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An explicit one-dimensional consolidation solution with arbitrary 

drainage boundary for unsaturated soil 

Abstract: Existing solutions for analyzing one-dimensional (1-D) consolidation of unsaturated soil are 

only derived to cater for two extreme drainage conditions (fully drained and undrained). This study presents 

a new explicit solution for 1-D consolidation of unsaturated soil with any arbitrary drainage boundary. Based 

on the assumptions of two independent stress variables and the governing equations proposed by Fredlund, 

the eigenfunction expansion method is adopted to develop an explicit analytical solution to calculate excess 

pore-water and pore-air pressures in an unsaturated soil when it is subjected to external loads. The developed 

general solutions are expressed in terms of depth, z, and time, t. For any arbitrary drainage boundary, 

eigenvalues and eigenfunctions in the space domain are developed. The technique of Laplace transform is 

used to solve the coupled ordinary differential equations in the time domain. The newly derived explicit 

solution is verified with the existing semi-analytical method in the literature, and an excellent agreement is 

obtained. Compared with the semi-analytical solution, the newly derived analytical solution is more 

straightforward and explicit so that this solution is relatively easier to be implemented into a computer 

program to carry out a preliminary assessment of 1-D consolidation of unsaturated soil. 

Keywords: Explicit analytical solution, unsaturated soil, 1-D consolidation, arbitrary drainage boundary, 

eigenfunction expansion method. 

1.Introduction 

The consolidation of soil describes the dissipation of excess pore-water pressure resulting 

from external stress. Since Terzaghi proposed the classical theory for one-dimensional (1-D) 

consolidation, it has been widely used for research and engineering applications to calculate the 
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consolidation of saturated soil. However, almost all the earth surface is unsaturated and 

saturated soil (i.e., degree of saturation equal to 100%) is just a very special case of unsaturated 

soil. Assuming that the volume change of unsaturated soil results from the net stress and matric 

suction, Fredlund 1 attempted to develop the 1-D consolidation theory of unsaturated soil. In 

this study, Fredlund proposed two coupled nonlinear partial differential equations (PDEs) 

describing independent flows of air and water in unsaturated soil deposits. For many years, it 

has been a great challenge to solve this set of nonlinear PDEs using analytical methods. Thus, 

many studies chose some alternative numerical approaches to solve governing equations1-6. 

Most recently, researchers have made significant contributions to the analytical solutions 

for the 1-D consolidation of unsaturated soil. Qin et al.7, 8 used the Laplace transform technique 

to solve the governing equations proposed by Fredlund. Shan et al.9-11 introduced two 

parameters to rearrange the governing equations and used the method of separation of variables 

to obtain the closed-form solution to calculate excess pore-water and pore-air pressures. 

Following their pioneer works, more straightforward and explicit solution was developed by 

Zhou et al.12 and Ho et al.13. This series of studies have inspired an increasing number of recent 

research works, including the analytical models to account for two-dimensional plain strain 

consolidation14-16, axisymmetric consolidation17-19, and consolidation of multi-layered soil20. 

These mathematical works generated valuable knowledge for the consolidation of 

unsaturated soil. However, all the above studies are only derived to cater for two extreme 

drainage conditions (fully drained and undrained). It has been reported that the boundaries of 

the soil stratum are actually partially-drained in most practical consolidation problems21-23, 

which can be more complicated than those assumed fully permeable or impermeable boundaries. 

Page 3 of 25

http://mc.manuscriptcentral.com/nag

International Journal for Numerical and Analytical Methods in Geomechanics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review Only

4 

 

For instance, in the preloading project of soft clay ground, when the drainage capability of the 

sand cushion is not very effective, there will become a partially-drained boundary on the top of 

the adjacent soft clay layer just beneath it 21. Wang et al.24-26 first incorporated arbitrary 

boundary conditions into the consolidation theory of unsaturated soil. In these studies, Wang et 

al.24-26 transformed PDEs into an equivalent set of partial differential equations by introducing 

two new variables. Then, the solutions in the frequency domain could be easily derived using 

the method of Laplace transform. However, it was quite challenging to transform these solutions 

from the frequency domain to the time domain analytically. Wang et al.24-26 used the numerical 

inversion of Laplace transform and obtained the semi-analytical solutions for excess pore-water 

and pore-air pressures. Although this set of semi-analytical solutions was correct, these 

solutions were not explicit in the time domain and derived from a complicated mathematical 

process, which made these formulas hard to use. 

This study presents a new explicit analytical solution for 1-D consolidation of unsaturated 

soil with arbitrary drainage boundary. Based on the assumptions of two independent stress 

variables and the governing equations proposed by Fredlund, the eigenfunction expansion 

method is adopted to develop an explicit analytical solution to calculate excess pore-water and 

pore-air pressures in an unsaturated soil when it is subjected to external loads. The accuracy of 

the newly derived analytical solution is verified with the existing semi-analytical method in the 

literature24, with various kinds of drainage boundaries24. Compared with semi-analytical 

solution24, the newly derived analytical solution is more straightforward and explicit so that this 

solution is relatively easier to be implemented into a computer program to carry out a 

preliminary assessment of 1-D consolidation of unsaturated soil. 
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2.Mathematical model 

2.1 Governing equations 

Figure 1 illustrates a schematic diagram of the unsaturated soil layer when it is subjected 

to external loads. The soil stratum has an initial height, H, and the deformation only occurs in 

the vertical direction during the consolidation process.  

In this paper, we adopt the same assumptions as those in previous studies7-12, 14-18, 24-26. 

(1) Solid grains and water phases are incompressible. 

(2) The flows of air and water phases are assumed to be continuous. 

(3) The effects of air diffusing through water, air dissolving in the water, and the movement 

of water vapor are neglected. 

(4) The volume change of unsaturated soil results from the net stress and matric suction. 

(5) The coefficients of permeability concerning air and water phases and volume change 

for the soil remain constant throughout the consolidation process. 

Noted that the above assumptions may not account for all the cases, especially Assumption 

(5). For example, consolidation involves a series of complicated nonlinear problems in practical 

engineering projects. However, these assumptions are essential and widely used in the 

analytical analysis of unsaturated soil to deliver a prediction of dissipation for the excess pore 

pressures7-18, 24-26. 

Based on these assumptions, the governing equations can be formulated as follows1 

 
2

w a w
w

w

vc
u u u

C
t t z

  
−= −

  
 (1) 

 
2

aa w a
a v

u u u
C c

t t z

  
= − −

  
 (2) 

in which uw and ua are the excess pore-water and pore-air pressure, respectively. Cw, cw
v, Ca, 
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and ca
v are all constant parameters and can be expressed as  
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in which m
w 

1  and m
w 

2  denote the coefficients of water volume change with respect to a change 

in the net normal stress and matric suction, respectively; m
a 

1  and m
a 

2  represent the coefficients 

of air volume change in a soil element with respect to a change in net normal stress and matric 

suction, respectively; kw and ka denote the permeability coefficients for the water and air phase, 

respectively; γw (= 9.8kN/m3) is the unit weight of water; g (= 9.8 m/s2) is the acceleration of 

gravity; Sr and n are the degree of saturation and porosity, respectively. ωa (= 0.029 kg/mol) is 

the molecular mass of air; 
0

a a atm
u u u= + , in which uatm is the absolute pore-air pressure and u

0 

a  

is an initial excess pore-air pressure; R (= 8.314 J/mol/K) is the universal gas constant; T1° is 

the absolute temperature. 

2.2 Initial conditions and boundary conditions 

Following is the distribution of initial excess pore-water and pore-air pressures 

 
0( ,0)w wu z u=  (4) 

 
0( ,0)a au z u=  (5) 

According to Wang et al.24, the arbitrary drained boundary conditions are written as 

follows  
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 (7) 

where Rt and Rb are the parameters at the top and bottom boundaries, respectively, as shown in 

Fig.1. Obviously, for the fully permeable boundary, we can find that Rt=Rb=∞. As for the 

impermeable boundary, we can see that Rt=Rb=0. 

3. Analytical solutions   

3.1 Solution for excess pore pressures using eigenfunction expansion method 

The general solution for uw and ua can be written as 

 
1

( , ) ( ) ( )i i

w w

i

u z t Z z f t


=

=   (8) 

 
1

( , ) ( ) ( )i i

a a

i

u z t Z z f t


=

=   (9) 

where Zi(z) is the eigenfunction expressed in term of distance z; ( )i

wf t and ( )i

af t are generalized 

Fourier coefficients varying with time t. Based on the boundary conditions shown in Eqs.(6) 

and (7), Zi(z) is written as 

 ( ) cos( ) sin( )
t

i i
i i

H
Z z z

R
z


 = +   (10) 

in which λi are the eigenvalues that can be calculated as the positive roots of the following 

equation. 

 c [ ] 0[ sin( ) os( )] cos( ) sin( )b

t t

i i
i i i i i

RH H
H H

H
H

R
H

R

 
    − + + =+  (11) 

Therefore, substituting Eqs.(8) and (9) into Eqs.(1) and (2) yields 
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Above a set of ordinary differential equations (ODEs) can be easily solved as shown in 

Appendix A. Thus, the solutions for ( )i

wf t and ( )i

af t can be obtained as follows 
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where  

 ( )
2

;4w a w a

v v v v w ac c c c C C = − +  (16) 

and (0)i

wf and (0)i

af are the initial value of ( )i

wf t and ( )i

af t , respectively.  

Based on the orthogonality of eigenfunction, we can find 

 
0
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H
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Thus, the values of (0)i

wf and (0)i

af can be obtained  
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The detailed derivation for Eq.(17)is presented in Appendix B. 

As a result, the analytical solution to the excess pore-water pressure and pore-air pressure 

can be written as follows 
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3.3 Average degree of consolidation 

According to Fredlund 1, the settlement, St, can be expressed as 

 
0

| |
H

t vS dz=    (22) 

where εv is the volumetric strain 

 ( ) 0 0

2 1 2( , ) ( , ) ( , )s s s

v a a w wz t m m u z t u m u z t u −   = − − −      (23) 

with 1 1 1 2 2 2, .s a w s a wm m m m m m= + = +   

Thus, the average degree of consolidation, Uavg, can be obtained 

 t
avg

S
U

S



=   (24) 

in which S∞ is the final settlement. 

4. Verification  

In this section, the new-developed solution is verified with the semi-analytical method 
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introduced by Wang et al.24. Basic parameters for the unsaturated soil layer are also taken from 

the literature 24: 
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4 -1 0 0

2

-1-1 -1

; ; ;

10m, 50%; 80%; 10 m/s; 10 m/s;
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8.314J.mol K ; 0.029kg.mol 273.16 K;

;

;

r a w

s w s

w

a w atm

a

H n S k k

m m m

m u u u

R T t

− −
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−

 

= = = = =

= −  = −  = − 

= −  = = =

= = = + 20 Ct  =

 (25) 

The investigation point is located at z=8 m. Figure 2 and Figure 3 illustrate the dissipation 

of excess pore-water pressure and excess pore-air pressure, respectively, and Figure 4 shows 

the profiles for the average degree of consolidation. All these values are obtained from the new-

derived analytical solution and the semi-analytical solution. As observed, an excellent 

agreement is obtained, which powerfully demonstrates the correctness of the proposed solution. 

5. Conclusion 

This study presents a new explicit analytical solution for the 1-D consolidation of 

unsaturated soil with arbitrary drainage boundary. The eigenfunction expansion method is 

adopted to obtain the analytical solution to calculate excess pore-water and pore-air pressures. 

The newly derived explicit solution is verified with the existing semi-analytical method in the 

literature 24, and an excellent agreement is obtained. Compared with the semi-analytical 

solution introduced in 24, the new-developed analytical solution is more simple and explicit so 

that this solution is relatively easier to be implemented into a computer program to carry out a 

preliminary assessment of 1-D consolidation of unsaturated soil. 
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Appendix A 

Following is the derivation of the solutions to ( )i

wf t and ( )i

af t . 

Applying Laplace transform to Eq.(12) and (13) yields: 
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Thus, the solutions for ( )i

wf t and ( )i

af t can be obtained using the inverse Laplace transform 
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a w

v v i

a w

a i a w i

w v a v v

a w

w
w

f
c c t

C C

C c f

C

c

t

t t

C C C

c f
f

 





+


−

−
+

−

+

=

−

+
 (A-5) 

 

( )
exp[ ]

2( 1)

2 (0) ( ) (0)
[ (0)cosh( ) sinh( )]

( )

2( 1) 2( 1)

i

a

i i

a w

i

a w

v v i

a w

w i w a i

a v w v v

a w

a
a

f
c c t

C C

C c f

C

c

t

t t

C C C

c f
f

 





+


−

−
+

−

+

=

−

+
 (A-6) 

Appendix B  

Following is the derivation of the orthogonality of eigenfunction. 

According to Eq.(10), we can find 
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2
2

2
( ) ( )i i

i

d
Z z Z z

dz
= −  (B-1) 

As for i j ,we can find 

 , 2( ) ( )i z i

i

d
Z z Z z

dz
= −  (B-2) 

 , 2( ) ( )j z j

j

d
Z z Z z

dz
= −  (B-3) 

where
, ( )i zZ z and 

, ( )j zZ z are the first order of ODEs of ( )iZ z and ( )jZ z with respect to depth, 

respectively. Rearranging Eqs.(B-2) and (B-3) yields 

 , 2( ) ( ) ( ) ( )j i z j i

i

d
Z z Z z Z z Z z

dz
= −  (B-4) 

 , 2( ) ( ) ( ) ( )i j z i j

j

d
Z z Z z Z z Z z

dz
= −  (B-5) 

Thus, 

 2 2 , ,

0 0
[ ( ) ( ) ( ) ( )] [ ( ) ( ) ( ) ( )]

H H
j i i j i j z j i z

i j

d d
Z z Z z Z z Z z dz Z z Z z Z z Z z dz

dz dz
 − = −  (B-6) 

On the right hand of Eq.(B-6), we find 

 
, , , ,

0
0 0

( ) [ ( )] [ ( ) ( )] ( ) ( )
H H

i j z i j z H j z i zZ z d Z z Z z Z z Z z Z z dz= −   (B-7) 

 
, , , ,

0
0 0

( ) [ ( )] [ ( ) ( )] ( ) ( )
H H

j i z j i z H j z i zZ z d Z z Z z Z z Z z Z z dz= −   (B-8) 

Substituting Eqs.(B-7) and (B-8) into Eq.(B-6) gives 

 
2 2

0

, , , ,

( ) ( ) ( )

[ ( ) ( ) ( ) ( )] [ (0) (0) (0) (0)]

H
i j

i j

i j z j i z i j z j i z

Z z Z z dz

Z H Z H Z H Z H Z Z Z Z

 −

= − − −

  (B-9) 

where 

 (0)
t

i iH
Z

R


=  (B-10) 

 (0)
t

jj
H

Z
R


=  (B-11) 

 
, (0)i z

iZ =  (B-12) 

 
, (0)j z

jZ =  (B-13) 
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 ( ) cos( ) sin( )
t

i i
i i

H
Z H H

R
H


 = +  (B-14) 

 ( ) cos( ) sin( )
t

jj

j j

H
Z H H

R
H


 = +  (B-15) 

 
2

, )sin( ) ( ) cos(i z i
i

t

i i

H
Z H

R
H H


  = − +  (B-16) 

 

2

, )sin( ) ( ) cos(
jj z

j

t

j j

H
Z H

R
H H


  = − +  (B-17) 

Thus, substituting Eqs.(B-10)-(B-17) into Eq.(B-9) results in 

 

2 2

0
( ) ( ) ( )

[ cos( ) sin( )][ ( ) cos( )]

[ cos( ) sin( )][ ( ) cos( )]

sin

sin

H
i j

i j

ji
j i i j j

j i
i j

t t

t t

j i i

Z z Z z dz

HH
H H H H

H H
H H

R

H

R

R
H

R

 


    

 
    

−

= + − +

− + − +



 (B-18) 

 On the other hand, it is noted that the eigenvalues, i and j ,are obtained from Eq.(11).  

 s[ ][ sin( ) cos( )] cos( ) in( )i i
i i i

b

t

i i

t

R

R H R

H H
H H H H

 
    − + = +  (B-19) 

 s[ ][ sin( ) cos( )] cos( ) in( )
j j

j j j
b

t

j j

t

R

R H R

H H
H H H H

 
    − + = +  (B-20) 

Substituting Eqs.(B-19) and (B-20) into Eq.(B-18) gives 

 

2 2

0

]

( ) ( ) ( )

[ cos( ) sin( )] cos( ) sin( )

[ cos( ) sin( )] cos[ ( ) s (

[ ]

in )

H
i j

i j

ji
i i j j

j i

b

j j i i

t t

b

t t

R

H R R

Z z Z z dz

HH
H H H

R

H

H H
H H H

R

H R
H

 


   

 
   

−

= + +

− + +



 (B-21) 

It can be seen that the value of the right hand of Eq.(B-21) is equal to zero. Since the values 

of i and j are different, we can obtain the orthogonal relationship as follow 

 
0

( ) ( ) 0 ( )
H

i jZ z Z z dz i j=   (B-22) 
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Fig.1. Geometry for analysis of 1-D consolidation of unsaturated soil 
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Fig.2. Verification profiles for the excess pore-water pressure: (a) Rt=Rb=1,5, and 50; 

160x139mm (600 x 600 DPI) 
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Fig.2. Verification profiles for the excess pore-water pressure: (b) Rb=0, Rt=1,5, and 50; 

161x138mm (600 x 600 DPI) 
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Fig.2. Verification profiles for the excess pore-water pressure:  (c) Rb=∞, Rt=1,5, and 50. 
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Fig.3. Verification profiles for the excess pore-air pressure:(a)Rt=Rb=1,5, and 50; 

158x135mm (600 x 600 DPI) 
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Fig.3. Verification profiles for the excess pore-air pressure:(b) Rb=0, Rt=1,5, and 50; 

159x136mm (600 x 600 DPI) 
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Fig.3. Verification profiles for the excess pore-air pressure:(c) Rb=∞, Rt=1,5, and 50. 
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Fig.4. Verification profiles for the average degree of consolidation:(a) Rt=Rb=1,5, and 50; 

158x136mm (600 x 600 DPI) 
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Fig.4. Verification profiles for the average degree of consolidation:(b) Rb=0, Rt=1,5, and 50; 

150x136mm (600 x 600 DPI) 
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Fig.4. Verification profiles for the average degree of consolidation:(c) Rb=∞, Rt=1,5, and 50. 

160x136mm (600 x 600 DPI) 
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