 2031 could be a complementary solution to this problem. 

As shown in Fig. 5, the NIL brings about a topological benefit to the aforementioned segments 

by reducing their vulnerability. The NIL offers a bypass alternative parallel to the ISL, and 

rerouting possibilities for disruption scenarios. This evidence suggests that the complementary 

relationship of the NIL and the SCL, which individually both have low values of Spearman’s 

coefficient, reduces each other’s vulnerability and provide a more robust metro network. Hence, 

to determine whether the overall contribution of a new line is positive, the consequences in the 

event of its disruption have to be taken into consideration. The changes in station vulnerability 

thus have implications for the prioritization of future robustness investments and resource 

allocation. 

 

6  Conclusions 

 

In this paper, the spatiotemporal effects of the planned development of a metro network were 

investigated using a new network performance measure, route diversity. In the case study of Hong 

Kong, the MTR network continues to expand rapidly, which has resulted in stepwise increases in 

route diversity and reductions in travel time. We assessed the effects of new lines and evaluated 

their spatial distribution, variation, and changes at the nodal, dyadic, and network levels. At the 

network level, the expanding MTR network gradually results in increased route diversity and 

reduced travel times, with slight variations in spatial equity. At the dyadic level, O-D pairs exhibit 

differentiated patterns of improvement, which can be divided into three clusters: O-D pairs 

provided with faster routes, those provided with more alternatives, and unaffected O-D pairs. The 
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cluster analysis allows a fuller understanding of the situation after the new lines are built. At the 

nodal level, we studied the performance of the network in disruption scenarios to assess how each 

new metro line would benefit stations by reducing their vulnerability. By comparing the 

consequences of disruption in the expanded and current networks, our findings clearly show that 

the new lines would not lessen the consequences of disruptions in all scenarios but may 

sometimes exacerbate them. This result emphasizes the importance of matching the vulnerable 

parts of the existing network with the resilience benefits of new lines. Fig. 6 summarizes the value 

of new lines for different phases of the proposed expansions. A remaining issue involves the level 

of relative significance that should be attributed to the different aspects of importance when 

prioritizing projects. This is difficult to answer in exact terms and may be a matter for a political 

discussion. 

 

 
Fig. 6. Values of new lines in different phases of the proposed expansions. A five-point Likert 

scale is used to measure the benefit according to the value rank at three levels (5 points for rank 

1 and 1 point for rank 5). 

 

Our study evaluates the distributive improvements in both accessibility and resilience resulting 

from future expansions of the metro network at different stages, which limits our focus solely to 

the spatial scale. The effects of new lines are not only associated with spatial accessibility but 

also with social equity issues, such as differences in MTR demands according to different kinds 

of work and income status (He, 2020). Nonetheless, our focus only on the spatial scale does not 

undermine the contributions of this study, for two reasons. First, during the onset of any 

transportation infrastructure project, spatial scales have primacy because at this stage, cities are 

the focal point, as opposed to individual passengers (van Wee and Roeser, 2013). Second, 

addressing the social equity effects of future expansion could be problematic because this kind 

of analysis would require one to predict the social needs and mode choices of various groups, 

changes in the land use and flow pattern, and thus the congestion effects in a future situation (van 

Wee and Roeser, 2013), which may change in practice after construction. Although route 

diversity measures and vulnerability analyses provide vital information about the properties and 

development of urban rail transit networks, research should be extended to the planners’ 

perspective, which focuses on the station and line capacities (Xu et al., 2018a). Travel demand is 

not considered in this paper, as we only consider the route diversity dimension to evaluate the 

value of new metro lines. The future variations in passenger demand merit analysis from other 

perspectives, which might lead to different conclusions from those of this paper. This research 

direction will be pursued when the operational and scheduling data become available. 
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