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Abstract
Electro-mechanical impedance (EMI) has been proved as an effective non-destructive
evaluation indicator in monitoring the looseness of bolted joints. Yet due to the complex
electro-mechanical coupling mechanism, EMI-based methods in most cases are considered as
qualitative approaches and are only applicable for single-bolt monitoring. These issues limit
practical applications of EMI-based methods in industrial and transportation sectors where
real-time and reliable monitoring of multiple bolted joints in a localized area is desired.
Previous research efforts have integrated various machine learning (ML) algorithms in
EMI-based monitoring to enable quantitative diagnosis, but only one-to-one (single sensor
single bolt) case was considered, and the EMI–ML integrations are basically unnatural and
ingenious by learning the EMI measurements from isolated sensors. This paper presents a novel
EMI-based bolt looseness monitoring method incorporating both physical mechanism (acoustic
attenuation) and data-driven analysis, by implementing a lead zirconate titanate (PZT) sensor
network and a built-in graph convolutional network (GCN) model. The GCN model is
constructed in such a way that the structure of the PZT network is fully represented, with the
sensor-bolt distance and sweeping frequency encoded in the propagation function. The proposed
method takes into account not only the EMI signature but also the relationship between the
sensing nodes and the bolted joints and can quantitatively infer the torque loss of multiple bolts
through node-level outputs. A proof-of-concept experiment was conducted on a twin-bolt plate,
and results show that the proposed method outperforms other baseline models either without a
graph network structure or does not consider sensor-bolt distance. The developed hybrid model
provides new thinking in interpreting sensor networks which are widely adopted
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in structural health monitoring, and the approach is expected to be applicable in practical
scenarios such as rail insulated joints and aircraft wings where bolt joints are clustered.

Keywords: electro-mechanical impedance, structural health monitoring,
graph convolutional network, machine learning, sensor network, bolt looseness,
piezoelectric transducer

(Some figures may appear in colour only in the online journal)

1. Introduction

Being the most widely used parts in industrial and transporta-
tion areas connecting mechanical assemblies, bolted joints are
vulnerable to various types of damages including cracks, cor-
rosions, and looseness due to long-term service for transfer-
ring heavy loads and exposure to the harsh operating envir-
onment. Among all damage types, bolt looseness is the most
common failure. The causes of bolt looseness can be external
forces, vibrations or even excessive axial force applied on the
bolt itself. The bolt looseness can be directly and manually
measured and controlled by a torque wrench. Despite the sim-
plicity and low-cost, manual inspections are often inaccurate
since the majority of the applied torque is used to counter the
friction and only a small portion is for bolt spinning [1]. Dir-
ect inspection as such is inapplicable in the scenarios where
bolts are hidden inside the structure and cannot be directly
accessed. What is more important, to obtain continuous load-
ing information of in-service bolts, online long-term monitor-
ing of bolts is desired, especially in the aviation and railway
sector where loosening of bolts in operating trains or aircraft
can be extremely vital.

In recognition of the problem, structural health monitor-
ing (SHM) techniques have been investigated and applied
for online diagnosis of bolt looseness. Structural sensors are
typical options for loading state monitoring of bolts. With
strain gauges either implemented on the target bolt or fab-
ricated as smart washers, the axial force can be determined,
and the applied torque can be subsequently derived with exist-
ing contact theories [2]; dynamic behavior of the monitored
bolts is also an efficient index to diagnose the structural vari-
ations. With accelerometers implemented on the host struc-
ture, output responses subject to impact [3, 4], heavy load-
ings [5, 6] or laser excitation [7] can be acquired for further
condition assessment; smart materials such as optical fibers
have also been utilized for monitoring of bolt looseness. A
normal single-mode fiber liner incorporated with the optical
time-domain reflectometer enables the monitoring of multiple
bolted joints at the same time [8], but the applicability in
practical applications is yet to be proved with further in-situ
investigations.

Ultrasound, bearing the merits of truly non-invasive, high-
sensitivity and environment-friendly, has been systematically
studied and extensively utilized in many SHM real applic-
ations. Ultrasonic testing comes in different forms, among
which ultrasonic guided waves (UGWs) is a mature SHM
technique in inspecting and monitoring the structural integ-
rity of components at multi-scale sizes frommachine elements

to civil infrastructure, including the looseness of bolted joints
[9, 10]. Apart from guided waves, ultrasonic bulk waves can
also be utilized for characterizing the looseness of bolted
joints. The loosening of a bolted joint indicates a reduction
of contact pressure, which can be detected using an ultrasonic
reflectometry approach. This approach has literally been used
in railway engineering investigating various aspects includ-
ing wheel-rail contacts [11, 12] and insulated rail joints. The
philosophy of both guided wave- and bulk wave-based meth-
ods for bolted joint monitoring are based on waveform ana-
lysis of received ultrasonic signals, which are dominated by
not only material properties of the propagating media, but
more importantly, the geometry of the host structure, hence
adding difficulty in signal processing for geometrically com-
plicated structures. For a specific host structure to be mon-
itored with UGW-based approaches, the dispersion behavior
needs to be investigated first [13], while the ultrasonic reflec-
tometry approach highly relies on the macro profile and micro
appearance (surface roughness) of the contacting interfaces.

As a special type of ultrasonic inspection technique, the
electro-mechanical impedance (EMI)-based methods, by con-
trast, do not need specific interpretation of ultrasound wave-
forms [14, 15], but rather identify the structural change by
measuring the impedance of the entire electro-mechanical
couple composed of sensors and the host structure, and have
drawn growing attention in SHM applications, including mon-
itoring of structural damages [16–19], axial stress variation
[20], composite plates [21, 22] as well as load change of
pin-connected and bolted joint-connected structures [23, 24].
However, the complicated electro-mechanical coupling mech-
anism limits the applicability of the EMI-based monitoring
methods which, in most cases, are treated as a qualitative way
to indicate the existence of structural variation and are only
applicable in single bolt monitoring. The root cause of the
limitation is that EMI measurements contain massive convo-
luted and entangled information of the whole structure and
are influenced by boundary conditions, material properties,
sensor-bolt distance, ambient temperature as well as struc-
tural integrity. It is tricky to sort out the contributions from
all potential factors with purely analytical inference, making
it difficult to manually correspond a feature or an index to
a structural change occurred at a specific position. As EMI
measurements reflect structural dynamic responses of the host
structure subject to a series of ultrasonic excitations, there have
been quite a few studies on analytical modelling of the electro-
mechanical couple [25, 26]. Yet the analyzed objective is either
a Timoshenko beam or a cube, and it is practically impossible
to achieve a federation of explicit governing equations that
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quantitatively characterize the contribution of a local structural
variation to the change of the mechanical impedance, with all
factors well considered.

In this regard, seeking aid from machine learning (ML) is
a reasonable alternative in automatically extracting the fea-
tures of interest out of the ‘chaotic complexity’ masked by the
simple appearance of EMI curves. State-of-the-art ML tech-
niques, especially neural networks (NNs) have been applied
in many research efforts for EMI-based damage detection and
bolt loosenessmonitoring [27–34]. For example, Zhu et al pro-
posed a novel signature extraction method and achieve dam-
age localization by a modified probability-weighted algorithm
[27]. Probability was also considered in [28], where a prob-
abilistic NN was developed and could be trained with min-
imal data. With the development of convolutional neural net-
works (CNNs) in recent years, it has been combined with
EMI for damage detection [29, 30]. The emergent capsule
NN has also been utilized for bolt early looseness detection
based on percussion-induced sound [31]. There were stud-
ies attempting to select the most sensitive frequency range to
the expected structural damage. Min et al [32] utilized the
NN approach to automatically select the optimal frequency
range in the EMI method. The governing frequency compon-
ents were validated by observing the internal weights and
biases in the NN. This study was extended in [33] to estim-
ate a range of damage information, such as damage type and
severity simultaneously. In the process of damage identifica-
tion [34], added a sparse regularization so that the number of
measured resonance frequency shifts for identification can be
very limited. These studies are innovative in various aspects,
but the applications are still limited within the single sensor-
single damage/bolt loosening scenarios, and the sensor-bolt
distance which ought to have significant influence according
to the physical nature of ultrasonic approaches, is hardly con-
sidered in previous research. Moreover, the hand-crafted fea-
tures in the studies may not fully reveal the information of
structural changes and thus influence the performance of the
trained model, and the models trained are usually classifiers,
which cannot identify any scenario out of the pre-determined
classes.

In light of the challenges and existing limitations of EMI-
based monitoring methods, in the present study, we adopt
a sensor network comprised of multiple PZT sensing ele-
ments and propose a novel ML paradigm aiming at monit-
oring the looseness of multiple bolted joints. Enlightened by
the latest research work in computer science, we introduce
the concept of graph/network learning to EMI-based monitor-
ing, and the torque losses of multiple bolted joints are expec-
ted to be jointly determined with the graph/network learning
model and the PZT sensor network. The target is achieved by
firstly abstracting the PZT sensors and target bolts into a graph
that fully describes the overall layout. Subsequently, a hybrid
EMI-graph convolutional network (GCN) model which not
only takes in the EMI signature of interest but also the rela-
tionship between sensors and bolts is proposed. The torque
losses of all monitored bolts can be determined through node-
level outputs of the trained EMI-GCN model while retaining
the graph structure throughout the learning process. To the

authors’ knowledge, it is the first-time graph learning is intro-
duced into the realm of SHM, in which both sensor networks
and clustered bolted joints are widely confronted. Moreover,
distinguished from conventional GCN models that are fully
data-driven, the formulated hybrid EMI-GCN model in this
study also incorporates acoustic attenuation nature by encod-
ing the sensor-bolt distance and sweeping frequency in the for-
ward propagation process. A proof-of-concept experiment and
comparison with conventional ML methods are carried out to
demonstrate the effectiveness and outperformance of the pro-
posed method.

The rest of the paper is organized as follows. Section 2
presents the principles of EMI-based monitoring and acous-
tic attenuation. The establishment of the hybrid EMI-GCN
model is delivered in section 3. The proof-of-concept exper-
iment with results and performance comparison with baseline
models are introduced in section 4. Conclusions and future
work are elaborated in section 5.

2. Principles of EMI-based monitoring and proposal
of questions

2.1. EMI-based monitoring technique

Analogous to other ultrasonic monitoring techniques, the
EMI-based methods rely on the piezoelectric and inverse
piezoelectric effect, i.e. the conversion between electrical
energy and mechanical energy of piezoelectric materials
(e.g. PZT), but from a different perspective. When actuating
the PZT sensor implemented on the host structure of interest
with cyclic electrical excitations, a localized electrical–
mechanical (EM) coupling system is formed between the
sensor and the host structure, which vibrates in response to
the external vibrations. The passing current through the sensor
is altered by the structural response of the EM system and
can be measured using an impedance analyzer, in the form
of EMI. By sweeping the excitation frequency, a series of
EMI can be measured, corresponding to structural responses
that contain condition information of the host structure. Any
change (cracks, fracture, bolt looseness, etc) in the host struc-
ture would be reflected in the structural dynamic responses
and accordingly the EMI measurements, making EMI-based
monitoring applicable [35]. The most widely used analytical
model is the one-dimensional (1D) EMI model proposed by
Liang et al in [36] which treats the host structure as a single-
degree-of-freedom mass-spring system coupled with a PZT
patch, as shown in figure 1. It has been revealed in [37] that the
electrical admittance Ye (ω), inverse of the electrical imped-
ance, has relationship with the mechanical impedance of the
host structure, Zs (ω) and that of the PZT patch, Za (ω) under
external excitation with frequency ω:

Ye (ω) = jωc

(
ε̄T33−

Zs (ω)
Zs (ω)+ Za (ω)

d23xY
E
xx

)
(1)

where c, ε̄T33, d3x, and YExx are the geometry constant, com-
plex dielectric constant, PZT coupling constant, and complex
Young’s modulus of the PZT patch at zero stress, respectively.
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Figure 1. 1D EMI model.

Further analytical research on 2D and 3D models can be
found in [25, 38] for certain PZT wafers and host structures.
Specifically, a very recent article [39] proposed the three-
dimensional modelling method to simulate the PZT active
sensing and, consequently, monitor the looseness of bolted
connections.

It should be noted that the 1Dmodel in most cases serves as
a rough validator, and all existing 2D and 3D analytical mod-
els are established on simple structures such as a beam, a plate,
etc. In most practical monitoring scenarios including bolted
joint mechanisms, however, these analytical models can only
provide limited references on potentially influencing factors,
since the structures are too complicated to derive an analytical
relationship, and the EMI measurements have to be obtained
through an experimental device (impedance analyzer). Ideally,
if all environmental influences and material uncertainties are
neglected, in principal greater deviation from the baseline EMI
measurements indicates larger structural change. To quantify
the deviation, four statistical metrics are generally utilized
[40], including root mean square deviation, mean absolute
percentage deviation, covariance (Cov) as well as correlation
coefficient (CC).

As stated in the introduction, in reality, the environ-
mental influences, nevertheless, can hardly be overlooked
and the conventional quantification metrics always need to
be accompanied by ML methods to be fully functioning.
On the other hand, in all previous EMI-based monitoring
research, only one-on-one (single sensor single bolt) cases
were mainly investigated. From an intuitive perspective, intro-
ducing more sensors in a monitoring scenario should bring
more information [41], as what is adopted in UGW-based
monitoring [42]. But unlike UGW-based methods that follow
a clear clue of wave interpretation (dispersion curve, nonlin-
ear factor, etc.), how to incorporate a similar sensor array or
network into EMI-based monitoring is challenging. In face of
this, we present new thinking to encode the sensor network
into the ML framework with its core philosophy detailed in
section 3.

2.2. Attenuation of ultrasound

Although the EMI-based monitoring method measures the
dynamic response of the whole structure, the diffusion beha-
vior of the mechanical vibrations is analogous to the propaga-
tion mechanism of ultrasound waves which are essentially
mechanical vibrations as well, and the sensing process can be
regarded as information transmitted from the spot where the
structural change (bolt loosening) to the PZT patch in the form
of EMI, as illustrated in figure 2. In this sense, the acoustic
attenuation should cast significant influence.

The acoustic attenuation is contributed by two parts:
absorption and scattering. Absorption refers to the phe-
nomenon of energy conversion from mechanical vibrations to
heat, as the vibrating particles in the host structure need to
overcome resistive frictional forces when ultrasound propag-
ates; scattering occurs when ultrasonic sound waves encounter
inhomogeneities (material bulk, density change, etc) in the
host material structure, and the signal is partially reflected
as well as being refracted at the boundary of inhomogeneity.
Excluding material property factors, there are two main terms
that dominate the attenuation level: distance and frequency.
The longer the propagation distance is, the more frictional
forces andmaterial inhomogeneities will be encountered, lead-
ing to increases in absorption and scattering correspondingly.
On the other hand, when the frequency of the sound waves
increases, the particles vibrate faster, increasing the frictional
forces and subsequently the absorption. Higher frequency also
indicates shorter wavelength, and it becomes easier to scatter
the sound waves, because the relative size of the inhomogen-
eities increases comparing to the wavelength.

Yet in previous studies on EMI-basedmonitoring, these two
terms are seldom considered. However, in practical applica-
tions, the EMI-based technique is deemed to be a localized
technique, which implies the distance does matter signific-
antly. By understanding the influence of sensor-bolt distance
in detail, we are able to know howmuch of an EMI deviation is
contributed by the loosening of a closer bolt and how much is
contributed by the loosening of one further away in a multi-
bolt structure. Min et al took the sensor-bolt distance into
account by normalizing the EMI measurement with a coeffi-
cient equivalent to the reciprocal of the distance. Despite their
inspiring work, the coefficient in [33] lacks theoretical support
and such a hypothesis literally fails when it comes to a smart
EMI washer [43] case where the sensor-bolt distance becomes
zero.

The EMI-based monitoring involves polarization of PZT
sensors as well as the host structure which is made of lossy
media (steel) in which a significant amount of wave energy
is attenuated in the propagating process. As proposed in
[44], the frequency-dependent attenuation of ultrasonic sound
waves u(r) in a lossy medium can be described using a frac-
tional constitutive model using a modified stochastic wave
equation as:

∇2u(r)− 1
c20

∂2u(r)
∂t2

+ τασ
∂α

∂tα
∇2u(r)− τβε

c20

∂β+2u(r)
∂tβ+2

= 0

(2)
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Figure 2. Structural vibration propagated from bolt to sensor in EMI monitoring.

where ∇2 is the Laplace operator given by ∇2 = ∂2/∂x2 +
∂2/∂y2 + ∂2/∂z2 in a three-dimensional Cartesian coordinate.
The first two terms in equation (2) represents the conventional
stochastic wave equation, and the last two terms contain
higher-order spatial and fractional derivatives. The amplitude
A(r) of u(r) represents the sound energy of the ultrasonic
vibrations, and therefore directly corresponds to the signal
strength in EMI-based monitoring. The amplitude follows a
power law with respect to both frequency ω (in MHz unit) and
propagation distance ∆d (in m unit) and is given by:

A(r+∆d) = A(r)e−δ0ω
η∆d (3)

where δ0 and η are real non-negative material parameters.
The power-law frequency-dependent attenuation of sound

waves has been validated through many experiments [45–47].
As one of the highlights in this study, we are aiming to propose
a more reasonable rule following this attenuation law, and to
encode the influence of both distance and frequency into the
proposed ML framework to construct a novel physical-data
driven hybrid learning model. Details of the model construc-
tion are presented in the next section.

3. Establishment of EMI-GCN model

3.1. From sensor network to graph

Consider a cluster of bolts surrounded by several randomly and
locally distributed PZT sensors in an EMI-based monitoring
scenario, as shown in figure 3 (for illustration convenient pur-
pose, only a limited number of bolts and sensors are plotted).
For each measurement taken from a sensor, a line is drawn
from each of the bolts to that sensor, indicating that each EMI
curve contains residual torque information of all neighboring
bolts. By taking EMI readings from all sensors, a complete
undirected bipartite graph is constructed with all sensors and
bolts serving as nodes of the graph, and all connecting lines
serving as edges. A bipartite graph is a graph whose nodes
can be divided into two independent and disjoint sets B and S
such that every edge connects an element in B to an element in
S; ‘complete’ means each of the element in B is connected to
all elements in S, and vice versa; ‘undirected’ means all edge
do not have directions, since there is no concept of pitch-catch
in EMI monitoring.

In graph theory, a graphG is uniquely defined by three fea-
tures: nodes, edges and the graph structure. The graph struc-
ture is typically represented in the form of an n× n adjacency

matrix A. Under normal circumstances, the element of A is
determined in the following manner:

{
Aij = 1, if there is a connection from node i to node j

Aij = 0, otherwise
.

(4)
Taking the constructed graph in figure 3 as an example, if we
number all sensor nodes and bolt nodes in order, its adjacency
matrix can be readily determined, as shown in figure 4. For an
undirected graph, the adjacency matrix is always symmetric.

Therefore, generally speaking, a graph G can be denoted
as G= (V,E,A), where V is the set of nodes (vertices),
E is the set of edges [48], while vi denotes a vertex and
ei,j = (vi,vj) ∈ E denotes an edge. Apart from the graph struc-
ture, the core information of a graph is also associated with
node attributes, represented by a feature matrix X ∈ Rn×d0 , in
which xi ∈ Rd0 is the feature vector of node vi, and a label mat-
rix Y ∈ Rn×dy , in which yi ∈ Rdy is the label vector of node vi,
d0 and dy being the dimensions. For referencing convenient
purpose, notations of a graph are summarized in table 1.

Up to this step, we have almost fully abstracted the PZT
sensor network together with the target bolted joints into a
uniquely defined graph as a mathematical representation. Dis-
tinguished from conventional EMI methods that look into the
metrics separately, our thinking is to propose an ML paradigm
that learns the entire graph containing both EMI measure-
ments and their relationships including position information.
To achieve this target, the concept of graph neural networks
(GNNs), or more specifically, GCNs, which were widely
applied in other disciplinaries for social network recognition
[49], traffic flow prediction [50] and protein-interaction net-
work identification [51], are utilized in this study.

3.2. GCNs

Many ML tasks, which once heavily relied on handcrafted
feature engineering to extract informative feature sets, has
recently been revolutionized by various end-to-end deep learn-
ing paradigms. Deep learning can extract latent representa-
tion from Euclidean data (e.g. images, text, and video). For
example, an image can be represented as a regular grid in the
Euclidean space. Correspondingly, a CNN model is able to
exploit the shift-invariance, local connectivity, and composi-
tionality of image data. As a result, CNNs can extract local
meaning features that are shared with the entire datasets for
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Figure 3. PZT sensor network for bolt monitoring and its corresponding graph.

Figure 4. Sensor-bolt graph with numbered nodes.

Table 1. Commonly used notations.

Notations Meaning

V The set of nodes
vi A node vi ∈ V
E The set of edges
ei,j An edge ei,j ∈ E
N(vi) The set of neighbors of vi
A Adjacency matrix
ai,j The connection intensity between vi and vj
X Feature matrix
xi The feature vector of node vi
Y Label matrix
yi The label vector of node vi

various image analysis tasks. CNNs are highly useful in learn-
ing normal images, but when it comes to structured data, mani-
fested as a graph, conventional CNNs may not apply. As men-
tioned in section 3.1, we can describe a graph by (weighted
or directly) adjacency matrix and feature matrix. However,
each graph has a variable size of unordered nodes and each
node in a graph has a different number of neighbors. Fur-
thermore, each node may be related to others via some com-
plex linkage information. Therefore, important operations like

convolutions are not directly applicable to the graph domain
anymore.

To handle the complexity of graph data, new generations
and definitions for important operations have been rapidly
developed over the past few years. An ideal deep learning
model for graph should handle the following tasks:

• Summarize the information contained in the nodes, which
can be achieved by NNs.
• Propagate the information throughout the whole graph,
which involves graph theory.

Figure 5 illustrates how a simple graph convolution is
inspired by a standard 2D convolution in CNNs and GNNs
respectively. The 2D convolution takes a weighted average of
pixel values of the red node along with its neighbors, which are
ordered and have a fixed size. Correspondingly, to get a hid-
den representation of the red node, a simple graph convolution
takes the average (or weighted average) value of node features
of the red node along with its neighbors. Different from image
data, the neighbors of a node are unordered and varying in size.

As a representative type of GNNs, GCNs generalize the
operation of convolution from traditional data (images or
grids) to graph data. With the graph structure and node fea-
tures as inputs, GCNs learn to conduct node-level regression
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Figure 5. Grid convolution VS graph convolution: (a) grid
convolution; (b) graph convolution.

or classification. For one node vi, by aggregating its own fea-
tures xi and neighbors’ features xj, where j ∈ N(vi), its latent
representation can be obtained.

Technically, a layer-wise propagation can be described as:

O(k) = σ
(
AO(k−1)W(k)

)
(5)

whereO(k) represents the feature matrix containing the feature
of each node after the kth layer; at the beginning, O(0) = X;
W(k) is the weight matrix for the kth graph convolution layer;
A is the adjacency matrix; and σ() is the non-linear activation
function (e.g. ReLU).

Given the degree matrix D, in practice, a variant propaga-
tion rule introduced is:

O(k) = σ
(
D− 1

2AD
1
2O(k−1)W(k)

)
. (6)

This operation symmetrically normalizes A and prevent the
feature vectors from scale explosion.

In our study, we obtained a weighted adjacency matrix
according to the distance between sensor and bolt. In addi-
tion, we normalize A in a slightly different way. More details
are explained in section 3.3.

The outputs of GCNs can focus on different graph analyt-
ics tasks. GCN model is able to conduct node-level regression
and classification, and it also can generate edge-level outputs
or graph-level outputs by integrating node representations of
pairwise nodes or the whole graph, respectively.

In this study, we consider the problem of predicting the
labels of some nodes (bolts), where information is only avail-
able for some other nodes (sensors). This problem can be
framed as graph-based semi-supervised learning.

In this case, a label matrix Y ∈ Rn×dy is also available, in
which yi ∈ Rdy is the label vector of node vi. The parameters
of the network can be learned by comparing the output of the
last layerO(L) and the label matrix y. More details are provided
in section 3.3.

3.3. Construction of EMI-GCN model

3.3.1. Definition of matrix elements. With the GCN tool and
the graph abstracted in the EMI network scenario, our next step
is to bridge the gap and fabricate a special GCN (EMI-GCN)
model targeted for our case with the acoustic attenuation con-
sidered in the meantime. Prior to that, the feature and label
of the graph need to be defined in the first place. Hereby we

treat the bolt nodes and the sensor nodes as the same type of
nodes, although for illustration clear they are colored differ-
ently in figures. Considering EMI-based bolt looseness mon-
itoring is to measure the torque loss of the bolts based on devi-
ations of quantifying metrics of EMI signatures, the feature
of each sensor should be the metric deviations from reference
(data collected from the fully fastened state), and the feature
of each bolt is defined as zero, since no EMI measurement is
taken from the bolt. Correspondingly, the label of each bolt
should be the torque loss, and the label of each sensor does
not need to be defined since it is trivial being by-products of
the GCNs learning process.

Following the definition in section 2, the EMI-GCN model
is formulated to learn a function of features on a graph which
takes the following as input:

• A n× d0 matrix X where xi is the feature for each vi; n is
the number of nodes, including nb bolt nodes and ns sensor
nodes; d0 is the number of input features.
• An adjacency matrix A that describes the graph structure in
a matrix form.

The adjacency matrix A is already determined in
section 3.1. As for the feature matrix X, we choose correl-
ation coefficient deviation (CCD) as the quantifying metric of
EMI measurements. Note that both the admittance function
Y(ω) and the measured impedance in equation (1) are com-
plex numbers and the calculation of the metrics usually only
considers the real part, which is found more sensitive to the
structural damage than the imaginary part [52]. For a specific
range of frequency ω1 ∼ ω2, the CC is calculated as:

CCω1,ω2 =
1

(ω2−ω1)

ω2∑
i=ω1

[Re(Z0 (i))−Z̄0] [Re(Z1 (i))−Z̄1]
σz0σz1

CCDω1,ω2 = 1−CCω1,ω2 (7)

where Z1 is the impedance signature in the condition of interest
while Z0 is the reference; Z̄0 and Z̄1 are the average values in
ω1∼ ω2 for two signatures respectively; and σz0 and σz1 are
the standard deviations. For fully fastened bolts, the CC is 1
and the CCD is 0.

It is discovered in [33] with the scanning frequency range
from 10 kHz to 100 kHz, EMI signatures under specific
frequency range (60–80 kHz) were more responsive to the
structural change (crack), whereas those under 10–40 kHz,
and 90–100 kHz were more responsive to the changes in a
boundary condition for their case. Since the boundary condi-
tion, scanning frequency and host structure are different case
by case, we need to find the frequency range sensitive to
bolt loosening in this study through the learning process. To
achieve this, for each node, the EMI spectrum with exciting
frequency starting from ωs and ending at ωe is divided into d0
sub-ranges and the CCDs are calculated piecewisely to formu-
late the feature matrix:

xi =
[
CCDωs,ωs+

ωe−ωs
d0

, . . . ,CCDωe−ωe−ωs
d0

,ωe

]
X=

[
0, · · · , 0nb , x1, · · · , xns

]T
(8)
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At the training stage, the model outputs an nb× dy matrix O
indicating the prediction value of each bolt. The output matrix
O is compared with the ground truth values in the label matrix
Y to refine the model.

3.3.2. Encoding sensor-bolt distance and frequency. To
take acoustic attenuation into account, the defined adjacency
matrix A and feature matrix X need to be further refined
according to the physical attenuation model mentioned in
section 2.2. The power-law frequency-dependent attenuation
model described in equation (3) can be separated into two
parts: e−δ0∆d for a fixed frequency and e−ωη

for a fixed sensor-
bolt distance.

As stated in section 3.1, the graph abstracted from the
sensor network and the bolts are almost fully defined by the
adjacency matrix A, which is an unweighted graph. To encode
the influence of distance to fully define the sensor-bolt layout,
a weighted adjacency matrix Ã is defined as:

Ã= [ãi,j]n×n =
[
ai,je

−δ0di,j
]
n×n (9)

where ai,j and ãi,j are elements of A and Ã respectively, and
di,j is the distance between node i and node j. For the case
of sensor-sensor and bolt-bolt where no connection is estab-
lished, a large value (105) is assigned to di,j.

It should be noted that δ0 is normally obtained by fitting
experimental data, but in this study, we set it as a trainable
scalar parameter which is updated in each layer.

On the other hand, the feature matrix X records the CCD of
the segmented EMI frequency spectrum and is independent of
distance, to compensate for the attenuation effect induced by
frequency, a modified feature matrix X̃ is defined as:

X̃= [ x̃j]1×d0
=
[
eω̄

η
j xj

]
1×d0

(10)

where xj and x̃j are n× 1 column vectors of X and X̃ con-
taining features under frequency sub-range [ωj, ωj+1] respect-
ively, and ω̄j is the medium frequency of the jth sub-range
as a compromise (since there is only one element for each
node under each sub-range). According to previous studies
[45, 46, 53–55], the coefficient η ranges from 0 to 2. For most
metals and crystalline materials where the bolt structure in this
study applies, η = 2.

To prevent Ã from completely changing the scale of the
feature vectors, researchers usually normalize Ã such that all
rows are sum to one. However, this process makes each node
independently normalized. Regarding the loosening of mul-
tiple bolts jointly influence EMI measurements, we normal-
ize Ã in matrix level and obtain a Ãnorm ready for the forward
propagation in the learning network:

Ãnorm = Ã/

1
n

n∑
i=1

n∑
j=1

ãi,j

 . (11)

3.3.3. Forward propagation and training process. Having
fully defined the adjacency matrix and the feature matrix con-
cerning the physical background, we can define the forward

propagation rule and subsequently establish the whole EMI-
GCN model. As introduced in section 3.2, suppose there are
l layers in the GCN model. The kth graph convolution layer
transforms the output of previous layer O(k−1):

Õ(k) = Ãnorm
(k)O(k−1)W(k) +B(k)

O(k) = ReLU
(
Õ(k)

) (12)

where A(k) is controlled by σ(k); W(k) is an dk−1× dk mat-
rix that contains learnable weights and gradually shrinks the
size of feature; B(k) means the bias and ReLU (rectified linear
unit) is a type of activation function that induces non-linearity.
Mathematically, ReLU elementwise conducts y=max(0,x).

In the output layer, only the bolt nodes are concerned, so
the adjacency matrix A(l) is:

Ãnorm
(l) = [ãi,j]nb×n =

[
e−δ0

(l)di,j
]
nb×n

. (13)

The activation function is abandoned:

Õ(l) = Ã(l)
normO

(l−1)W(l) +B(l). (14)

Basically, the model aims to learn three things:

• The distance between locations of bolts of interest and loc-
ations of sensors is different, so the GCN needs to handle
the sensitivity of impedance changes to bolt changes. This
information is encoded in the parameter δ0.
• Since the features are input directly without manual selec-
tion. The GCN needs to identify the frequency range that is
sensitive to the bolt loosening rather than the boundary or
environmental conditions. This can be encoded in paramet-
ers in W.
• The impedance changes are simultaneously influenced by
several bolts (two in this case), so the GCN needs to distin-
guish the effect of the changes of two bolts. Each node can
repeatedly receive and send the information from and to its
distant neighbors. In this process, the mixture is gradually
and implicitly separated.

Figure 6 describes the full process of the EMI-GCNmodel.
The segmented feature matrix is plotted in gradient colors rep-
resenting low frequency to high frequency.

In terms of the training process, for a graph, only the output
values of the bolt nodes are accounted in the cost function:

J=
1
2nb

∥∥∥Õ(l)−Y
∥∥∥2
2

(15)

where Y and Õ(l) are the label matrix (torque loss) and the
output of the model for bolt nodes, both of which are nb× dy.
In this Equation, the cost J is a scalar measured bymean square
error (MSE).

The partial derivative of cost function with respect to each
parameter (the gradient) can be derived based on the chain
rule:

∂J

∂Õ(l)
=

1
nb

(
Õ(l)−Y

)
. (16)
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Figure 6. Procedures of EMI-GCN model.

For kth layer, the partial derivative with respect to δ0
(k), W(k)

and B(k) are:

∂J

∂A(k)
=

∂J

∂Õ(k)

[
X(k−1)W(k)

]T
∂J

∂Ã(k)
=

∂J

∂A(k)
/

1
n

n∑
i=1

n∑
j=1

ã(k)i,j


∂J

∂δ0
(k)

=
[
−dj,i× e−δ0

(k)di,j
]
n×n
× ∂J

∂Ã(k)

∂J

∂W(k)
=
[
A(k)X(k−1)

]T ∂J

∂Õ(k)

∂J

∂B(k)
=

∂J

∂Õ(k)
. (17)

The gradient can be propagated from k to the k− 1 layer:

∂J

∂O(k−1)
=
[
A(k)

]T ∂J

∂Õ(k)

[
W(k)

]T
∂J

∂Õ(k−1)
=

∂J

∂O(k−1)
I
[
O(l−1) > 0

]
.

(18)

After that, the parameters can be updated using gradient
descent:

σ(k)← σ(k)− ∂J

∂σ(k)

W(k)←W(k)− η
∂J

∂W(k)

B(k)← B(k)− ∂J

∂B(k)

(19)

where η is the learning rate that determines the speed of
updating.

4. Proof-of-concept validation

To validate the proposed approach and the EMI-GCN model,
a proof-of-concept experiment was conducted in the lab. The
test specimen is a pair of 140 × 159 × 10 mm EN24 steel
plates connected by two M6 bolts. In practical large-scale
applications, fewer sensors are always preferred to optim-
ize the cost-benefit trade-off, and in the lab environment,
we wish to obtain more training data from limited test con-
figurations. Therefore, a three-sensor network was adopted
for model establishment, and further performance compar-
ison is presented in this section to demonstrate the suffi-
cient necessity of three sensors to form up an efficient sensor
network.

4.1. Experimental setup

4.1.1. Implementation of sensor network and data
acquisition. As shown in figure 7, 13 PZT sensing patches
were randomly implemented on the test specimen. The PZT
sensors were divided into two groups with 7 (denoted as
Tr1∼ Tr7) used for EMI-GCN model training and 6 (denoted
as Te1 ∼ Te6) used for model testing. The training group
provides C3

7 = 35 sensor network combinations, and the test-
ing group provides C3

6 = 20 sensor network combinations.
Sensor-bolt distances were measured with a caliper from the
center of each bolt to the center of each sensor and tabulated
in table 2. In in-situ monitoring scenarios where many bolts
might cluster in a small area, to increase measuring efficiency,
we plan to measure the coordinates of each bolt and each
sensor with respect to the pre-chosen reference point and cal-
culate the sensor-bolt distance according to their coordinates.

9
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Figure 7. Test specimen and implemented sensors.

Table 2. Distances between sensors and bolts (cm).

B1 B2

Tr1 3.17 7.38
Tr2 3.83 8.29
Tr3 2.36 4.11
Tr4 5.68 2.63
Tr5 7.11 2.55
Tr6 3.56 2.75
Tr7 4.20 5.41
Te1 2.71 8.07
Te2 3.54 5.35
Te3 7.78 2.66
Te4 7.27 3.67
Te5 4.80 3.89
Te6 4.68 7.98

As shown in figure 8, the specimen was placed on a vibrator
that generates stochastic low-amplitude vibrations to simu-
late a realistic operating environment. An Analog Discovery
2 Logic Analyzer (Digilent Inc., United States) was used to
measure the EMI spectrums with a scanning frequency from
100 kHz to 500 kHz (0.1–0.5 MHz) at 1 kHz step. The excit-
ation amplitude was 1 V. Previous studies realized that the
temperature effect is significant and used different methods to
compensate for it [56–58]. The experiment was taken under a
controlled ambient temperature of 25 ◦C with ±0.5 ◦C fluc-
tuations so that the influence of temperature is significantly
suppressed.

In the training data acquisition stage, a series of residual
torques (0 Nm, 1 Nm, 1.5 Nm, 2 Nm, 2.5 Nm, 3 Nm) was
applied on each of the bolts from fully loosened state to fully
tightened state controlled by a torque wrench, while 3 Nm is
the maximum torque we can apply on the bolts based on mul-
tiple measurements at fully tightened state. The correspond-
ing torque losses are 3 Nm, 2 Nm, 1.5 Nm, 1 Nm, 0.5 Nm and
0 Nm, respectively. For the two bolted joints there are 36 com-
binations of load conditions. Therefore, in total 1260 samples
can be obtained for training and model selection.

In terms of the testing stage, the same series of torques were
applied to each of the two bolts providing 36 loading combin-
ations. Although the applied torque series are the same in the
training and testing stages, it should be noted that the train-
ing data and testing data samples are completely different, as
the sensor implementations, i.e. the sensor network are totally
different. In total there are 720 samples for testing, which are
totally unseen case by the well-trained model. In this way, the
generalization capability and flexibility of our approach can be
proved.

It should be admitted that the residual torques measured by
a torque wrench do not precisely reflect the realistic situation,
i.e. the ground truth is not literally ‘true’, and therefore altering
the model predictions correspondingly. However, it is obvious
that such error is a relative term and does not influence the
validation result, because the situation is identical at both the
training stage and testing stage.

Three EMI measurements were taken and averaged for
each sensor under each bolt combination. As mentioned in
section 3, only the real part is considered in this study. Figure 9
shows several examples of the EMI measurements (real part).
(Sensor Tr1, Tr4, Tr7; Bolt B1, B2 (0,0), (1,2), (2.5,1), (3,3)).

According to section 3.1, for any three-sensor network
combined with the two bolts, a five-node graph and a unique
adjacency matrix can be defined, as shown in figure 10.

The EMI-GCN model was trained with the 1260 train-
ing samples following the process in figure 6, and they were
divided into three datasets, as listed in table 3. Each sample is
a graph that contains features and labels.

4.1.2. Training details and model selection. The training,
validating and testing process was conducted on a workstation
with an Intel(R) Core(TM) i7-6700 3.4 GHz processor, 16GB
RAM, and an Nvidia RTX2070 Graphic Card.

In this work, batch gradient descent was performed. In other
words, for each training iteration, the model ingested all the
samples in the training set, calculated the cost function, con-
ducted backpropagation and updated the parameters.

10
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Figure 8. Validation test setup.

Figure 9. Real component of impedance measurements of different sensors for different conditions.

Adam [59] was used as the optimizer, and dropout [60] was
used to prevent overfitting by inducing stochasticity. In this
study, the tunable hyperparameters include:

• The learning rate (10−3, 10−4);
• The number of sub-frequency range (8, 16, 25);
• The number of layers (2, 3);

• The size of hidden layer (gradually shrinking depending on
the number of layers).

To select the hyperparameters for training the model prop-
erly rather than arbitrarily, an extra development set is ran-
domly cropped out from the available samples (as shown in
table 3). After that, a pool of models with different settings

11
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Figure 10. One graph encoding nodes.

Table 3. Size of datasets.

Dataset type Size

Training 1008
Development set (for model selection) 252
Testing 720
Total 1980

(hyper-parameters) was developed based on the same train-
ing set, which was then evaluated on the development set by
mean absolute error (MAE). Based on the performance, the
GCNmodel with the highest MAE on the development set was
selected. Given final prediction Õ(l) and the true torque loss Y,
the MSE is calculated by

MAE=
1
nb

∥∥∥Õ(l)−Y1
∥∥∥ . (20)

After model selection, the number of sub-frequency range is
set as 25. In other words, the CCD is calculated for every range
of 16 kHz. The model has two hidden layers with sizes of 16
and 9, respectively. The influence of the learning rate is trivial
and is set as 10−3.

4.2. Baseline models

Three baseline models were developed for comparison to
prove the superiority of our approach. To ensure fairness, all
models were tuned on the same development dataset to find
the optimal settings and tested on the testing dataset.

The first baseline model adopts two sensors to form up a
four-node graph with the bolts. The graph for this model is
illustrated in figure 11. As a light version of EMI-GCN, it is
noted as EMI-GCN-Light. In this case, there are 756 (C2

7× 62)
samples for training and development, and 540 (C2

7× 62) cases
for testing.

Baseline model 2 (noted as GCN-Naïve) ignores the acous-
tic attenuation of EMI, i.e. the influence of distance and

Figure 11. One graph encoding nodes for EMI-GCN-light.

frequency, by directly using the unweighted adjacency mat-
rix and the original feature matrix. Specifically, the adja-
cency matrix follows equation (4), the feature matrix follows
equation (8) and the forward propagation follows equation (6).

Baseline model 3 is a conventional CNN model that incor-
porates the distances in the prediction of torque loss, denoted
as EMI-CNN. This process is shown in figure 12. First of all,
the EMI-CNN learns a branch of filters to extract high-level
features from the CC vector. It should be noted that each sensor
shared the same branch of filters and the operation can thus
be considered convolution on the feature matrix. The process
gradually shrinks the dimension of feature for each sensor. The
features are then concatenated to the distance vector and fed
to a multi-layer perception, which learns to account for both
impedance measurements and distances between the sensors
and bolts and output the value of bolt looseness.

4.3. Sensitivity of CCD for bolt loosening

Before presenting the performance of the EMI-GCN model,
we conducted a pilot analysis to show the effectiveness of CCD
on indicating bolt looseness as well as to emphasize the need
for GCN and sensor network on multiple bolt monitoring. The
curve of impedance signature is divided into five sections. For
each section, the CCD is calculated using equation (7). The
results are shown in figure 13.

In the case shown in figure 13(a), bolt B2 was fixed, and
bolt B1 was gradually loosened. The CCD of Tr1 is invest-
igated, since this sensor is close to bolt B1. It can be seen
that the CCD increases as the torque loss rises in every fre-
quency section, which means that the signatures become less
correlated to the reference signature. The first and second
sections (i.e. 100–180 kHz and 180–260 kHz) were found to
be more sensitive than the others. A similar phenomenon can
be observed in figure 13(b) when bolt B1 was kept fixed, and
bolt B2 gradually loosened. The various scale may be ascribed
to different boundary conditions as the PZT elements were
implemented at different locations of the host structure. It is,
therefore, demonstrated that the selected statistic metric can

12
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Figure 12. Procedures of EMI-CNN model.

Figure 13. CCD vs torque loss: (a) sensor Tr1 with bolt B1 loosening; (b) sensor Tr4 with bolt B2 loosening; (c) sensor Tr7 with bolt B1
loosening; (d) sensor Tr7 with bolt B2 loosening.

well indicate the torque loss of a single bolt when the other
conditions are well controlled.

However, it should be noted that single-bolt monitoring is
a forward process, i.e. we already know how much a bolt is
loosened (the cause) and use it to explain the metric devi-
ation (the phenomenon). In a multiple-bolt situation, loosen-
ing occurred on any of the bolts may induce undistinguish-
able influence on a sensor when the bolts are approximately
equidistant to the sensor, as shown in figures 13(c) and (d)
where the sensor-bolt distance of Tr7–B1 and Tr7–B2 are close
to each other. In addition, when multiple bolts are loosened,
it becomes an inverse problem to figure out the weighted

contributions on a sensor and cannot be solved by simply look-
ing at the CCDs, which is why the EMI-GCN is needed.

4.4. Results and comparisons

4.4.1. Performance of EMI-GCN compared with baselines.
The EMI-GCN was trained on the data collected and selec-
ted on the development set, as described in section 4.1. The
performance of the selected model was evaluated on the test-
ing dataset, which has been totally unseen in the training stage.
In our case, as the architecture of GCN is not large, both the
training and the testing are quite efficient. Training for 1000
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Figure 14. (a) MAE decay on training; (b) prediction errors on all testing samples using EMI-GCN.

Figure 15. Comparison between EMI-GCN and baseline models.

iterations takes less than 10 s while the testing can be com-
pleted instantly. As shown in figure 14(a), the MAE quickly
decays to around 0.25 within in 5 s. This high efficiency is
desired in real practice.

On all testing samples, the MAE of predicting torque loss
is 0.258 N m (0.253 N m for bolt 1 and 0.263 N m for
bolt B), accounting for 8.6% of the variation range 0–3 N m.
Figure 14(b) shows the prediction errors of all testing samples
using EMI-GCN. It can be noted most of the errors are within
±0.5 N m. This error may be ascribed to the inevitable manip-
ulation difference every time we tighten and loosen the bolts
manually. In view that the flexibility of sensor arrangement,
the results are quite acceptable.

The performances of three baseline models are evalu-
ated on the testing dataset in terms of the MAE level and
compared with the EMI-GCN model, as shown in figure 15.
The MAEs of three baseline models are 0.43, 0.62 and 0.44
respectively. It can be observed that the average MAE of
EMI-GCN model (0.26) is significantly lower than that of
three baseline models (0.43, 0.62 and 0.44 respectively).

Due to the decrease of sensor numbers, the EMI-GCN-Light
model performs worse than the proposed model as expec-
ted. However, it does not mean the performance is mono-
tonically improving with respect to increasing sensing nodes,
and this will be further discussed in the following subsec-
tions. The EMI-CNN model considers sensor-bolt distance,
although in a relatively sloppy way, and therefore performs
moderately. While GCN-Naïve without sensor-bolt distance
encoded exhibits worst performances among all four mod-
els, indicating that if the sensor-bolt distance is not con-
sidered, forcibly using GCN might instead hinder the torque
loss determination.

To get more specific and straightforward impressions on
the performance of the proposed model, two examples using
EMI-GCN are illustrated in figure 16. Sensor-bolt distances
were measured, as displayed on the edges. Based on the
measured EMI signatures including reference data under fully
tightened condition, CCDs were obtained, as shown in the red
blocks. Finally, the consisted feature matrix, as well as the
distances, are input to the well-developed EMI-GCN model,
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Figure 16. Examples of EMI-GCN making predictions.

which delivers predictions on the torque loss. The results are
shown in the table with an MAE of 0.07 N m.

To further understand how information is transmitted and
processed in the EMI-GCN structure to achieve our targets,
the capability of the EMI-GCN model is further elaborated in
the following three subsections based on the experimental val-
idation results, in correspondence to the three targets proposed
in section 3.3.3,

4.4.2. Transmission of sensor-bolt distance information. As
mentioned in section 3.3.2, we encoded the sensor-bolt dis-
tance in the weighted adjacency matrix. Since the δ0 has
been obtained at the training stage, we can now calculate the
weighted adjacency matrix and see how information is trans-
mitted between sensors and bolts. Figure 17 shows how the
transformed features are distributed between sensors and bolts
in the first graph convolution layer. Taking two sensor net-
work examples as shown in figures 17(a) and (d), the further
a sensor is from the bolt, the less CCD it will be distributed
(figures 17(b) and (e)).

By contrast, baseline model 2 uses an unweighted adja-
cency matrix. As shown in figures 17(c) and (f), the bolt will
evenly receive information from each of the sensors, which is
not meaningful. The loss of distance information corrupts the
performance: the MSE sharply rises to 0.61. This well demon-
strates the importance of taking distance into account.

Although the distance factor is considered, the EMI-CNN
(baseline 3), still performs worse than EMI-GCN.We attribute
it to the separation of feature extraction and distance consider-
ation. As shown in figure 12, the model does not leverage the

distance information until the very last moment, which lowers
the performance.

4.4.3. Selection of sensitive frequency sub-range. Figure 18
shows the weight matrix of the first GCN layer and the second
GCN layer. The first layer transforms 25CCDs into 16 features
for each node while the second layer transforms 16 features
into 9 features.

To identity the importance of each feature, i.e. the fre-
quency range that is sensitive to the bolt looseness but not
sensitive to the boundary conditions, we calculated the per-
mutation feature importance for each frequency range.

Permutation feature importance is a model inspection tech-
nique when the data is tabulated. The permutation feature
importance is defined to be the decrease in a model score
when a single feature value is randomly shuffled [61]. This
procedure breaks the relationship between the feature and
the target, thus the drop in the model score is indicative of
how much the model depends on the feature. If the per-
mutation of one feature does not influence the result at all,
this feature (CCD of a specific frequency range) must be
insignificant.

In our case, the feature matrix set D is tabulated with shape
(720, 5, 25) and the MAE on 720 testing samples is 0.2578.
The procedure is summarized in table 4.

The results are shown in figure 19. The most bolt
loose-sensitive four ranges are 484–500 kHz, 388–404 kHz,
148–154 kHz as well as 228–244 kHz. The correspond-
ing increases in error are 0.441, 0.371. 0.337 and 0.317,
respectively.
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Figure 17. Information transfer between sensor nodes and bolt nodes.

Figure 18. The learned weight of EMI-GCN: (a) the first hidden layer; (b) the second hidden layer.

4.4.4. Distinguishment of multiple bolts with proper sensor
network size. In the validation experiment, we presumably
adopted a three-sensor network to monitor the looseness of
two bolts. The number of information sources is slightly lar-
ger than the number of variation sources. In this way, the

underdetermined problem can be avoided when we are solving
the inverse problem.

We further investigated the influence of network size. Sim-
ilar to the baseline model EMI-GCN-Light, we also utilized a
sensor network using four sensors and the corresponding GCN
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Figure 19. Permutation feature importance of each frequency range.

Table 4. Procedures for calculate feature importance.

For each feature j (3rd dimension of D):
For each repetition k in 1, 2, …, 30:

• Randomly shuffle the 1st dimension of D to generate the corrupted version of the feature set D ′

• Input D ′ to the EMI-GCN model to calculate MAEj,k

Compute the importance of this feature Ij = 1
30

30∑
1
MAEj,k−MAE

model is denoted as EMI-GCN-Heavy. The training and devel-
opment set consists of 1260 samples while the testing set con-
sists of 540 samples.

Table 5 shows the performance of these three models on
both their training set and testing set. On one hand, in the train-
ing set, it is found that the larger the model, the smaller the
prediction error. This phenomenon reveals that the reduction
of sensors interrupts the accuracy because two sensors can-
not distinguish the components in impedance signatures influ-
enced by different bolts as well as three sensors can do. On
the other hand, the performance of the EMI-GCN-Heavy is
less satisfactory on the testing set because of overfitting. This
model with large capacity may fit some noises such as EMI
variations induced by temperature change or boundary condi-
tion, while the 1260 samples are not adequate to help to sep-
arate these factors of variation. As a result, the model fails to
generalize to the new conditions.

To summarize, the size of sensor network should match the
number of variation sources. An undersized network may fail
to detect or distinguish different variations while an oversized
network may encounter an overfitting problem once the train-
ing samples are not adequate.

Table 5. Influence of network size on MSE on training and testing
set.

Model
Sensor

network size
MAE on

training set
MAE on
testing set

EMI-GCN-
Light

2 0.366 0.428

EMI-GCN 3 0.237 0.258
EMI-GCN-
Heavy

4 0.206 0.378

5. Conclusions and future work

In this study, a novel EMI-based approach for monitoring
looseness of clustered bolted joints is proposed, by imple-
menting a PZT sensor network and establishing a hybrid EMI-
GCNmodel. The EMI-GCNmodel incorporates both physical
acoustic attenuation nature and data-driven analysis, with the
GCN model retaining the graph structure abstracted from the
sensor network and the clustered bolted joints, and the phys-
ical model reflecting the influence of sensor-bolt distance and
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Figure 20. Damage localization with a large sensor network.

sweeping frequency on EMI sensing. A series of model selec-
tions were carried out to finetune the hyperparameters (divi-
sion numbers of sub-frequency range, etc) of the established
model. The proof-of-concept experiment showed that the pro-
posed approach outperforms all three baseline models in terms
of both capability and prediction accuracy, demonstrating its
effectiveness as well as superiority. In comparison to other
EMI-based monitoring methods, the proposed approach bears
the following merits:

• As a senor network, it can monitor the state and
provide quantified torque losses for multiple bolted joints
simultaneously, while most existing EMI-based monitoring
methods follow one sensor to one bolt configuration;
• By encoding sensor-bolt distance into the GCN model, the
influence of each bolt state variation on a sensor can be thor-
oughly and distinguishably revealed through the training
process, thus offering more accurate torque loss predictions
than normal GCNs and other ML algorithms;
• The EMI-GCN model can provide regressive predictions
using limited training data, in terms of torque loss and
more importantly, sensor network combinations. This is
particularly useful for real applications where it is tricky
and impractical to guarantee a consistent sensor placement
strategy with those networks for training. It allows a more
flexible implementation strategy as long as the sensors are
within the effective sensing range.

Apart from the above merits, the proposed EMI-GCN
model can select the frequency ranges that are sensitive to
the bolt loosening while insensitive to the environmental vari-
ations. Finally, we showed that the size of sensor network
should match the number of variation sources. An undersized
model (EMI-GCN-Light) may fail to detect or distinguish dif-
ferent variations while an oversized network may suffer from
the overfitting problem.

To the authors’ knowledge, it is for the first time GCN
is introduced into the realm of SHM, and we are extending
our investigations to further exploit its potential beyond the

scenario of EMI-based monitoring: (a). Although we have
suppressed the influence of temperature in this study, the tem-
perature is still one of the top concerns in EMI-based monitor-
ing, especially in in-situmonitoring scenarios. In future work,
we are planning to feed temperature with a learnable parameter
into our GCNmodel, analogous to sensor-bolt distance encod-
ing; (b). In this study we are focusing on bolt loosening cases
in which the position of structural variation is pre-known, and
only node-level output is delivered from the EMI-GCNmodel.
For more general damage detection scenarios where damage
positions are unknown, an enhanced model is preferred to
deliver both node-level and edge-level outputs. The damage
position can be inferred from the information of neighbor-
ing edges in a probability manner. Besides, a general induct-
ive framework GraphSAGE [62] that can efficiently generate
node embeddings for previously unseen nodes can be utilized,
so that the developed model can handle a graph with varying
sizes, i.e. knowledge obtained from one graph can be trans-
ferred to graphs with a different number of nodes; c). Although
in this study the GCN model is applied on a relatively simple
sensor network, its value should be fully utilized in complic-
ated sensor networks implemented in large civil infrastructures
and transportation tools. Possible thinking is that considering a
sensor network shown in figure 20, a hierarchical GCN model
can be proposed by firstly identifying the defect-close region
and its neighboring sub-network through 2D node embedding,
and defect severity and position can be located through node-
level and edge-level outputs.
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