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Abstract

Background: Segment coordination variability (CV) is a movement pattern associated with running-related injuries. It can also be adversely

affected by a prolonged run. However, research on this topic is currently limited. The purpose of this study was to investigate the effects of a pro-

longed run on segment CV and vertical loading rates during a treadmill half marathon.

Methods: Fifteen healthy runners ran a half marathon on an instrumental treadmill in a biomechanical laboratory. Synchronized kinematic and

kinetic data were collected every 2 km (from 2 km until 20 km), and the data were processed by musculoskeletal modeling. Segment CVs were

computed from the angle-angle plots of selected pelvis-thigh, thigh-shank, and shank-rearfoot couplings using a modified vector coding tech-

nique. The loading rate of vertical ground reaction force was also calculated. A one-way MANOVA with repeated measures was performed on

each of the outcome variables to examine the main effect of running mileage.

Results: Significant effects of running mileage were found on segment CVs (p� 0.010) but not on loading rate (p = 0.881). Notably, during the

early stance phase, the CV of pelvis frontal vs. thigh frontal was significantly increased at 20 km compared with the CV at 8 km (g = 0.59,

p = 0.022). The CV of shank transverse vs. rearfoot frontal decreased from 2 km to 8 km (g = 0.30, p = 0.020) but then significantly increased at

both 18 km (g = 0.05, p < 0.001) and 20 km (g = 0.36, p < 0.001).

Conclusion: At the early stance, runners maintained stable CVs on the sagittal plane, which could explain the unchanged loading rate throughout

the half marathon. However, increased CVs on the frontal/transverse plane may be an early sign of fatigue and indicative of possible injury risk.

Further studies are necessary for conclusive statements in this regard.
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1. Introduction

Participation in marathon running events has increased world-

wide by more than 50% between 2009 and 2019.1 The total num-

ber of finishers competing at various marathon events reached

1.2 million in 2019.2 Additionally, more runners participated in
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half-marathon or 10-km races than in full-marathon races.3 Run-

ning offers many benefits because it is easily accessible and pro-

motes physical fitness while being preventive against chronic

diseases.4 However, a long-distance run such as a marathon may

not be suitable for everyone, particularly for those who have

chronic cardiovascular diseases and are vulnerable to joint prob-

lems.4 It is thought that every runner possesses his or her own

“preferred running pattern”5 that is energetically efficient and bet-

ter attenuates the impact to the lower limb. Nevertheless, main-

taining this movement pattern during an endurance run can be

challenging.6 Changes in movement patterns can occur as
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mileage accumulates, which compromises force absorption7,8

and, thus, relates to overuse injury.6,9

To date, discrete kinematic variables have been used pre-

dominantly to identify the attributes of movement patterns in

various sports.10 However, existing studies investigating

lower-limb joint or segment angulation in endurance runs have

reported inconsistent outcomes.11�16 Indeed, joint or segment

kinematics in isolation neither reflect effectively how the

underlying segments are coordinated to produce resultant

angular positions,17 nor do they provide a holistic view of the

role of running-induced exertion in altering movement pat-

terns.18 Prolonged physical activities have been found to dis-

rupt neuromuscular synergies and inter-segment coordination

spanning the joints, which is reflected by changes in the coor-

dination pattern and its stride-to-stride variances over time.19

Coordination patterns can measure the timing and magnitude

of relative motions between 2 body parts in any given task.20

Coordination variability (CV) quantifies the degrees of fluctua-

tion in the coordination pattern.20 In recent decades, the CV of

lower-limb couplings between adjacent joints or segments has

received increasing research interest due to its potential link to

injury. Although the underlying mechanism is not fully under-

stood, changes in CVs during physical activities have been seen

commonly in injured persons.21 Compared to healthy subjects,

individuals with symptoms or injury histories tended to deviate

from the “normal” CV range, which either increased18,22�25 or

decreased23,26�28 in coordinate couplings that were hypothesized

to be associated with the injured or painful regions. An example

of this is knee pain and ankle instability. The changed CVs were

considered to be an unstable compensatory movement strategy to

avoid load on sensitized or painful regions.29,30 However, for

increased CVs, another explanation is that the injured group may

have decreased neuromuscular control, leading to poorly regu-

lated movement coordination.21,31 We found this viewpoint

intriguing because reduced neuromuscular control was also seen

in healthy but fatigued people undergoing endurance runs,32�35

which likely exacerbated loading on the lower limb and increased

injury risks.8,36,37 Accordingly, it was anticipated that runners

would increase their lower-limb CVs across different time points

in an endurance run such as a half marathon. Previous relevant

research was scarce, so a study was needed to provide supporting

evidence for this hypothesis.

Hence, this study aimed to investigate the CVs of segment

couplings of the lower limb and ground reaction loading for

healthy runners at various distance checkpoints during a half

marathon. The segment couplings were analyzed using

angle-angle plots, and their coordination variabilities were quanti-

fied by a modified vector coding technique.38 As mentioned, it was

hypothesized that the CVs of the selected segment couplings and

the loading rates of the vertical ground reaction force would

increase as mileage accumulated during the half marathon.

2. Methods

2.1. Participants

A total of 15 recreational runners (13 males, 2 females,

age = 26.85 § 6.02 years, height = 1.75 § 0.08 m,
weight = 64.50 § 9.26 kg; mean § SD) were recruited from

the local community by using flyers and posters. Of the run-

ners, 13 were rearfoot strikers (foot strike index:

6.18%�25.74%), and the other 2 were midfoot strikers (foot

strike index: 39.88%�46.98%). The foot strike index was cal-

culated by averaging 10 strides from each runner’s running tri-

als at the 2-km checkpoint in the half marathon.39 The

participants had finished at least 3 marathon races annually for

more than 2 years and reported no lower-limb injuries at the

time of experiment entry based on consensual standards.40 The

sample-size calculation showed that 15 participants ensured a

statistical power of 0.8, assuming a medium effect size and a

significance level of 5%. The participants were fully informed

of the research procedure, and they signed a written consent

form before the study’s commencement. The study was

reviewed and approved by the Human Subjects Ethics Sub-

Committee of the Hong Kong Polytechnic University (refer-

ence #HSEARS20170327001).
2.2. Experiment protocol

All running trials were conducted on a treadmill instru-

mented with 2 force platforms (Bertec, Columbus, OH, USA).

The participants were given sufficient time to warm up and

acclimate themselves to the research protocol. They were

asked to use their own running shoes for the tests and to iden-

tify a comfortable running speed before the commencement of

data collection. Each runner ran on the treadmill at a starting

speed that they normally adopted for daily training. An investi-

gator operated the instrument on a remote computer and fine-

tuned the treadmill speed based on the runner’s feedback. The

procedure was repeated until runners found a comfortable

speed at which they could be confident about finishing a half

marathon on the treadmill.41

To facilitate motion capture, a total of 28 markers were

attached to the following anatomical landmarks:42 acromio-

clavicular joints, between clavicles, seventh cervical, poste-

rior/anterior iliac spines, lateral femoral epicondyles,

lateral malleoli, calcaneal tuberosity, the heads of the first

and fifth metatarsals, and the tip of the toe. Two additional

markers were placed on the upper and lower thirds of the

side of the thigh and shank segments, respectively. The

marker set ensured that at least 3 markers were assigned to

each segment of interest to enable 3-dimensional motion

tracking and were also accommodated to the OpenSim

environment. All markers were secured with skin-medical

tape (Kinesio Tex Classic; Kinesio, Albuquerque, NM,

USA) to avoid drop-off while running. Markers of the foot

region were placed directly on the shoes.43

Data collection began with a static calibration trial that was

later used to scale an established musculoskeletal model. The

participants then ran on the treadmill at their preferred speed

for a half marathon. Kinematic and kinetic data were recorded

for 10 s at every 2 km. To exclude the initial effects, data col-

lection was started at 2 km and ended at the 20-km checkpoint.

An optical-based motion-capture system with 10 cameras

(T20; Vicon Motion Systems, Oxford, UK) and 2 force plates
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were synchronized to measure the marker trajectories and

ground reaction forces at sampling rates of 250 Hz and

1600 Hz, respectively.

2.3. Musculoskeletal model

In the study, segment angles of interest were calculated

using an established musculoskeletal model.42 The model fea-

tured 12 rigid body segments, 23 degrees of freedom, and

92 musculotendinous units. It had a ball-and-socket joint at the

hip and permitted hinge joints at the knee, ankle, subtalar, and

metatarsophalangeal. The raw kinematic data were first low-

pass Butterworth filtered at 8 Hz44 and put into the OpenSim

platform (Version 4.0; OpenSim, National Centre for Simula-

tion in Rehabilitation Research, Stanford, CA, USA). The

generic model was scaled to the participant’s geometry using

the data from the static trials. Inverse kinematics45 were imple-

mented on the data of running trials to calculate the joint coor-

dinates that best reproduced the movement patterns. Segment

angles of the pelvis, thigh, shank, and rearfoot were expressed

as the orientation of the segmental reference frame (fixed to

the segment) with respect to the global coordinate system.38

The segmental reference frames were aligned with the global

frame at a neutral position, and their locations were defined

previously.46 Data for segment angles were normalized to the

standard standing position.47

2.4. Data reduction and outcome measures

For each running gait cycle, data for segment angles were

truncated to the stance phase and normalized to 101 time

points.48 Inter-segmental coordination was calculated from

angle-angle plots of the couplings of interest, with the proxi-

mal segment comprising the abscissa and the distal segment

comprising the ordinate.28 The coupling angle (gi) was defined
Fig. 1. Segment couplings of interest for investigating coordination variability: (A

sagittal vs. shank sagittal; (D) shank sagittal vs. rearfoot sagittal; (E) shank transvers
as the angle with respect to the right horizontal axis created by

the vector connecting the 2 consecutive time points (Eq. 1).47

A modified vector coding technique38 was employed in this

study:

gi ¼ tan�1
uD iþ1ð Þ� uDi

uP iþ1ð Þ� uPi

� �
:
180

p
Eq: ð1Þ

where i is the ith point of the stance phase. uD and uP represent

the angles of the distal and proximal segments. Segment cou-

plings of interest (Fig. 1) included pelvis frontal plane vs. thigh

frontal plane, pelvis sagittal plane vs. thigh sagittal plane, thigh

sagittal plane vs. shank sagittal plane, shank sagittal plane vs.

rearfoot sagittal plane, and shank transverse plane vs. rearfoot

frontal plane. These couplings were selected because they

were closely related to the lower-limb loading response

and injury development during running (e.g., the couplings of

pelvis frontal vs. thigh frontal for iliotibial band syndrome

and thigh transverse vs. rearfoot frontal for rearfoot

overpronation).13,49,50

Using circular statistics,51 coordination variability (CVi)

was calculated as the circular SD of the coupling angle

at the ith point of the stance phase across 10 strides of

data (Eqs. 2�5). This circular standard deviation was

averaged across the following stance phases: early (first

24% of the stance phase), mid (25%�50% of the stance

phase), and terminal stance (51%�100% of the stance

phase).52

xi ¼ 1

n

Xn
i¼1

cosg i Eq: ð2Þ

yi ¼
1

n

Xn
i¼1

singi Eq: ð3Þ
) pelvis frontal vs. thigh frontal; (B) pelvis sagittal vs. thigh sagittal; (C) thigh

e vs. rearfoot frontal.
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gi ¼ tan�1
yi
xi

� �
:
180

p
Eq: ð4Þ

CVi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xi
2 þ yi

2

q� �s
:
180

p
Eq: ð5Þ

where n is the nth stride of the data, and xi and yi are the hori-

zontal and vertical components, respectively, of the average

coupling angle at the ith point of the stance phase.

The ground reaction force of each stride was filtered using a

fourth-order 0-lag Butterworth filter with a lowpass frequency

of 50 Hz.39 The vertical average loading rate (VALR) and ver-

tical instantaneous loading rate (VILR) of initial contact were

computed using a previously established method.39 The 20%

and 80% points of the impact peak were identified in the curve

of the vertical ground reaction force. VALR refers to the slope

of the line through the 2 points, and VILR refers to the maxi-

mum slope of the lines connecting successive data points

within the same region.

In a previous study, both segment CVs and loading rates

were averaged across 10 strides at each distance checkpoint

(2�20 km, at 2-km intervals). A total of 10 strides comprises

the sufficient number of gait cycles needed to predict accu-

rately coordination variability.48 Computations of all outcome

variables were accomplished using a custom MATLAB code

(MathWorks, Natick, MA, USA).
2.5. Statistical analysis

The outcome variables were assessed for skewness prior to

statistical analysis. Appropriate log data transform was performed

if the skewness was found to be greater than§1.0.53 Loading rate

and segment CVs were compared among the distance check-

points using one-way multivariate analyses of variances (MANO-

VAs) repeated measures. The 2 measures of vertical loading rates

and all measures of CVs at the early, mid, and terminal stance

phases were 4 separate entries in the statistic model. Equality of

variances was tested for each comparison, and the p value was

adjusted by the Greenhouse-Geisser method when the equality

could not be assumed. Any differences following each MAN-

OVA were then established using univariate statistics. If a signifi-

cant main effect was found, a post hoc analysis was conducted

using the least significant difference method. The p value for mul-

tiple pairwise comparisons was corrected by the Benjamini-

Hochberg method,54 which controls for type I errors and false dis-

covery rates while having higher statistical power than other

options.55 Effect sizes were indicated by the Hedges’g for each

significant pair56 and interpreted using the Cohen convention57 of

negligible (<0.20), small (0.20�0.49), medium (0.50�0.79),

and large (�0.80) values. All statistics were generated using

SPSS software (Version 16.0; SPSS Inc., Chicago, IL, USA) at

an a level of p < 0.05.
3. Results

All participants successfully completed the half marathon

with an average running speed of 11.37 § 1.49 km/h. VALR
and VILR were similar among the distance checkpoints

(F = 0.623, p = 0.881), while segment CVs gradually increased

as mileage accumulated. MANOVA reported significant

between-subject effects in the early-stance phase (F = 1.776,

p = 0.002). Significant changes in CVs, as indicated by univari-

ate tests, were found in pelvis frontal vs. thigh frontal

(F = 2.653, p = 0.008), thigh sagittal vs. shank sagittal

(F = 2.915, p = 0.004), shank sagittal vs. rearfoot sagittal

(F = 2.556, p = 0.010), and shank transverse vs. rearfoot frontal

(F = 6.035, p < 0.001) planes at the early stance (Table 1).

After correction of significant level, post hoc tests (Fig. 2A)

showed that the CV of pelvis frontal vs. thigh frontal was

higher at 20 km than at 8 km (g = 0.59, p = 0.022). Compared

to the earlier distance checkpoint (2 km), the CV of shank

transverse vs. rearfoot frontal was significantly reduced at

8 km (g = 0.30, p = 0.020) but increased at 18 km (g = 0.05, p

< 0.001) and at 20 km (g = 0.36, p < 0.001). The CV of shank

transverse vs. rearfoot frontal was also higher at 20 km than at

4 km (g = 0.66, p = 0.025) and at 8 km (g = 0.63, p = 0.036)

(Fig. 2E).
4. Discussion

In this study, we quantified differences in segment CVs and

vertical loading rate according to mileages during a half mara-

thon to indicate coordination adaptation and its potential injury

risk. We examined multiple-plane coordination variabilities

with the hypothesis that, under a controlled condition at the

runner’s preferred speed, the segment CVs and loading rate

would increase as the half marathon progressed. In partial sup-

port of this hypothesis, the participants generally produced

higher segment CVs across all couplings of interest and stance

phases at the late stage of prolonged running, while VALR

and VILR did not change based on running mileages. CVs of

the pelvis frontal vs. femur frontal during the early stance were

significantly increased at the 20-km checkpoint, compared

to those at the 8-km checkpoint. CVs of shank transverse vs.

rearfoot frontal during early stance were higher at the 20-km

checkpoint than those at the 2-km, 4-km, and 8-km check-

points.

Runners in our study had decreases in their CVs

(2.75%�19.83%) at the early stages of the running trials (within

the first 8 km). Because the participants were asymptomatic at

the time of the experiments, we speculated that they adopted a

conservative coordination strategy to retain stability and

balance58,59 in response to a non-habitual running environ-

ment.44 We may have not assigned the participants sufficient

warm-up time; there were no measures or standards of complete

adaptations in the study. It is plausible that the reduced CVs

from the 2-km to 8-km checkpoints reflected the runners’ actual

coordination under a research condition, though this possibility

did not affect the trend in our results.

Following these early-stage adjustments, the runners

regained their CV levels across the couplings of interest and

produced larger CVs as they progressed to the end of the half

marathon. However, statistical significance existed only in the

early stance for coordination on the frontal/transverse planes.
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Our results were in line with those of other studies using discrete

kinematic data, which showed changed angulation between

adjacent lower-limb segments in marathon finishers.12,16 Never-

theless, many studies18,26,27 reporting segment coordination

found small to no effects of running time or mileage on CVs for

healthy runners. Maclean et al.26 even reported slightly reduced

CVs in a healthy control group during a 30-min run. It is impor-

tant to note that the participants in these studies finished an

apparently shorter distance (approximately 4�5 km) than those

in the present study (more than 21 km). Limited running dis-

tance may not expose runners to adequate fatigue effects that

would trigger detectable changes in coordination patterns for

experienced marathoners.60

During the early-stance phase of running gait, segment

coordination on the sagittal plane is the major component of

the lower-limb kinematic chain for loading response.61 Fol-

lowing the heel strike, adjacent segments of the lower limb

usually rotate in opposite directions62,63 to yield negative work

for cushioning the landing. An increased CV is thought to indi-

cate changes in this coordinative state and affect impact atten-

uation.28 Our participants did not produce significant

alterations in CVs on the sagittal plane during the half mara-

thon; this corresponded with the unchanged vertical loading

rate. CVs on the frontal/transverse plane also aid in force

absorption at the early stance, though its increments in our

study seemed to have limited effects on the loading results.

Segment coordination on the sagittal plane is regulated by

powerful muscle groups, such as the gluteus, quadriceps, and

calf muscles.64 In contrast, muscles driving coordination on

the frontal/transverse planes are smaller in volume64 and are

more prone to exertion when resisting external loading. This

subsequently interrupts neuromuscular recruitment in the

lower limb and introduces variances in coordination patterns.

Based on our results, we speculate that the increased frontal/

transverse-plane CVs may be the precursor sign of fatigue.

The loss of coordination stability could extend to the sagittal

plane if the participants were given more running time. Run-

ners undertaking a full marathon or longer run may produce

more outcomes that can verify this conjecture.

Although largely speculative, it appears that there is a

“normal” range of segment CV in healthy individuals,21 which

leads to optimal load distribution within the lower limb.65

Going beyond this range at early stance could not only cause

the ground force to be applied in extreme magnitude21 but also

could poorly engage the soft tissues.44 Increased CVs on the

frontal/transverse plane may not be problematic because run-

ning is not heavily reliant on lateral/spinning coordination sta-

bility. However, if increased CVs on the sagittal plane occur

as anticipated, they would induce unaccustomed strains on the

internal structures, such as the meniscus and anterior cruciate

ligament,21 and exacerbate the injury risk.

Running involves a linear and cyclic movement that favors

a stable coordination pattern,21,44,66 which, in turn, challenges

runners’ muscular endurance. Training programs for endur-

ance runners should focus on improving the sustainability of

their neuromuscular control over a “normal” level of segment

CVs. Running-specific strengthening programs are



Fig. 2. Changes in coordination variabilities of interest (early stance phase) over the course of the half marathon: (A) pelvis frontal vs. thigh frontal; (B) pelvis sag-

ittal vs. thigh sagittal; (C) thigh sagittal vs. shank sagittal; (D) shank sagittal vs. rearfoot sagittal; (E) shank transverse vs. rearfoot frontal. * p< 0.05, ** p< 0.01 in

post hoc pairwise comparison. Scale of the y-coordinate: 1 unit = 0.5˚.
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increasingly used to supplement regular running regimens for

an injury-free running career.67 In light of the results of our

study, this training strategy could be particularly helpful for

the hip and ankle joints, which possess more mobility on the

frontal/transverse plane.68 Although a longitudinal study is

needed in the future to understand how interventions in train-

ing affect the running coordination and injury profile, coaches

and sports professionals could use the information given in

our study to develop optimal training regimes for individual

runners.

Our study had a few limitations. First, the data of the run-

ning trials were collected on a treadmill, and the calculated

CVs could differ from those of over-ground running.69 We

considered this limitation negligible because changes in the

variables were attributed mainly to increasing running mile-

ages on the same baseline condition. Furthermore, because the

running speed was controlled in our research protocol, it could
have influenced the coordination profile.70 Runners are known

to change their running speeds at various stages of an actual

marathon or half marathon race.71,72 It is unclear how the vary-

ing spacing strategy affected the runners’ coordination pat-

terns; this warrants further investigation. Future studies should

apply segmental inertia sensors instead of a laboratory-based

motion-capture system to assess running movements across

different mileages in actual half marathon races. Second, the

effect sizes reported in our study were medium to low and

may have resulted primarily from the large individual varian-

ces in running coordination. This issue may be better

addressed by a larger scale study targeting a runner sub-group.

Our study reported CV values that generally agreed with those

in the literature.18,26,44 However, CV-quantifying methods

could be slightly modified from time to time to make the out-

comes less comparable among various studies. Third, we

tended to link our CV results with running-related injuries.
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However, it is unknown whether the increased CVs reached a

pathological threshold.65 Given the cross-sectional design of

our study, it was impossible to determine the injury risk using

the current research protocol.
5. Conclusion

Runners who finished a half marathon showed increased

segment CV of the lower limb. These changes appeared to

have greater impacts on the pelvis-thigh and shank-rearfoot

couplings during the early stance phase. Vertical loading rates

to the lower limb were not affected by running mileages. The

results from our study suggest that, at the early stance, the run-

ners’ coordination patterns were stable on the sagittal plane

but more variable on the frontal/transverse plane as the half

marathon progressed, which may be related to fatigue onset.

Additional studies should be carried out in this regard before

our conclusions can be confirmed.
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