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Spatial-interaction network analysis of built environmental 
influence on daily public transport demand 

Abstract 
Many studies have evaluated the influence of the built environment on public transport. Some 
studies assign subjective weights to environmental factors, which could oversimplify spatial 
heterogeneity and overlook the temporal dimension. On the other hand, the spatial-interaction 
network of public transport system is seldom considered. In this paper, we propose an improved 
framework to explore how individual factors unevenly affect public transport demand over 
space and time using a geographically and temporally weighted regression (GTWR) model. 
The proposed framework extends the local built environmental factors by including two 
network factors extracted from the spatial-interaction network of the public transport system. 
We conduct a case study in Beijing, China using 686 traffic analysis zones (TAZs). The actual 
usage of public transport, namely the public transport index (PTI), is estimated by passenger 
flow divided by the total amount of human flow in a given TAZ. The daily patterns of the spatial 
heterogeneity in some selected places in the study area is identified and analyzed. It is also 
found that the estimated coefficient of the variables of the spatial-interaction network is 
significantly larger than other static environmental factors, indicating that spatial-interaction 
network can more effectively reflect spatiotemporal heterogeneity in public transport demand. 
This study provides a better decision-making support for more accurately identifying which 
factors are most worthy of development, and when and where they can be implemented to 
improve public transit services. 
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1. Introduction 
Many studies have examined the association between public transport and the built environment, 
as well as socioeconomic characteristics (e.g., Crane & Scweitzer, 2003; Titze et al., 2008; van 
Acker et al., 2013; Marti & Weidmann, 2016; Zhang et al., 2017; Yu et al., 2019). These studies 
quantitatively measured the impact of local built environmental factors (the 5Ds: density, 
diversity, design, distance to transit, and destination accessibility) (e.g., Renne & Wells, 2005; 
Evans & Pratt, 2007; Renne, 2009a; Kamruzzaman et al., 2014; Wey et al., 2016) on public 
transport. Most early studies assumed that public transport travel choice is only affected by 
local factors within the same spatial unit (e.g., traffic analysis zones (TAZs)) and most relied 
on empirical observations and surveys of the local spatial unit. However, city consists of a set 
of actions, interactions, and transactions (Batty, 2013; Liu, 2015), and studies must consider 
dynamic spatial interactions over space and time (Nasri & Zhang, 2014; Singh et al., 2017). 
This suggests that spatial interactions within a built environment should be considered from a 
network science perspective. 

Rapid urbanization creates challenges for urban development (e.g., traffic congestion, 
carbon emissions, energy consumption), which inevitably affect the quality of city life (Waddell, 
2002; Sudhira et al., 2004; Waddell et al., 2007; Meerow & Newell, 2017). Public transport is 
regarded as one of the most important sustainable approaches to solving transport-related 
challenges, such as traffic congestion and air pollution, and has received considerable attention 
from governments, researchers, and city planners (Calthorpe, 1993; Jabareen, 2006; Liu et al., 
2010; Higgins & Kanaroglou, 2016). The major goal of research in this field is to encourage 
the use of public transport services and reduce the use of private automobiles by improving a 
transit-oriented built environment (Lund, 2006; Cervero & Day, 2008; Renne, 20009a; Sung & 
Oh, 2011). However, most studies have assumed that each influential factor operates evenly 
over space and time, to some extent ignoring spatial heterogeneity. In reality, a factor may affect 
certain locations more strongly than others. To more accurately identify the association between 
the built environment and public transport demand, a spatially heterogeneous model must be 
applied to identify the uneven impact of both environmental and network factors from a global 
network perspective.  

Motivated by these shortcomings, this work proposes an improved framework to evaluate 
the uneven influence of various built environmental and spatial interaction factors on public 
transport demand across space and time. A large dataset of urban sensing big data (i.e., smart 
card data (SCD) and mobile phone data) is used. Because the goal of public transport is to 
encourage use, we apply tap-in-tap-out SCD to estimate the passenger flow on public transit, 
which is expected to reflect the actual use of public transport services in a spatial unit (i.e., a 
TAZ in this paper). We also use mobile phone data to estimate the total people flow in a TAZ. 
The passenger flow divided by the total amount of people flow constitutes what we term the 
public transport index (PTI), which we believe more accurately reflects the relative ratio of 
public transport use in an area. A spatial interaction network of 686 TAZs in Beijing is generated 
using this dynamic passenger flow, where the TAZs represent the network nodes. Two network 
factors of the passenger flow network are combined with eleven commonly used local built 
environmental factors, and the geographically and temporally weighted regression (GTWR) 
model is applied to quantify how these factors unevenly shape public transport travel. The 
findings reveal the spatiotemporal patterns of the influential factors and provide quantitative 
measures to improve the planning and design of public transport policy.  

The remainder of this paper is structured as follows. Section 2 reviews the previous and 
related work and introduces the factors used to evaluate the built environment and its 
association with public transit. Section 3 illustrates the proposed framework and research 
methodology of this paper in detail. In Section 4, we present the study area, data processing, 
and main results, including the uneven spatiotemporal distribution of the factors and the 
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relationships between public transit service and the built environment. The conclusions and 
potential directions for future work are presented in Section 5. 

 
2. Related work 
Human activities occur in geographic space, and human-environment interactions have recently 
received considerable attention in a variety of fields. It is agreed that the built environment is 
related to human activities and even shapes them to some extent. For example, some studies 
have claimed that space is a part of human activity, instead of the background (e.g., Hiller et al., 
1976; Hiller & Hanson, 1984), and the structure of space determines human mobility patterns. 
Hillier and his colleagues (1976) proposed the concept of space syntax to model space as a 
unique line-based spatial network, and several studies have demonstrated a strong correlation 
between human movement flow and network structural parameters, such as degree and 
betweenness (e.g., Jiang et al., 2009; Penn & Turner, 2002; Jiang & Liu, 2012). The association 
between the built environment and human activities therefore fundamentally affects various 
aspects of society, including public transport system.  

Public transport is an important sub-system within an urban system, and is associated with 
and affected by the built environment. Some studies have explored how public transport 
systems interact with the built environment from different perspectives. For example, Crane 
and Scweitzer (2003) investigated the role of the built environment in the sustainable 
development of transport, and Yu et al. (2019) explored how the built environment influences 
public transit choices in urban villages. Marti and Weidmann (2016) addressed the integration 
of public transport and the built environment at the neighborhood scale, and Zhang et al. (2017) 
examined the impact of built environment factors on the use of public bikes at bike stations. A 
general consensus of previous research is that a successful public transport area demands high 
diversity, high density, and an excellent urban structure design to ensure that pedestrians can 
easily fulfill their social activities by foot or public transit rather than private car, which achieves 
the goal of public transit-oriented development (Gu et al., 2019; Kumar and Parida, 2020).  

The built environment can be characterized according to several factors. Cervero and 
Kockelman (1997) suggested the 3Ds concept (i.e., density, diversity, and design) for evaluating 
the built environment of public transport systems. Density reflects the transit usage, diversity 
represents the richness of social activities, and design indicates pedestrian convenience. Ewing 
and Cervero (2010) integrated an additional 2Ds (i.e., destination accessibility and distance to 
transit) to the 3Ds concept. Destination accessibility and distance to transit reflect pedestrian 
convenience and the innate qualities of a transit system from another perspective. Schlossberg 
and Brown (2004) evaluated the walkability and pedestrian environment of public transport 
sites in Portland, USA, using GIS-based measures such as pedestrian catchment areas, network 
classification, and impedance-based intersection intensities. Renne (2009b) evaluated public 
transport in Perth, Australia, based on six outcome aspects: travel behavior, local economy, 
natural environment, built environment, social environment, and policy context. These public 
transport evaluation studies demonstrated that ideal public transport is multi-functional with 
manifold intended outcomes, and the evaluation results can be reflected by the environmental 
factors. 

Batty and Cheshire (2011) suggested that an urban system should consider the spatial 
interaction and connection between space and place, rather than simply locations. Human 
sensing big data (e.g., personal trajectory, call-detail records, and social media check-in data) 
have been widely applied in empirical studies to assess public transport from the perspective of 
spatial interaction. For instance, Pan et al. (2017) used integrated circuit card data and cellular 
signaling data to empirically examine the effects of rail transit station-based public transport on 
daily station passenger volume. Using a large dataset crowdsourced from smart cards, Zhou et 
al. (2019) explored how to quantify, monitor, and visualize the transit-served areas (TSAs) of 
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southeast Queensland, Australia. A TSA is a type of transit-oriented development. The study 
analyzed six months of SCD from TransLink related to the total trips generated by or attracted 
to a TSA and temporal and spatial variations over days using four metrics corresponding to 
transit agency scenarios. Some traditional statistical models (e.g., ordinary least squares (OLS), 
geographical weighted regression model (GWR) and temporal weighted regression model 
(TWR), etc.), are inadequate to model spatial-temporal non-stationarity data (e.g., public transit 
demand) simultaneously (Huang et al, 2010). On the other hand, some studies may only focus 
on the heterogeneity of the impacts of built environment on human activities and transport 
system, whereas the time dimension and spatial interaction are ignored (Du et al, 2018; 
Fotheringham et al, 2015). 

In summary, previous studies have considered the influence of the built environment and 
human mobility on public transport separately and statically, but network analysis and temporal 
dimension are seldom considered together to evaluate the heterogeneity. The dynamic nature of 
transit services and their spatial heterogeneity result in the uneven influence of a given factor 
on public transport over space and time (Huang et al., 2010). To better understand the factors 
and their relationships with public transport, we select a set of local environmental factors such 
as the 3Ds (density, diversity, and design) and measures of economic development (Singh et al., 
2014; Singh et al., 2017; Guo et al., 2018). A passenger flow network is generated based on the 
passenger flow between TAZs. Two network factors are selected to assess spatial interactions. 
A geographically and temporally weighted regression (GTWR) model is adopted to explore 
how each factor influences public transport in different TAZs. 

 
3. Methodology 
Fig. 1 illustrates the proposed four-step framework for evaluating the impact of the built 
environmental and its spatial interaction on public transport demand. We first preprocess the 
SCD and then generate the passenger flow network. A set of local factors in the built 
environment and the flow network are then selected and used to examine the public transport. 
The public transit index (PTI) is then calculated as a proxy for the level of public transport 
demand and then both the ordinary least squares (OLS) and GTWR models are used to conduct 
regression analyses. The spatiotemporal patterns of the factors’ influence on public transport 
demand are then presented and analyzed. 
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Figure 1. Four-step framework for evaluating the impact of the built environmental on public 

transport demand. 
 
3.1. Generation of a spatial-interaction network of passenger flow 
Spatial-interaction networks are networks in which the nodes are located in a space equipped 
with a metric (Barthelemy, 2011). In this study, we generate the public transit spatial-interaction 
network by regarding the TAZs as nodes, and the public transit passenger flow among them as 
links (Fig. 2). The weight of the links is assigned based on the volume of the passenger flow, 
which is derived from the SCD. The spatial network is processed using NetworkX software 
(Hagberg et al., 2019). 

 
Figure 2. Illustration of a spatial interaction network of passenger flow using TAZs 

(black octagons) as nodes and weighted edges (red lines). The node size reflects its strength 
and the edge width corresponds to its weight. 

  
3.2. Computation of PTI as a proxy for public transport demand 
As mentioned, the goal of public transport is to encourage public transit use, which can be 
estimated using tap-in-tap-out SCD between TAZs. In the study area, there is a large proportion 
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of people who use smart phones. When people move around the city, their locations can be 
inferred by the towers to which their phones re connect. Thus, the total traveling population 
between TAZs can be counted regardless of travel mode. To better reflect the relative ratio of 
public transit users to non-users among TAZs, we propose the following formula: 

 𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖 = 𝑉𝑉𝑖𝑖
𝑅𝑅𝑖𝑖

, (1) 

where 𝑖𝑖 is a TAZ, 𝑉𝑉𝑖𝑖 represents the ridership on public transit, and 𝑅𝑅𝑖𝑖 is the total people flow 
for all travel modes in TAZ 𝑖𝑖.  

In general, higher PTI values indicate a higher proportion of people using public transit. 
Higher PTI values are therefore associated with higher public transit demand or attractiveness. 
 
3.3. Computation of influential factors  
To evaluate public transport demand, eleven local factors of the built environment are selected 
and divided into four groups (density, diversity, design, and economic development), and two 
network factors are proposed based on the passenger flow network generated in Section 3.1. 
Table 1 provides a summary of the factors used to evaluate the public transport demand. 
 

Table 1. Factors for evaluating public transport demand. 

Public transport demand  
Type Criteria Factors Source 

Environment 

Density 

Residential Density (RD) Singh et al., 2014 Commercial Density (CD) 
Administrative Density (AD) Motieyan & Mesgari, 2019 
Public Service Density (PSD) Cervero & Kockelman, 1997 

Diversity (Land use)  Entropy (Ent)  Singh et al., 2014 

Design 

Total Length of Walkable and 
Cyclable Paths (TWP) Singh et al., 2017 

Intersection Density (ID) Ewing & Cervero, 2010 
Street Connectivity (SC) Motieyan & Mesgari, 2019 

Economic Development 

Density of Business 
Establishments (DBE) Singh et al., 2017 

Population Density (PD) Ewing & Cervero, 2010 
Employee Density (ED) Singh et al., 2014 

Network Spatial interaction network 
of passenger flow 

Degree (Deg)  
Betweenness (Bet)  

 
3.3.1 Built environmental factors 
Density. There are four types of density factors calculated based on the points of interest (POIs): 
residential density, commercial density, administrative density, and public service density. It 
should be noted that commercial density differs from business density. Commercial 
establishments include service and retailing (e.g., hotels, restaurants, shopping malls), whereas 
business establishments mainly include companies and enterprises. In this paper, density is 
based on the POI density in a spatial unit (i.e., TAZ). The density factors can be calculated as 
follows: 

 Density𝑖𝑖 =  Number of POI𝑖𝑖
Total number of POIs

,  (2) 

Diversity. Land use diversity is a critical factor in transport demand. There are several different 
methods to derive land use diversity, including dissimilarity index, entropy, and vertical mixture 
(Cervero & Kockelman, 1997). In this paper, we choose the widely used method of entropy. As 
defined by Ritsema Van Eck and Koomen (2008), entropy is adopted to calculate land use 
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diversity as follows:  

 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸(𝑖𝑖) =
−∑

𝑆𝑆𝑙𝑙𝑙𝑙𝑖𝑖
𝑆𝑆𝑖𝑖

 × ln𝑝𝑝𝑙𝑙𝑙𝑙𝑖𝑖
𝑛𝑛
𝑙𝑙𝑙𝑙𝑖𝑖=1

ln𝑛𝑛
, (3) 

where 𝑙𝑙𝑙𝑙𝑖𝑖 is the land use class (1, 2, …, n) within a TAZ 𝑖𝑖, 
𝑆𝑆𝑙𝑙𝑙𝑙𝑖𝑖
𝑆𝑆𝑖𝑖

 is the share of a specific land 
use class within TAZ 𝑖𝑖, 𝑆𝑆𝑙𝑙𝑙𝑙𝑖𝑖 is the number of POIs of the specific land use category within 
TAZ 𝑖𝑖, 𝑆𝑆𝑖𝑖 is total number of POIs within TAZ 𝑖𝑖, and 𝐸𝐸 is the number of land use categories. 

In this paper, six land use categories are chosen based on the keywords of available POI 
data, including residential, commercial, administrative, public service, business, and other. The 
entropy range is from 0 to 1, where 0 indicates no land use diversity and 1 indicates high land 
use diversity (i.e., the area is evenly distributed among all land use categories). 
 
Total length of walkable and cyclable paths. This factor is chosen based on the study of 
Schlossberg and Brown (2004), who classify the street network into two categories: potential 
walking routes and automobile-dominant roads. In this paper, roadways are classified into 32 
types (mainly bridleways, cycleways, footways, motorways, and primary roads) according to 
their functional class. This factor is derived by calculating the length of minor roads for which 
pedestrians or cyclists are easily accessible. The road types include cycleways, footways, paths, 
pedestrians, residential, steps, trails, and living streets. Automobile-dominant roads are not 
selected. 
 
Intersection density. The construction of intersections is an effective method to optimize the 
pedestrian environment. Ewing and Cervero (2010) explored the correlation between 
intersection density and walk trips and found that high intersection density can shorten access 
distances and provide more routing options for transit users and transit service providers. This 
also indicates that high intersection density is associated with high walkability and cyclability. 
Eq. (4) is used to calculate intersection density. In this paper, the number of intersections is 
calculated based on the number of road crossings using ArcGIS, and intersection density is 
represented by the number of intersections per square kilometer in a TAZ: 

 𝑃𝑃𝐼𝐼(𝑖𝑖) =
𝑆𝑆𝑡𝑡𝑖𝑖
𝐴𝐴𝑖𝑖

, (4) 

where 𝑆𝑆𝑡𝑡𝑖𝑖 is the number of intersections within TAZ 𝑖𝑖 and 𝐴𝐴𝑖𝑖 is the total area of TAZ 𝑖𝑖. 
 

Street connectivity. Similar to intersection density, street connectivity is also a common factor 
to represent the walkability of an area. High street connectivity around a workplace or 
destination is significantly and positively related to walk and transit choice. In this paper, we 
use the alpha index to calculate street connectivity. The alpha index is derived using the concept 
of a circuit, which is a finite, closed path starting and ending at a single node, and is calculated 
as the number of actual circuits divided by the maximum number of circuits in a network (Dill, 
2004): 

 𝛼𝛼(𝑖𝑖) = (𝑒𝑒−𝑣𝑣+1)
2𝑣𝑣−5

, (5) 

where 𝑒𝑒 is the number of links within TAZ 𝑖𝑖 and 𝑣𝑣 is the number of nodes within TAZ 𝑖𝑖. 
The alpha index ranges from 0 to 1, and higher values indicate greater street connectivity. 

 
Population and employee density. The economic development criteria are selected based on 
some factors proposed by Renne and Wells (2005). These factors include the density of business 
establishments, population density, and employee density. Population density is calculated as: 
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 𝑃𝑃𝐼𝐼(𝑖𝑖) =
𝑆𝑆𝑝𝑝𝑖𝑖
𝐴𝐴𝑖𝑖

, (6) 

where 𝑃𝑃𝐼𝐼(𝑖𝑖) is the population density index of TAZ 𝑖𝑖 and 𝑆𝑆𝑝𝑝𝑖𝑖 is the population within TAZ 
𝑖𝑖. Employee density can be derived in a similar manner. 

 
3.3.2 Public passenger flow network factors 
The following network is generated based on the network described in Section 3.1, where the 
TAZs are the nodes and the passenger flow amount along the flow edges is the weight. 
 
Degree. The degree of a focal node represents the number of its neighbors in a network 
(Freeman, 1978) and is the most common and easiest way to calculate the centrality of a node. 
In an undirected graph, degree centrality is used to measure the degree to which one node is 
connected to all of the other nodes in the network. In this paper, a TAZ is the network node and 
the measure can be formalized as: 

𝐴𝐴𝑖𝑖𝑖𝑖 = �= 1
= 0

   if 𝑖𝑖 and 𝑗𝑗 are connected
otherwise.

      (7) 

                  𝑘𝑘𝑖𝑖 = ∑ 𝐴𝐴𝑖𝑖𝑖𝑖𝑁𝑁
𝑖𝑖 ,                                             (8) 

where 𝑖𝑖 is the focal TAZ node, 𝑗𝑗 represents all other nodes, 𝑁𝑁 is the total number of nodes, 
and 𝐴𝐴𝑖𝑖𝑖𝑖 is the adjacency matrix, which is a graph with 𝑁𝑁 nodes and 𝐸𝐸 edges, that can be 
described by its 𝑁𝑁 × 𝑁𝑁 adjacency matrix 𝐴𝐴. 

 
Betweenness. The betweenness centrality relies on the shortest paths, similar to the closeness 
centrality, but is defined in terms of the flow of passengers in the network and relies on the 
identification of the shortest paths and the allocation of the number of passengers passing 
through a node. Mathematically, the betweenness centrality of node 𝑖𝑖 is defined as: 

 𝐵𝐵𝑖𝑖 = ∑ 𝜎𝜎(𝑎𝑎,𝑖𝑖,𝑏𝑏)
𝜎𝜎(𝑎𝑎,𝑏𝑏)(𝑎𝑎,𝑏𝑏) , (9) 

where 𝜎𝜎(𝑎𝑎, 𝑖𝑖, 𝑏𝑏) is the number of shortest paths from TAZ nodes 𝑎𝑎 to 𝑏𝑏 through node 𝑖𝑖 and 
𝜎𝜎(𝑎𝑎, 𝑏𝑏) is total number of shortest paths between nodes 𝑎𝑎 and 𝑏𝑏. The sum is over all pairs 
(𝑎𝑎, 𝑏𝑏) of distinct vertices. 

 
3.4. Spatiotemporal heterogeneity analysis 
To determine the relationships between public transport demand and the built environment and 
the spatial interaction network, we use the OLS regression model and GTWR model (Gollini et 
al., 2013; Lu et al., 2014) to relate the PTI to the built environment criteria and network 
parameters at the level of the TAZs. As mentioned in Section 3.1., thirteen independent 
variables are selected to evaluate the public transport demand (ref. Table 1) and the PTI is used 
as the dependent variable for the regression analysis. 

We use the corrected Akaike information criterion (AIC) and adjusted R2 combined with 
the analysis of variance (ANOVA) test to compare the results of these two models. The multi-
collinearity of the independent variables is assessed by the variance inflation factor (VIF) index: 
a VIF greater than 10 indicates that multi-collinearity exists (Wheeler, 2007). An OLS model is 
used to explain the global relations between the dependent and independent variables. Note that 
the average value of PTI over all 7 days in each TAZ as dependent variable in the OLS model. 
The GTWR model is then applied to simultaneously deal with spatial and temporal non-
stationarity and detect the spatiotemporal variations in the relationships between two 
geographic phenomena. The PTI is calculated for each TAZ over 7 days (from Monday to 
Sunday), and the regression of the GTWR parameters is estimated using the Euclidean distance 
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and Gaussian distance-decay-based functions with a fixed bandwidth for cross-validation 
purposes. 

It should be noted that the PTI is used as a proxy for the level of public transport demand 
for two reasons. First, there is no ground truth measurement of public transport demand level 
currently available, and the passenger flow estimated by the tap-in-tap-out SCD is one of the 
best proxies. Second, the PTI reflects the spatial interaction between TAZs, and can be used to 
generate a network that can be used to rank and describe the TAZs in the context of public 
transport policy (e.g., demographics).  
  
4. Study area and data processing 
Beijing, China (Fig. 3a) is selected as the study area for two main reasons. The first is the 
availability of a large volume of public transport data (i.e., tap-in-tap-out SCD), and the second 
is that Beijing is rapidly urbanizing and urgently requires the sustainable development of public 
transport. By January 2017, there were 19 subway lines in operation in Beijing, covering 11 
municipal districts with 345 stations and a total length of 574 km. Beijing has 1,020 bus routes 
with 29,515 buses covering a total of 19,158 km. Most subway and bus stations are located 
within Fifth Ring Road. This region has a high population density and high trip generation, 
attraction rates, and is perhaps the most prosperous core area with the largest population flow 
in Beijing. The administrative region of Beijing covers a land area of 667 km2, but only the area 
within Fifth Ring Road is selected as the study area because there are very few or no public 
transport services in other areas. As transport demand modelling and application require spatial 
data aggregation in traffic analysis zone (TAZ), we thus select TAZ as the spatial units in this 
study (Martínez et al., 2009). 

The average area of the 686 TAZs within the Fifth Ring Road region (left in Fig. 3b) is 
about 0.9 km2. Another reason for using TAZs as the spatial units in this study is that they are 
defined according to the census block information, administrative boundaries, and the main 
roads in the city. Therefore, for each TAZ, it is possible to collect the information about public 
transport, land use, and socio-economic characteristics needed to calculate the criteria and 
factors of public transport demand. 

The SCD data were generated when users tapped in/out of a subway or bus station between 
April 11, 2016 and April 17, 2016. They were collected by the College of Metropolitan 
Transportation, Beijing University of Technology. Other datasets include the POI data from the 
Baidu map API (https://api.map.baidu.com/lbsapi/) and road network from OpenStreetMap 
(www.osm.org). In particular, the SCD provide a chance to analyze spatiotemporal variations 
of passenger flows at a highly detailed scale because of their fine granularity. The SCD consist 
of a large collection of non-aggregated records that represent single events (i.e., a bus or metro 
journey), and each record contains a specific spatial location and time stamp. 

 

 
(a) Map of China and Beijing  (b) Public transport within the Fifth Ring Road in Beijing 

https://api.map.baidu.com/lbsapi/
http://www.osm.org/
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Figure 3. Study area in Beijing within Fifth Ring Road with the 686 TAZs. 
 
5. Results and discussion 
5.1. Spatial interaction network analysis 
According the description in Section 3.1, Fig. 4 provides the spatial interaction network of 
passenger flow between the TAZs in Beijing, China; the points in red are the central points of 
each TAZ and the 3D lines in yellow are the edges. It should be noted that the passenger flows 
and connections between TAZs change with time; thus, the network structure also changes with 
time. The network therefore dynamically reflects how people, public transport, and the built 
environment interact with each other across space and time. The network structure can be 
measured by the probability distribution of its centralities. In this paper, two centralities are 
selected (i.e., degree and betweenness) and the calculation is conducted using Eqs. (7)-(9).  

As shown in Fig. 4, both the degree and betweenness follow an exponential distribution, 
which indicates the scaling property of a complex network. Compared with a normal 
distribution, this scaling property reflects an imbalanced phenomenon: a high percentage (~80%) 
of the spatial interactions have passenger flows less than the average value, whereas ~20% of 
the spatial interactions have passenger flows greater than the average value. As stated above, 
this is a clear indicator that the structure of the spatial interaction network changes when the 
passenger flow changes over time (e.g., the centrality measures of the nodes). However, the 
overall probability distribution of the network structure remains the same over time, i.e., a 
heavy-tailed distribution that indicates the emergence of a complex network.  

 

   
(a) Degree                                 (b) Betweenness 

 
Figure 4. Exponential distribution of the spatial-interaction network structure reflecting the 

scaling property of the complex network. 
 
In summary, the dynamic spatial interaction network reveals the complex relationship 

between the public transport system and the built environment. Thus, the assessment of the 
influence of the built environment on public transport can be biased if only the local built 
environmental factors are considered. The spatial interaction network structure (e.g., degree and 
betweenness) allows a more comprehensive evaluation of this influence from the network 
science perspective. 
 
5.2. Spatiotemporal characteristics of public transport demand in Beijing 
PTI is calculated as a proxy for public transport demand. Fig. 5 shows the spatial distribution 
of the PTI of the TAZs, in which red represents higher PTI values and yellow represents lower 



11 

 

PTI values. We divide the TAZs into five groups for better visualization using the natural break 
classification method, which reduces the variance within groups and maximizes the variance 
between groups. The visualized spatial patterns in Fig. 5 show that more TAZs have high PTI 
values on weekdays than on weekends. One possible reasons is that the commuters who live 
and work in compact neighborhoods with well-built public transit facilities tend to use public 
transport for commuting on weekdays. For instance, certain office areas (e.g., Zhongguancun, 
Electronic City, Embassy Area) and residential areas (e.g., Nanmencang Community and 
Wangjing Station) located in the northeastern or northwestern corners of the study area, have 
higher PTI values on weekdays. 
 

    
 

Figure 5. Spatial distribution of public transport index (PTI) in Beijing, China on an 
average (a) weekday and (b) weekend. 

 
The finer temporal granularity of the SCD used in the analysis makes it possible to observe 

meaningful variations in the PTI over time, which significantly helps to understand how the 
TAZs are unevenly affected by the features of the built environment and the spatial interaction 
networks . In this paper, nine typical TAZs are selected from nine typical regions, which include 
four types: tourist attractions (Summer Palace and Olympic Village); office areas (Embassy 
Area and Electronic City); commercial areas (West of Tiananmen Square and Wangfujing 
Street); and residential areas (Nanmencang Community, Imperial College, and Wangjing 
Station) as shown in Fig. 6. 

 

 (a) (b) 
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Figure 6. Nine TAZs selected for temporal analysis. 

 
Fig. 7 shows the temporal variation of the PTIs for the nine selected TAZs (Fig. 6) on a 

daily basis, which highlights the different patterns. All regions show a medium or high PTI 
value during the week except for the Olympic Village, possibly because it is mainly a tourist 
attraction. The Summer Palace is also a tourist attraction but its PTI value is substantially higher 
than that of the Olympic Village, which may be related to their different locations, the 
development of public transport services, and/or the level/type of tourist attraction. The results 
also indicate that residential and office regions (Nanmencang Community, Imperial College, 
Wangjing Station, Electronic City, and Embassy Area) have higher PTI values from Monday to 
Friday than from Saturday to Sunday. This means that the spatial characteristics of the PTI must 
be examined using finer granularity. Interestingly, the PTI values of most regions reach a peak 
on Friday, which indicates that most regions have high public transit use on this day. This 
demonstrates the importance of evaluating public transport demand on both spatial and 
temporal scales. 
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Figure 7. Daily variation in PTI for nine TAZs over 7 days. 
 

5.3. Heterogeneous patterns of influential factors  
In this section, we explore the relationships between public transport demand and the 

selected factors (Table 1) of the built environment and the spatial interaction network of 
passenger flow. The built environment and network factors are used as independent variables, 
and the public transport demand, represented by the PTI, is used as the dependent variable for 
the subsequent regression analysis. Both the OLS regression and GTWR are used to examine 
the relationships between the PTI and the built environment and network factors. Further, to 
examine the effect of network factors on the passenger flow over space and time, we create six 
groups of variables, each of the groups includes one or more independent factors from the three 
environmental criteria (i.e., density, diversity and design).  

Then we apply OLS regression to the six group of variables, which are model 1, 2, 3, 4, 5, 
6. Similarly, we apply GTWR model to the six group of variable, which are model 7, 8, 9, 10, 
11 and 12. Note that the models 1, 3, 5, 7, 9, and 11 are models without network factors, while 
models 2, 4, 6, 8, 10, and 12 are models with network factors. The ANOVA results (see Table 
2) report the residual sum of squares (RSS), the degrees of freedom (DF), and the residual mean 
squares (MS) for the 12 OLS and GTWR models. 

The ANOVA results indicate that there is significant spatial and temporal non-stationarity 
over the study area, and the GTWR models is more suitable than the OLS models. 
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Table 2. ANOVA comparison between OLS and GTWR models. 

Groups Independent variables Source of 
Variation 

OLS 
residuals 

GTWR 
residuals 

GTWR/OLS 
improvement 

1 RD, CD, Ent, SC, PD 

 Model 1 Model 7  
RSS 167.00 1.48 165.52 
DF 4016 162 3854 
MS 0.04 0.01 0.03 

2 RD, CD, Ent, SC, PD, 
Deg, Bet 

 

 Model 2 Model 8  
RSS 66.01 2.84 63.17 
DF 4014 922 3092 

 MS 0.02 0.00 0.02 

3 RD, CD, Ent, SC, PD, 
DBE, TWP 

 

 Model 3 Model 9  
RSS 163.40 0.19 163.21 
DF 4014 65 3950 

 MS 0.04 0.00 0.04 

4 RD, CD, Ent, SC, PD, 
DBE, TWP, Deg, Bet 

 Model 4 Model 10  
RSS 85.73 2.67 83.06 
DF 4016 1026 2990 
MS 0.02 0.00 0.02 

5 
RD, CD, Ent, SC, PD, 

DBE, TWP, 
AD,PSD,ID,ED 

 Model 5 Model 11  
RSS 154.42 0.73 153.69 
DF 4010 380 3630 
MS 0.04 0.00 0.04 

 
6 

RD, CD, Ent, SC, PD, 
DBE, TWP, AD, PSD, 

ID, ED, Deg, Bet 

 Model 6 Model 12  
RSS 83.10 3.66 79.44 
DF 4008 1662 2346 
MS 0.02 0.00 0.02 

 
The results of the OLS and GTWR regressions are listed in Table 3 and Table 4. The VIF 

results (all <10) indicate that the OLS estimations are not biased by multi-collinearity. The OLS 
regression models without network factors can explain 3%, 5% and 10% of the variation (i.e., 
R2 = 0.03, 0.05 and 0.10) for the PTI, while the models with network factors can explain 50% 
and 52% of variation (i.e., R2 =0.5 and 0.52) for the PTI. The network factors have higher 
estimated coefficients in model 2, 4 and 6. The results suggest that the network factors play 
significant and important roles on PTI. Furthermore, the GTWR models can explain 79%, 93% 
94% and 95% of the variation (i.e., R2 = 0.79, 0.93, 0.94 and 0.95) in the PTI with a lower AIC 
by comparing with OLS models. This confirms that the GTWR model is more suitable than the 
OLS models. The OLS results show that commercial density, public service density, density of 
business establishment, street connectivity, population density, employee density, and total 
length of walkable and cyclable paths are negatively associated with the PTI. This implies that 
the potential public transport demand level would likely decrease if the five factors are 
improved. Other factors, such as residential density, intersection density, mixed land use, degree, 
and betweenness, are positively associated with the PTI. This suggests that the potential public 
transport demand level would likely increase if these six factors are improved. Figure 8 shows 
local t-value for the betweenness variable, where the grey color is area with non-statistical 
significant (i.e., p-value > 0.05), while the gradient color is local t-value with statistical 
significant (i.e., p-value <0.05). The result indicates that the significant coefficients estimated 
between PTI and selected variables change over time (see Figure S15-S27 in supplement). 
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Table 3. Results of OLS models. 
 Model 1 Model 2 Model 3 Model 4 Model 5 Model 6  

No. Variable Coef. Coef. Coef. Coef. Coef. Coef. VIF 
 Intercept 0.26*** 0.18*** 0.24*** 0.19*** 0.37*** 0.23***  

1 RD -0.23***  -0.12***      -0.26*** -0.15*** 0.37*** −0.19***  2.3 
2 AD      −0.39*** 0.03  1.9 
3 CD -0.07** -0.06***  -0.06** -0.07*** −0.18***  −0.08***  2.0 
4 PSD      −0.17*** −0.19***  1.6 
5 DBE    -0.09*** -0.06*** −0.46*** −0.05**  2.1 
6 ID      −0.20***  0.16*** 2.5 
7 Ent 0.09*** -0.05**  0.13*** -0.04** 0.41*** −0.04  1.5 
8 SC -0.15*** -0.07***  -0.14*** -0.06** −0.26***  −0.06***  1.1 
9 PD -0.04** -0.23***  -0.10*** -0.23** −0.14***  −0.14*** 2.1 
10 ED      −0.08*** −0.23*** 2.3 
11 TWP    0.19*** -0.02*** −0.19*** −0.04** 2.3 
12 Deg  0.68***   0.68***  0.66***  3.5 
13 Bet  -0.13***   -0.12***  −0.11*** 3.3 
 Adjusted R2 0.03 0.50 0.05 0.50 0.10 0.52  
 RSS 167.00 66.01 163.40 85.73 154.42 83.10  
 AIC -1367.67 -4032.80 -1451.93 -4042.09 −1671.27 −4159.15  

Note: *** p < 0.01; ** p < 0.05; * p < 0.1.  
RD: residential density; AD: administrative density; CD: commercial density; PSD: public service density; Ent: entropy; 
DBE: density of business establishments; ID: intersection density; SC: street connectivity; PD: population density; ED: 
employee density; TWP: total length of walkable and cyclable paths; Deg: network degree; Bet: betweenness 

 
Table 4. Results of GTWR models. 

 Model 7 Model 8 Model 9 Model 10 Model 11 Model 12 
No. Variable Mean Coef. Mean Coef. Mean Coef. Mean Coef. Mean Coef. Mean Coef. 

 Intercept 0.17 0.05 0.32 0.11 0.43 0.13 
1 RD -0.44    -0.07    -0.45 -0.05 −0.76  −0.15  
2 AD     −0.48  −0.08  
3 CD -0.09 -0.03  -0.07 -0.01 −0.11  −0.02  
4 PSD      −0.52  −0.03  
5 DBE    -0.05 -0.02 −0.44  −0.05  
6 ID      0.99 −0.01 
7 Ent 0.16 0.05  0.08 0.03 0.50  0.06  
8 SC -0.06 -0.03  -0.10 -0.03 −0.41  −0.04  
9 PD -0.29 -0.33  -0.15 -0.36 -0.60 −0.22 
10 ED      −1.55 −0.54 
11 TWP    0.33 0.05 0.52 0.07 
12 Deg  0.74   0.71  0.74  
13 Bet  -0.19   -0.19  −0.12 
 Adjusted R2 0.79 0.93 0.93 0.94 0.95 0.95 
 Bandwith 0.005 0.007 0.004 0.007 0.005 0.010 
 AIC -17015.43 -15308.65 -24807.91 -15631.02 −20159.17 −14900.4 

RD: residential density; AD: administrative density; CD: commercial density; PSD: public service density; Ent: entropy; 
DBE: density of business establishments; ID: intersection density; SC: street connectivity; PD: population density; ED: 
employee density; TWP: total length of walkable and cyclable paths; Deg: network degree; Bet: betweenness 
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Figure 8. Daily patterns of the local t-value of betweenness for the PTI over a week. 
 
The GTWR results further indicate that the impacts of the built environment and spatial 

interaction network variables on the PTI are spatially and temporally heterogeneous. The 
average local coefficients of the selected variables estimated by GTWR model (i.e., model 12) 
are visualized individually in Fig. 9. To make it simple, we only demonstrate the results based 
on model 12, since it covers all selected independent variables (Table 1) in this study. The 
average local coefficients of each factor are calculated using the total values over seven 
consecutive days divided by seven. Large and small coefficient values are represented in red 
and blue, respectively. The TAZs that have no related data are shown in white. 

The spatial patterns in Fig. 9 clearly demonstrate how different factors contribute unevenly 
to the level of public transport demand across space. For each of the factors, the different colors 
in the study area indicate the uneven contribution of the same factor to the PTI. Compared with 
previous studies, the findings provide a quantitative way to measure the spatially heterogeneous 
impact of the built environment and spatial interaction of passenger flows on public transport 
demand. For example, the Summer Palace, a large and famous national park located in the 
northwestern part of the study area, has significant positive association with administrative 
density and public service density. However, the street connectivity has a negative influence on 
the PTI in the Summer Palace TAZ. In this sense, if the policy makers or practitioners need to 
increase the use of the public transport system, these results provide important guidance; in 
particular, they show that the selection of which factors need to be investigated must consider 
spatial diversity to what extent. 
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Figure 9. Average local coefficients of the eleven factors with the PTI of each TAZ in Beijing. 
 
Fig. 10 shows the spatial patterns of the local coefficients of one centrality measure, i.e., 

betweenness, with the PTI over one week on a daily basis. The differences between any two 
days can be clearly observed, particularly between weekdays and weekends. For example, the 
spatial distributions on Wednesday (Fig. 10c) and Friday (Fig. 10f) differ significantly. These 
results show that the same factor can influence a location differently at different times, and 
demonstrate the temporal heterogeneity of the influence of different factors on the PTI. They 
also demonstrate a quantitative method for measuring the heterogeneous impact of these factors. 
However, it is challenging to simultaneously consider spatial and temporal heterogeneity when 
trying to identify when, where, and which factors should be modified to improve the 
relationship between the built environment and public transport demand. 
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Figure 10. Daily patterns of the local coefficients of betweenness for the PTI over a week. 
 

In previous studies, the most widely used methods for inferring the relationship between 
the built environment and public transport have been the linear regression method (Sung & Oh, 
2011; Zhang et al., 2017) and the geographically weighted regression method (Jun et al., 2015); 
however, very few studies have combined both spatial and temporal analysis using the GTWR 
method, except Ma et al. (2018). Compared to Ma et al. (2018), the PTI proposed in this paper 
is a better proxy for public transport demand. The spatial interaction network structure reflects 
the human perception of the built environment, especially when comparing urban and non-
urban areas (Van, Derudder & Witlox, 2013). The use of a spatial interaction network therefore 
enables our framework to capture the urban dynamics of the transport system. In our results, 
some of the averaged factor coefficients, i.e., the positive influence of population density, 
employment density, and street development, are in agreement with existing studies (e.g., 
Zhang et al., 2017, Yu et al., 2019). However, our results indicate that land use diversity and 
residential density are negatively related to public transit demand, which contradicts these two 
studies. This may be due to the different case study areas. Furthermore, the betweenness 
centrality of the spatial interaction network is found to be significantly related to the public 
transport demand in this study. This suggests that it is important to consider interactions as basic 
features in the evaluations of public transport systems (Batty, 2013). 
 
6. Conclusion 
The impact of the built environment on public transport is usually evaluated using local 
environmental factors, which tends to oversimplify or even neglect the time dimension and the 
spatial interactions between different built environments. The built environmental factors are 
heterogeneous in nature, which means that a factor may have a different degree of influence in 
different places and times. Furthermore, the spatial-interaction network also matters when 
evaluate the heterogeneous impacts of the built environment on public transport system. This 
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study proposes an improved framework to estimate the influence of the built environment on 
public transport demand; it uses the geographically and temporally weighted regression 
(GTWR) model. A public transit index (PTI) is first proposed as the proxy for public transport 
demand and estimated using mobile phone data and SCD in Beijing, China. Higher PTI values 
in a region are indicative of more public transport use in the area. A TAZ-based spatially 
embedded network is generated to consider the interactions between the TAZs, and two 
variables of the network are investigated as factors that influence the use of public transport. In 
addition, a series of local factors of the built environment that have been used in previous 
studies are included in the analyses. Both the OLS and GTWR models are applied to identify 
the spatiotemporal heterogeneous patterns of the uneven contribution of each factor in each 
TAZ across space and time. The results indicate that the GTWR model has an average adjusted 
R2 of 0.94, whereas that of the OLS model is lower (i.e., 0.03 to 0.50). The lower AIC of the 
GTWR model indicates that it is more suitable than the OLS. This work makes two main 
contributions: first, a large volume of human mobility data and spatial interaction-based 
network analysis are used to evaluate public transport; second, the results provide solid 
evidence for future public transport policy design by taking into account the spatial interactions. 
For instance, if a factor negatively contributes to public transport demand in a given area and 
time, future public transport development may need to avoid investigating this factor. 
Specifically, an improvement in commercial density, street connectivity, population density, 
employee density, and closeness may reduce the impacts of public transport policy, whereas 
increasing the residential density, intersection density, mixedness of land use, eigenvector, 
degree, and betweenness may have the opposite effect. More importantly, the factors of spatial 
interactions significantly contribute to the heterogeneous impacts on public transport, which 
means the future public transport policy may need to consider not only the environmental 
factors, but also the global interactions with the public transport system. In summary, the 
proposed framework provides a new way to dynamically evaluate public transport, and sheds 
new light on how to use public transport policy to facilitate sustainable urban development.  

Nevertheless, this paper also has several limitations. One limitation is represented by using 
a PTI as an approximation of the potential public transport demand level in the regression model. 
Although some examples in the current literature use this index to reflect the impacts of public 
transport policy, we are aware that our assumption may be prone to error in relation to the non-
ideal representativeness of the PTI. Because of the subjectivity of the public transport policy 
evaluation, it is also not possible to include all of the factors that can impact public transport. 
Hence, future work should focus on investigating the factors that can better reflect the impact 
of public transport. Finally, it is worth pointing out that the OLS and GTWR models selected 
for this study allow for negative coefficients, which in this particular case might seem like a 
counterintuitive result. In the future, we intend to rescale the regression to tackle the issue of 
the model producing unrealistic numbers. 
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