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The potential benefits of priming intermittent theta burst stimulation (iTBS) with

continuous theta burst stimulation (cTBS) have not been examined in regard to

sensorimotor oscillatory activities recorded in electroencephalography (EEG). The

objective of this study was to investigate the modulatory effect of priming iTBS (cTBS

followed by iTBS) delivered to the motor cortex on movement-related and mirror

visual feedback (MVF)-induced sensorimotor event-related desynchronization (ERD),

compared with iTBS alone, on healthy adults. Twenty participants were randomly

allocated into Group 1: priming iTBS—cTBS followed by iTBS, and Group 2: non-priming

iTBS—sham cTBS followed by iTBS. The stimulation was delivered to the right primary

motor cortex daily for 4 consecutive days. EEGwasmeasured before and after 4 sessions

of stimulation. Movement-related ERD was evaluated during left-index finger tapping and

MVF-induced sensorimotor ERD was evaluated by comparing the difference between

right-index finger tapping with and without MVF. After stimulation, both protocols

increased movement-related ERD and MVF-induced sensorimotor ERD in high mu and

low beta bands, indicated by significant time effects. A significant interaction effect

favoring Group 1 in enhancing movement-related ERD was observed in the high mu

band [F (1,18) = 4.47, p = 0.049], compared with Group 2. Our experiment suggests that

among healthy adults priming iTBS with cTBS delivered to the motor cortex yields similar

effects with iTBS alone on enhancing ERD induced by MVF-based observation, while

movement-related ERD was more enhanced in the priming iTBS condition, specifically

in the high mu band.

Keywords: theta burst stimulation, event-related desynchronization, metaplasticity, motor cortex, mirror visual

feedback, occupational therapy

INTRODUCTION

Theta burst stimulation (TBS) is an accelerated form of repetitive transcranial magnetic stimulation
(rTMS), which has been extensively employed in human studies after the first human experiment
(Huang and Rothwell, 2004). Non-invasive brain stimulation, including rTMS, is getting common
to be used an adjunct with conventional occupational therapy, particularly in hemiparetic arm
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FIGURE 5 | Topographical distribution of movement-related high mu ERD at baseline and post-stimulation. A significant interaction effect favoring Group 1 was

observed, in contrast to Group 2.

However, one experiment showed that a priming cTBS session at
a lower intensity (AMT = 70%) followed by a conditioning iTBS
session at a higher intensity (AMT = 80%) could also induce the
metaplastic effects (Murakami et al., 2012). The optimal selection
of the parameters in the priming protocol is still unknown which
needs to be further investigated.

LIMITATIONS

Our experiment has some limitations. First, the sample size
of this study was small, and replication of a larger sample is
warranted. However, as an exploratory study, there is no similar
existing study from which to calculate an appropriate sample
size. We followed previous ERD research and simply used an
empirically estimated sample size of 10 cases in each group
(Hasegawa et al., 2017). Second, we did not include behavioral
outcomes for evaluation in this study. According to a previous
study conducted with healthy adults, the neurophysiological
effects of iTBS are less likely to be generalized into real behavioral
changes in participants with intact motor functions (Zhang and
Fong, 2019). Further studies may include a kinematic measure
of index finger movements or hand fine motor tasks, and
explore the potential behavioral correlates of sensorimotor ERD

in healthy adults. It would be more meaningful to explore the
behavioral outcomes altered by different stimulation protocols
in participants with motor deficits—for example, patients with
stroke. Thirdly, only two groups (priming iTBS vs. non-priming
iTBS) were employed in the present study, since our focus was
to find potential differential effects of these two groups. Without
a no iTBS control, we cannot rule out that the significant time
effects might be attributed to spontaneous fluctuations in ERD
across different sessions, although the test-retest reliability of
sensorimotor ERD has been proven in a previous experiment
(Espenhahn et al., 2017). However, it was still interesting to
see an interaction effect in favor of priming iTBS in high
mu band. In addition, the way of applying sham cTBS in the
current experiment could be improved. Although there was
not significant between-group difference in the treatment belief,
sham TBS at a reduced intensity of 20% RMT was still associated
with a higher risk of unblinding of subjects. A specialized sham
TMS system which could mimic auditory and somatosensory
perceptions would be preferable. In addition, we could not
fully rule out the possibility that priming stimulation at a very
weak intensity might still induce metaplasticity, by changing
the state of readiness of synapses to generate LTP-like effects.
Lastly, we investigated different frequency bands separately, since
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TABLE 2 | Difference in mirror visual feedback-induced event-related

desynchronization between groups at baseline and post-stimulation.

Group 1 Group 2 Results¶

Baseline Post Baseline Post

Mu-1 MVF 0.31

(0.35)

0.44

(0.75)

0.10

(0.90)

0.56

(0.84)

(a) F = 0.99, p = 0.332

(b) F =1.80, p = 0.196

(c) F = 20.84, p < 0.001*

(d) F = 5.34 p = 0.474

(e) F = 2.14, p = 0.160

(f) F = 0.03, p = 0.863
DVF −0.05

(0.36)

−0.28

(0.79)

−0.50

(0.86)

−0.32

(0.53)

Mu-2 MVF 0.12

(0.51)

0.71

(0.92)

0.14

(1.28)

0.67

(1.13)

(a) F = 4.65, p = 0.045*

(b) F = 0.17, p = 0.898

(c) F = 16.12, p = 0.001*

(d) F = 0.64, p = 0.434

(e) F = 2.74, p = 0.115

(f) F = 0.16, p = 0.692
DVF −0.24

(0.46)

−0.19

(0.76)

−0.64

(0.89)

−0.44

(0.68)

Beta-1 MVF −0.11

(0.51)

0.53

(0.64)

0.03

(0.84)

0.45

(0.96)

(a) F =6.10, p = 0.024*

(b) F = 0.60, p = 0.450

(c) F = 11.72, p = 0.003*

(d) F = 0.25, p = 0.626

(e) F = 3.63, p = 0.073

(f) F = 0.00, p = 0.996
DVF −0.36

(0.43)

−0.10

(0.67)

−0.37

(0.74)

−0.32

(0.70)

Beta-2 MVF −0.11

(0.30)

0.10

(0.25)

0.16

(0.28)

0.08

(0.37)

(a) F = 2.55, p = 0.626

(b) F = 0.96, p = 0.340

(c) F = 3.28, p = 0.087

(d) F = 0.78, p = 0.639

(e) F = 0.40, p = 0.845

(f) F = 0.404, p = 0.533
DVF −0.11

(0.32)

−0.03

(0.45)

−0.07

(0.22)

−0.09

(0.47)

¶Repeated measures ANOVA; data are represented as mean (SD); *p < 0.05.

(a) Time effect; (b) Time by group interaction effect; (c) Condition effect; (d) Condition by

group interaction effect; (e) Time by condition interaction effect; (f) Time by condition by

group interaction effect.

the previous literature has suggested that functional differences
exist between them (Frenkel-Toledo et al., 2013). Thus, we
allowed multiple testing on each frequency band separately,
without applying a Bonferroni method for a more stringent
p-value. Together with our previous experiment (Zhang and
Fong, 2019) and other studies (Pfurtscheller and Lopes da Silva,
1999; Frenkel-Toledo et al., 2013; Bartur et al., 2015), further
investigations among healthy adults might focus on high mu and
low beta ERD.

CONCLUSIONS

Both priming iTBS and standard iTBS delivered to motor
cortex increases in relation to movement-related sensorimotor
activation in the hemisphere contralateral to the moving hand
and MVF-induced sensorimotor activation in the hemisphere
ipsilateral to the moving hand. Priming iTBS seems to be only

superior in inducing a shift of movement-related sensorimotor
activation toward the hemisphere contralateral to the moving
hand, as suggested by the increase in high mu ERD. Further
studies may investigate the durability of the modulatory effects at
follow-up, as well as the clinical application of the priming iTBS
protocol in patients with stroke.

EQUIPMENT

a. SymAmps2 amplifier and Curry 7, Compumedics Neuroscan,
Charlotte, NC, USA

b. MagPro X100 and MagOption rTMS stimulator with Coil
C-B60 Butterfly, Standard, MagVenture, Denmark

c. Localite TMS Navigator, Localite, Germany.
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