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Abstract 1 

Purpose: This study aims to develop a novel time-resolved magnetic resonance 2 

fingerprinting (TR-MRF) technique for respiratory motion imaging applications. 3 

Methods and Materials: The TR-MRF technique consists of repeated MRF 4 

acquisitions using an unbalanced steady-state free precession sequence with spiral-in-5 

spiral-out trajectory. TR-MRF was first tested via computer simulation using a 4D 6 

extended cardiac-torso (XCAT) phantom for both regular and irregular breathing 7 

profiles, and was tested in three healthy volunteers. Parametric MRF maps at different 8 

respiratory phases were subsequently estimated using our TR-MRF sorting and 9 

reconstruction techniques. The resulting TR-MRF maps were evaluated using a set of 10 

metrices related to radiotherapy applications, including absolute difference in motion 11 

amplitude, error in the amplitude of diaphragm motion (ADM), tumor volume error 12 

(TVE), signal-to-noise ratio (SNR), and tumor contrast. 13 

Results: TR-MRF maps with regular and irregular breathing were successfully 14 

generated in XCAT phantom. Numerical simulations showed that the TVE were 1.6±2.7% 15 

and 1.3±2.2%, the average absolute differences in tumor motion amplitude were 16 

0.3±0.7 mm and 0.3±0.6 mm ,and the ADM were 4.1±0.9% and 3.5±0.9% for irregular 17 

and regular breathing respectively. The SNR of the T1 and T2 maps of the liver and the 18 

tumor were generally higher for regular breathing compared to irregular breathing, 19 

whereas tumor-to-liver contrast is similar between the two breathing patterns. The 20 

proposed technique was successfully implemented on the healthy volunteers. 21 
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Conclusion: We have successfully demonstrated in both digital phantom and health 22 

subjects a novel TR-MRF technique capable of imaging respiratory motions with 23 

simultaneous quantification of MR multi-parametric maps.   24 
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1. Introduction 25 

Tumor motion imaging is of vital importance in managing mobile cancers in 26 

radiation therapy. Inadequate motion management could lead to treatment margins that 27 

over-irradiate healthy tissues or under-irradiate the target. To address this issue, four-28 

dimensional (4D) imaging techniques1,2 have been developed to quantify respiratory 29 

motions, which are quasi-periodic and patient specific.3 Typically, 4D techniques entail 30 

two (2D) or three-dimensional (3D) imaging of anatomy over several respiratory cycles, 31 

and concurrent record of either internal or external respiration signal or surrogate.4-6 32 

MRI is an ideal alternative to most widely used 4D computed tomography (4D-CT) due 33 

to its exquisite soft-tissue contrast and zero ionizing radiation.2 There are two broad 34 

categories of MRI methods for motion tracking: real-time acquisition7 and retrospective 35 

reconstruction.8,9 The former has limited spatial resolutions with current MRI capacity 36 

whilst the latter can be confounded by irregular breathing.2 As retrospective 37 

reconstruction has significantly lower requirements on scanner hardware and 38 

computing resources, it has largely been the method of choice.10  39 

The keys to the reconstruction of time-resolved respiratory motions using 40 

retrospective MRI methods relate to the temporal resolution of MRI acquisition and 41 

how the raw MRI data from different respiratory phases and cycles are sorted and 42 

combined. An optimal motion tracking technique should thus have good spatiotemporal 43 

resolution and a robust algorithm for retrospective reconstruction. We hypothesize that 44 

the recently proposed magnetic resonance fingerprinting (MRF) technique could 45 

potentially fill this gap and provide different tissue properties maps from one single 46 
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scan.11 It is a fast pseudorandomized dynamic acquisition that permits reliable 47 

quantification of multiple magnetic resonance (MR) parameters, such as T1, T2, and 48 

proton-density (PD).11-15 MRF is based on the premise that the MR signal evolution or 49 

fingerprint of distinct tissues will be different when acquisition parameters, such as flip 50 

angle and repetition time (TR), are pseudorandomized.11 Recent studies have 51 

demonstrated that other biological parameters, including perfusion,16 diffusion17 and 52 

T2
* 12 can also be estimated.  53 

Considering that MRF permits high spatial and temporal resolutions as well as 54 

quantitative imaging, we hypothesize that MRF holds great promises in overcoming the 55 

current deficiencies of existing 4D-MRI: inconsistent tumor contrast, inadequate 56 

spatiotemporal resolutions and the lack of quantification of tumor response. It is 57 

therefore highly desirable to develop 4D-MRF for radiotherapy motion management 58 

applications. Nevertheless, MRF is fundamentally different from conventional MRI 59 

sequences in data acquisition and image reconstruction, making it intrinsically 60 

challenging for motion imaging. In this study, we aim to resolve a key technical problem 61 

in the development of 4D-MRF by developing a time-resolved MRF technique (TR-62 

MRF), or a ‘cine-mode’18 MRF, capable of imaging respiratory motions with 63 

simultaneous quantification of MR multi-parametric maps. Achieving TR-MRF will be 64 

a key step forward in developing 4D-MRF which has great potential to significantly 65 

improve the accuracy and work efficiency of treatment for abdominal cancers, as 66 

compared to CT and conventional MRI. In this study, we evaluated the fidelity and 67 

reliability of our proposed TR-MRF in the estimation of regular and irregular 68 
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respiratory motions in digital phantom and healthy volunteers. 69 

2. Material and methods 70 

2.1 Digital human phantom 71 

Extended cardiac-torso (XCAT) digital phantom,9,10,19,20 a highly detailed whole-72 

body numerical dynamic phantom for medical imaging research, was used in this study 73 

for the simulation of regular and irregular breathing motions. The T1 and T2 of each 74 

organ in the XCAT phantom were set according to ref21-23 and are shown in Table 1. 75 

The maximum diaphragm motion was set to 2.0 cm and 1.2 cm in the cranial-caudal 76 

(CC) and anterior-posterior (AP) directions, respectively. A tumor with diameter of 3.0 77 

cm was added in the center of liver. Voxel size of the digital phantom is 1.67 mm 78 

isotropic. Respiratory period of 4.8 s and frame rate of 12 ms were set for the simulation 79 

of regular breathing pattern. For irregular breathing pattern, the respiratory period 80 

varies from 3 s to 5 s and the maximum diaphragm motion ranges from 1.0 cm to 2.0 81 

cm.  82 

 83 

2.2 Simulation of TR-MRF acquisition 84 

MRF acquisition with an inversion-recovery unbalanced steady-state free 85 

precession sequence24 was simulated using the extended phase graph algorithm.25 It 86 

was assumed that the tissue was static within each time points in the creation of 87 

dictionary and in the simulation. Regular and irregular breathing, as shown in Figure 2 88 

(E) and (F), during MRF acquisition were simulated. A variable density spiral-in-spiral-89 
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out readout trajectory with acquisition window of 8.4 ms and acceleration factor = 58.4 90 

was used. The trajectory was rotated by a golden angle of 222.5o after each dynamic. 91 

The acquisition matrix = 256 x 256, image resolution = 1.17 x 1.17 mm2, slice thickness 92 

= 5 mm. The pseudorandomized FA varied from 0 to 60 degrees and TR varied from 12 93 

– 14.25 ms, number of time points (𝑀) = 1000, the acquisition time of a single slice for 94 

a single MRF block is 12 -14.25 s, number of acquisitions (𝑁) = 10 (acquired after 95 

every 1000 time points), and 5 seconds were added between the end of one acquisition 96 

and the beginning of the next to allow for signal recovery. Each MRF block of 𝑀 time 97 

points was triggered by different respiratory phases. The MRF images were simulated 98 

for 15 slices in the sagittal direction covering the whole tumor and 1 slice in axial and 99 

coronal directions to show efficacy. 100 

2.3 Retrospective MRF reconstruction 101 

The image reconstructed from k-space acquired at a given TR of a MRF block is 102 

denoted as dubbed MRF snapshots from hereon. MRF snapshots not only differ in 103 

signal intensity but also in spatial content in the presence of motion. In other words, 104 

they are no longer the snapshots of the organs in the same location but rather snapshots 105 

of the organs at different respiratory phases. As such, the conventional dictionary 106 

matching algorithm11 will no longer work and will produce erroneous parametric maps.  107 

Considering that the respiratory phases of the digital phantom is known, we can 108 

retrospectively identify the respiratory phase to which each MRF snapshot corresponds. 109 

Upon defining the number of bins in a respiratory cycle, the MRF snapshots that fall 110 

into a given respiratory bin can be determined. As a result, different groups of MRF 111 
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snapshots will be used for the estimation of the MR parametric maps at different 112 

respiratory bins. Due to the fact that abdominal organs are constantly moving during 113 

MRF acquisition, the number of MRF snapshots suitable for the estimation of the MR 114 

parametric maps for a given respiratory bin resolution will be substantially smaller than 115 

the number of acquired time points per MRF acquisition block. Nine additional MRF 116 

blocks were thus acquired to ensure that sufficient number of snapshots that fall within 117 

a given respiratory bin would be acquired. To obtain the MR parametric maps for all 118 

respiratory bins, dictionary matching will be performed using the MRF snapshots that 119 

fall within the corresponding respiratory bin. For both regular and irregular breathing, 120 

all MRF data was retrospectively sorted into 10 respiratory bins using the phase sorting 121 

method. The overall workflow of our proposed retrospective reconstruction is 122 

illustrated in Figure 1.  123 

The fidelity of dictionary matching depends not only on the number of TR’s 124 

acquired in conventional MRF,24 but also on the number of MRF snapshots that fall 125 

within a given respiratory bin for TR-MRF. In other words, there exists a trade-off 126 

between dictionary matching fidelity and respiratory bin resolution (i.e. higher bin 127 

resolution translates to lower dictionary matching fidelity for patients with regular 128 

breathing). For patient with irregular breathing, the number of MRF time points 129 

available for a given respiratory bin decreases as compared to patient with regular 130 

breathing. 131 

2.4 Analysis of the fidelity of dictionary matching 132 

The fidelity of the dynamic MR parametric maps reconstructed from our proposed 133 
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TR-MRF method was evaluated using their absolute values, signal-to-noise-ratio 134 

(SNR), tumor contrast, absolute difference in motion amplitude, error in the amplitude 135 

of diaphragm motion (ADM) and tumor volume error (TVE). The ADM is defined as:  136 

ADM =  |
MotionTR MRF−Motion4D XCAT

Motion4D XCAT
| × 100%, 137 

where MotionTR-MRF and Motion4D-XCAT are the maximum diaphragm motion amplitude 138 

between end of inhalation (EOI) and end of exhalation (EOE) measured from MR 139 

parametric maps and the digital phantom, respectively. The TVE is defined as:  140 

TVE =  |
VolumeTR MRF − Volume4D XCAT

Volume4D XCAT
| × 100%, 141 

where VolumeMRMRF and Volume4DXCAT are the contoured tumor volume measured from 142 

MR parametric maps and the digital phantom, respectively. The tumor volumes were 143 

contoured from MR parametric maps and digital phantom over 10 respiratory phases. 144 

The absolute T1 and T2 values, DMAE and TVE measured from the digital phantom are 145 

considered as gold standard. All measurements were conducted in all 10 respiratory 146 

phases across the 15 sagittal slices and were expressed as mean ± standard deviation.  147 

2.5 Volunteer study 148 

Three healthy volunteers were recruited to test the feasibility of our proposed 149 

method. MRI was performed using 3.0 Tesla human MRI scanner (Achieva TX, Philips 150 

Healthcare) with 8-channel torso coil for signal reception. Acquisition scheme and all 151 

imaging parameters were the same as those described in Section 2.2. The acquisition 152 

time of a single slice for a single MRF block and entire TR-MRF acquisition were 13.2 153 

seconds and 3.0 minutes, respectively. Multi-slice imaging was performed using 154 

sequential scanning of TR-MRF in different slice locations. The number of slices 155 
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acquired were 1 to 3 slices in the sagittal plane for different volunteers, corresponding 156 

to total scan time of 3.0 to 9.1 minutes. Respiratory signals were recorded using 157 

respiratory bellows for retrospective reconstruction. 158 

 159 

3. Results 160 

Time-resolved MRF was successfully simulated and tested on volunteer data. The 161 

reconstruction time for one slice is 2.5 minutes. The T1 and T2 maps of 10 respiratory 162 

phases in the presence of irregular (A and C) and regular (B and D) breathing are shown 163 

in Figure 2. The T1 map of 10 respiratory phases in the presence of irregular breathing 164 

are shown in Figure 3. Those obtained from our proposed TR-MRF method across three 165 

planes are shown in Figures 3A to 3C, and those from the gold standard along the 166 

sagittal plane in Figure 3D. The measured motion trajectories in CC and AP directions 167 

for both irregular breathing (G) and regular breathing (H) are shown in Figure 2. The 168 

average absolute difference in motion amplitude are 0.3 ± 0.7 mm and 0.3 ± 0.6 mm 169 

for irregular and regular breathing, respectively. The ADM are 4.1% ± 0.9% and 3.5% 170 

± 0.9% for irregular and regular breathing, respectively. The TVE are 1.8% ± 2.9% and 171 

1.3% ± 2.2% for irregular and regular breathing, respectively. 172 

The average percentage errors of T1 and T2, SNR and tumor contrast results in the 173 

presence of irregular and regular breathing are shown in Table 2. The MRF acquisition 174 

on XCAT without motion was used as baseline and the results of image quality 175 

assessment are also shown in Table 2. 176 

T1, T2, and PD maps of a representative volunteer are shown in Figure 4. The 177 



 

11 

 

average and standard deviation of the breathing cycle was 3.7 ± 0.9 s. T1-weighted, PD-178 

weighted and T2-weighted images estimated from MR parametric maps are shown in 179 

Figure 5. The average T1 and T2 values of liver were 758.9 ± 35.0 ms and 51.0 ± 9.7 180 

ms, respectively. The average T1 and T2 values of renal cortex were 1267.9 ± 67.9 ms 181 

and 63.0 ± 7.4 ms, respectively. The average SNR of the T1 and T2 maps for liver are 182 

9.0 ± 1.7 and 3.0 ± 0.7, respectively.  183 

4. Discussion 184 

Imaging has recently led to two paradigm shifts in radiotherapy in a hope to improve 185 

treatment efficacy, namely voxelization paradigm - the use of a nonuniform dose 186 

distribution that depends on the intratumural heterogeneity, and adaptation paradigm – 187 

detection and quantification of tissue changes during treatment with imaging.1 188 

Altogether, the diagnostic value of and the accuracy in the estimation of tumor motion 189 

using imaging are pivotal to the reduction of uncertainties in and to the efficacy of 190 

radiotherapy. Current 4D MRI techniques can only provide one type of weighted 191 

images for one scan, typically T1-weighted or T2-weighted10,26. However, different 192 

types of tumors may be better visualized using different weighted images. It is thus 193 

imperative that a better alternative to existing MRI methods for the estimation of motion 194 

be developed. Unlike conventional MRI, MRF allows for the simultaneous 195 

quantification of multiple tissue properties (T1, T2, proton-density, etc.) in a single, 196 

time-efficient acquisition. MRF has great potential to significantly improve the 197 

accuracy and work efficiency of treatment for abdominal cancers, as compared to CT 198 
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and conventional MRI. This gap may potentially be addressed by the 4D-MRF 199 

technique. In this study, we have successfully demonstrated a novel TR-MRF 200 

techniques by developing novel sorting and reconstruction methods uniquely tailored 201 

for MRF. The TR-MRF technique can image the respiratory motion and simultaneously 202 

quantify multiple MR parameters, a critical step towards the development of 4D-MRF. 203 

Overall, the respiratory motions obtained from our proposed TR-MRF method in 204 

the presence of regular breathing have better image quality than irregular breathing. 205 

The primary reason may pertain to the higher number of MRF snapshots available for 206 

the retrospective reconstruction of a given respiratory phase in the presence of regular 207 

breathing, whilst irregular breathing rendered fewer number of MRF snapshots suitable 208 

for dictionary matching of a given respiratory bin. Nonetheless, both cases showed 209 

comparable motion measurement as compared to prior studies6,10,27, indicating the high 210 

fidelity of our proposed TR-MRF method. Compared to the non-moving baseline MRF 211 

images, more respiratory phases (less intra-phase motion) and greater oversampling 212 

will be helpful to improve T1 and T2 accuracy. However, this will require longer 213 

scanning time to obtain enough data. Further investigation is warranted to improve the 214 

T1 and T2 accuracy. From the volunteer study, the liver-lung boundary can be clearly 215 

identified in the acquired MRF maps. The vessels in the liver and the internal structure 216 

of the kidney are also clearly demonstrated in the maps. The measured T1 and T2 values 217 

for liver and renal cortex in volunteers are in good agreement comparing to the value 218 

reported before, indicating the fidelity of our proposed technique. The noise in the lung 219 

compromised lung detail and the T2 maps show inferior quality than T1 maps. Although 220 
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most of the noise is removed by post-processing, there is still some in the lung and the 221 

liver-lung boundary. The retrospective estimation of contrast-weighted images from 222 

MR parametric maps (e.g. Figure 5) could be potentially used to differentiate various 223 

organs and target of interest. It is noteworthy that 10 acquisitions of MRF block were 224 

performed in the current implementation of TR-MRF under the assumption that there 225 

would be adequate number of MRF snapshots for retrospective dictionary matching for 226 

regular breathing. We will investigate in future studies whether the fidelity of 227 

retrospective dictionary matching for the case of irregular breathing could be improved 228 

by acquiring more MRF blocks. 229 

Further studies are warranted to develop 4D-MRF technique by applying our 230 

proposed TR-MRF method either by multi-slice imaging technique or by volumetric 231 

MRF technique. Another aspect of this technique to be improved is to reduce the image 232 

acquisition time of TR-MRF. The original MRF method11, as implemented in this study, 233 

is a single-slice acquisition technique. The acquisition time of our current TR-MRF 234 

implementation for the estimation of the MR parametric maps for 10 respiratory phases 235 

of a single slice is 3.0 minutes. For multi-slice imaging, the scan time will increase with 236 

the number of imaging slices, rendering TR-MRF significantly longer than 237 

conventional 4D-MRI imaging, which is typically under 10 minutes.28,29 To accelerate 238 

multi-slice imaging, multiband technology30,31 can be used to increase the acquisition 239 

efficiency of TR-MRF by at least a factor of three.32 Another strategy is to reduce the 240 

number of MRF time points to further improve the acquisition efficiency (by ~60%) at 241 

the slight cost of reducing the fidelity of dictionary matching (e.g. up to 17% error in 242 
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T2, data not shown). Alternatively, volumetric imaging together with parallel imaging 243 

and sliding window reconstruction can also be adopted33-35 so that a single acquisition 244 

of MRF block with image resolution of 1 x 1 x 4 mm3 for a coverage of 240 x 240 x 245 

132 mm3 can be completed in approximately 40 seconds. Furthermore, machine 246 

learning has been recently applied to the MRF process to accelerate acquisition and 247 

reconstruction.36 It can achieve faster and more accurate reconstruction with less MRF 248 

data efficiency which is of vital importance in TR-MRF technique.  249 

5. Conclusion 250 

   We have successfully demonstrated in both digital phantom and health subjects a 251 

novel TR-MRF technique capable of imaging respiratory motions with simultaneous 252 

quantification of MR multi-parametric maps.  253 
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Table 1. T1 and T2 relaxation times of different organs (ref21-23) used in the XCAT 

simulation. 

Organs T1 (ms) T2 (ms) 

Liver 750 34 

Renal medulla 1600 81 

Renal cortex 1200 76 

Spleen 1300 61 

Muscle 1050 39 

Fat 250 68 

Tumor 1700 42 
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Table 2. Image quality assessment of XCAT simulation in T1 and T2 maps with 

irregular and regular breathing. 

  Irregular breathing Regular breathing Baseline 

T1-map 

Liver T1 SNR 7.7 ± 0.7 9.9 ± 0.3 10.3 

Tumor T1 SNR 6.9 ± 1.9 10.4 ± 0.5 10.7 

Tumor T1 Contrast 1.7 ± 0.2 1.7 ± 0.1 1.7 

Liver T1 errors 13.5 ± 7.3 % 10.3 ± 3.3 % 7.6% 

Tumor T1 errors 37.1 ± 20.7 % 35.5 ± 18.2 % 17.7 % 

T2-map 

Liver T2 SNR 4.8 ± 0.8 6.5 ± 0.2 6.6 

Tumor T2 SNR 2.7 ± 1.4 3.7 ± 2.1 4.5 

Tumor T2 Contrast 0.3 ± 0.1 0.3 ± 0.1 0.3 

Liver T2 errors 8.6 ± 3.6 % 7.0 ± 2.8 % 6.6 % 

Tumor T2 errors 11.3 ± 18.1 % 10.5 ± 15.4 % 4.7 % 
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Figure 1: Illustration of (A) breathing pattern and phase sorting method, and (B) MRF 

acquisition and reconstruction scheme. Given a breathing pattern, the MRF snapshots 

that fall into a given respiratory bin can be determined. As such, the estimation of the 

MR parametric maps for different respiratory bins (different colored bins in A) are 

obtained from different groups of MRF snapshot.  
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Figure 2: The T1 (A, B) and T2 (C, D) maps of the 10 respiratory phases of 4D-MRF 

reconstructed from XCAT in the presence of regular (A and C) and irregular (B and D) 

breathing, respectively. Dashed white lines are added to facilitate the visualization of 

the respiratory motion. Illustration of the regular breathing profile (E) and the irregular 

breathing profile (F) used in XCAT simulation, as well as the motion trajectories of the 

pseudo tumor in the CC and AP directions for regular (G) and irregular (H) breathing 

as measured from T1 maps of the 10-phase 4D-MRF. The circles denote measurements 

from 4D-MRF and the rectangles from original 4D-XCAT phantom images as 

references. 
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Figure 3: T1 maps of the 10-phase 4D-MRF reconstructed from the XCAT simulation 

study using irregular breathing in the axial (A), coronal (B), and sagittal (C) views. The 

10-phase XCAT T1 maps in the sagittal view (D) were used as references. Dashed white 

lines are added to facilitate the visualization of the respiratory motion. 

 

Figure 4: T1 (A), T2 (B), and PD (C) maps of 10-phase 4D-MRF images of a 

representative healthy volunteer. Dashed white lines are added to facilitate the 

visualization of the respiratory motion. 
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Figure 5: The generated pseudo-contrast 4D MRI images using MRF parameter maps, 

from T1-weighted (top) to PD-weighted (middle) and to T2-weighted (bottom) images. 




