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Abstract This paper studies the optimal dividend problem with capital injec-
tion under the constraint that the cumulative dividend strategy is absolutely
continuous. We consider an open problem of the general spectrally negative
case and derive the optimal solution explicitly using the fluctuation identities
of the refracted-reflected Lévy process. The optimal strategy as well as the
value function are concisely written in terms of the scale function. Numerical
results are also provided to confirm the analytical conclusions.
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1 Introduction

In the bail-out model of de Finetti’s optimal dividend problem, one wants
to maximize the total expected dividends minus the costs of capital injection
under the constraint that the surplus must be kept non-negative uniformly
in time. Typically, a spectrally negative Lévy process (a Lévy process with
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only downward jumps) is used to model the underlying surplus process of
an insurance company that increases because of premiums and decreases by
insurance payments. Avram et al. [1] showed that it is optimal to reflect from
below at zero and also from above at a suitably chosen threshold.

We investigate an extension with the absolutely continuous constraint on
dividend strategies. To be precise, the cumulative dividend process must be
absolutely continuous with respect to the Lebesgue measure with its density
bounded by a given constant. This problem (without bail-out) has been pre-
viously considered by [2] and [3] in the diffusive case, and [4] for the case of
Crámer-Lundberg processes with exponential jumps. In the classical setting,
the set of admissible strategies is too general and counterintuitive in the con-
text of insurance. Consequently, there have been several attempts to restrict
the solution to more realistic strategies. The absolutely continuous condition
is one way of achieving this goal without losing analytical tractability.

Regarding the version with both bail-out and the absolutely continuous
condition, the dual case (the spectrally positive Lévy case) has recently been
solved by [5]. In this paper, we further consider the spectrally negative case
for the underlying process. This can also be seen as the bail-out version of
[6], where they incorporated the absolutely continuous constraint, however,
without capital injections.

Our ultimate aim is to verify the conjecture on the optimality of a refraction-
reflection strategy that reflects the surplus from below at zero in the classical
sense and refracts the process (decreases the drift) at a suitably chosen thresh-
old. The resulting controlled surplus process becomes the so-called refracted-
reflected Lévy process recently studied in [7]. Indeed, many interesting proba-
bilistic properties of the refracted-reflected Lévy process have been developed
in [7]. However, as an important application to the optimal dividend problem
with capital injection, it is still an open problem whether the optimal con-
trol for the spectrally negative case fits this type of refraction-reflection. This
paper fills the gap and provides the closed-form choice of the threshold.

As is commonly used in the related literature, we adopt the scale function
and the fluctuation identities so as to follow efficiently the “guess-and-verify”
procedure described below.

(1) By focusing on the set of refraction-reflection strategies, we select a ju-
dicious candidate strategy via the smooth fit principle. In particular, we
choose the threshold value such that the corresponding net present value
(NPV) becomes continuously (resp. twice continuously) differentiable at
the threshold for the case of bounded (resp. unbounded) variation.

(2) The optimality of the selected strategy is then confirmed by verifying the
variational inequalities that require the computation of the generators and
certain slope conditions of the value functions.

In general, in the optimal dividend problem and its extensions, the verification
of optimality is significantly more challenging for the spectrally negative case
than the dual case. The difficulty typically lies in the required proof of the
properties of the candidate value function above the barrier/threshold that
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separates the waiting and controlling regions. Intuitively speaking, this is dif-
ficult because, with negative jumps, the surplus can jump below from the
controlling region to the waiting region as well as directly to the reflection
region below the zero boundary, where the forms of the value function change.
It is demonstrated in the literature that the optimality can fail by the choice
of the Lévy measure (see, e.g., [6] assumes the completely monotone Lévy den-
sity). However, in the dual model, it is usually not necessary to assume any
property on the Lévy measure (see [8,9,10,11]).

Mathematically speaking, in our problem, the major challenge is to show
the slope condition above the selected threshold such that the slope is bounded
uniformly by 1. Nonetheless, we show that the optimality holds for a general
spectrally negative Lévy case. To this end, we use our observation that the
slope of the candidate value function coincides with the Laplace transform of
the ruin time of the refracted Lévy process of [12], which is monotone in the
starting value. Other required computations such as generators and the slopes
below the threshold can be performed efficiently by taking advantage of the
analytical properties of the scale function.

The rest of the paper is organized as follows. In Section 2, we review the
spectrally negative Lévy process and give the precise formulation of the bail-
out optimal dividend control problem with the absolutely continuous condi-
tion. Section 3 defines the refraction-reflection strategy and formulates the
corresponding NPV of dividends minus capital injection using the scale func-
tion. Section 4 provides the conjectured candidate threshold and Section 5
proves the optimality of the selected strategy. Some numerical examples are
presented in Section 6. At last, we give our conclusions in Section 7.

2 Preliminaries

2.1 Spectrally Negative Lévy Processes

In this paper, we consider a spectrally negative Lévy process X. For x ∈ R,
we denote the law of X when it starts at x by Px and refer to it as P instead
of P0 for convenience. Ex and E are the associated expectation operators.

Its Laplace exponent ψ(θ) : [0,∞[→ R is defined by eψ(θ)t := E
[
eθXt

]
for

t, θ ≥ 0 with the Lévy-Khintchine formula

ψ(θ) := γθ +
σ2

2
θ2 +

∫
]−∞,0[

(
eθz − 1− θz1{z>−1}

)
Π(dz), θ ≥ 0,

where γ ∈ R, σ ≥ 0, and Π is a measure on ]−∞, 0[ called the Lévy measure
of X that satisfies

∫
]−∞,0[(1 ∧ z

2)Π(dz) <∞.

It is well-known that X has paths of bounded variation if and only if σ = 0
and

∫
]−1,0[ |z|Π(dz) is finite. In this case, X = {Xt = ct − St, t ≥ 0}, where

c := γ −
∫
]−1,0[ zΠ(dz) and {St; t ≥ 0} is a driftless subordinator. Note that

necessarily c > 0, as we have ruled out the case that X has monotone paths.
Its Laplace exponent is given by ψ(θ) = cθ+

∫
]−∞,0[

(
eθz−1

)
Π(dz), for θ ≥ 0.
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2.2 Bail-Out Optimal Dividend with the Absolutely Continuous Condition

A strategy is a pair π := (Lπt , R
π
t ; t ≥ 0) of nondecreasing, right-continuous,

and adapted processes (with respect to the filtration generated by X) starting
at zero, where Lπ is the cumulative amount of dividends and Rπ is that of the
injected capital. With V π0− := x, and, V πt := Xt−Lπt +Rπt , t ≥ 0, it is required
that V πt ≥ 0 a.s. uniformly in t. In addition, with δ > 0 fixed, Lπ is required
to be absolutely continuous with respect to the Lebesgue measure of the form
Lπt =

∫ t
0
`πsds, t ≥ 0, with `π restricted to take values in [0, δ] uniformly in

time. As for Rπ, it is assumed that
∫
[0,∞[

e−qtdRπt <∞, a.s.

Assuming that β > 1 is the cost per unit injected capital and q > 0 is
the discount factor, the expected NPV of dividends minus the costs of capital
injection under a strategy π becomes

vπ(x) := Ex

(∫ ∞
0

e−qt`πt dt− β
∫
[0,∞[

e−qtdRπt

)
, x ∈ R.

The corresponding stochastic control problem is defined by

v(x) := sup
π∈A

vπ(x), x ∈ R, (1)

where A is the set of all admissible strategies that satisfy the constraints
described above.

Throughout the paper, to exclude the trivial case, we consider the next
assumption.

Assumption 1 We assume that EX1 = ψ′(0+) > −∞.

Moreover, as being commonly imposed in the literature (see [6]), the next
assumption is made so that the process Y := {Yt := Xt − δt, t ≥ 0} does not
have monotone paths.

Assumption 2 For the case of bounded variation, let c > δ.

3 Refraction-Reflection Strategies

Our objective is to show the optimality of the refraction-reflection strategy
πb = (L0,b, R0,b, t ≥ 0), with a suitable refraction level b ≥ 0. Namely, divi-
dends are paid at the maximal rate δ whenever the surplus process is above
the pre-specified threshold b while it is pushed upward by capital injection
whenever it attempts to downcross zero. The resulting surplus process

U0,b
t := Xt − L0,b

t +R0,b
t

becomes the standard refracted-reflected Lévy process of [7].
In terms of the optimal control theory, we recognize that the candidate divi-

dend strategy is of the bang-bang type, i.e., dividends should either be paid out
at the maximum rate δ or at the rate 0. On the other hand, the capital injection
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strategy, which is the reflection control, fits into the singular control frame-
work. To wit, we can explicitly write the described cumulative dividend control
as L0,b

t =
∫ t
0
δ1{U0,b

s >b}ds, and for the case of bounded variation we can write

the candidate capital injection R0,b
t =

∑
0≤s≤t |U

0,b
s− + 4Xs|1{U0,b

s−+4Xs<0}.

Here, we define 4ξt := ξt − ξt−, t ≥ 0, for any càdlàg process ξ. For a formal
construction of this process, we refer the reader to [7].

Clearly, each aforementioned refraction-reflection strategy πb is admissible
for any b ≥ 0. We denote the corresponding expected NPV by

vb(x) := Ex

(∫ ∞
0

e−qtdL0,b
t − β

∫
[0,∞[

e−qtdR0,b
t

)
, x ∈ R. (2)

In order to express (2), we apply the fluctuation identities. Following the
same notations as in [12], we call W (q) and W(q) the scale functions of X and
Y , respectively. These are the mappings from R to [0,∞[ that take the value
zero on the negative half-line, while on the positive half-line, they are strictly
increasing functions that are defined by their Laplace transforms∫ ∞

0

e−θxW (q)(x)dx =
1

ψ(θ)− q
, θ > Φ(q), (3)∫ ∞

0

e−θxW(q)(x)dx =
1

ψY (θ)− q
, θ > ϕ(q). (4)

Here ψY (θ) := ψ(θ)− δθ, θ ≥ 0, is the Laplace exponent for Y and

Φ(q) := sup{λ ≥ 0 : ψ(λ) = q} and ϕ(q) := sup{λ ≥ 0 : ψY (λ) = q}.

We also define, for x ∈ R,

W
(q)

(x) :=

∫ x

0

W (q)(y)dy, Z(q)(x) := 1 + qW
(q)

(x),

Z
(q)

(x) :=

∫ x

0

Z(q)(z)dz = x+ q

∫ x

0

∫ z

0

W (q)(w)dwdz.

Noting that W (q)(x) = 0 for −∞ < x < 0, we have

W
(q)

(x) = 0, Z(q)(x) = 1 and Z
(q)

(x) = x, x ≤ 0. (5)

Analogously, we define W(q)
, Z(q) and Z(q)

for Y . From computations in [7],
we already know

δ

∫ x

0

W(q)(x− y)W (q)(y)dy = W(q)
(x)−W (q)

(x), (6)

δ

∫ x

0

W(q)(x− y)Z(q)(y)dy = Z(q)
(x)− Z(q)

(x) + δW(q)
(x). (7)
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Remark 3.1 (i) W (q) and W(q) are differentiable almost everywhere. In par-
ticular, if X is of unbounded variation or the Lévy measure is atomless, it
is known that W (q) and W(q) are C1(R\{0}); see Theorem 3 of [13].

(ii) As x ↓ 0, by Lemma 3.1 of [14], we have

W (q)(0) =

{
0, if X is of unbounded variation,
c−1, if X is of bounded variation,

and a similar result holds for W(q).

Using the results in [7], the expected NPV (2) can be written as below.

Lemma 3.1 For q > 0, b ≥ 0 and x ∈ R, we have

vb(x) =− δW(q)
(x− b) + β

(
Z

(q)
(x) +

ψ′(0+)

q

)
+ βδ

∫ x

b

W(q)(x− y)Z(q)(y)dy

− f(b)

q

(
Z(q)(x) + qδ

∫ x

b

W(q)(x− y)W (q)(y)dy
)
,

where f(b) :=
βZ(q)(b)− 1 + βq

∫∞
0
e−ϕ(q)yW (q)(y + b)dy

ϕ(q)
∫∞
0
e−ϕ(q)yW (q)(y + b)dy

.

Proof The result follows by Corollaries 4.4 and 5.5 of [7] and the fact that∫ ∞
0

e−ϕ(q)yZ(q)(y + b)dy =
Z(q)(b)

ϕ(q)
+

q

ϕ(q)

∫ ∞
0

e−ϕ(q)yW (q)(y + b)dy.

ut

Remark 3.2 As (3) gives
∫∞
0
e−ϕ(q)yW (q)(y)dy = (δϕ(q))−1 for the case when

b = 0, we have

f(0) =
β − 1 + βq

∫∞
0
e−ϕ(q)yW (q)(y)dy

ϕ(q)
∫∞
0
e−ϕ(q)yW (q)(y)dy

= δ
(
β − 1 +

βq

δϕ(q)

)
. (8)

By this, (6) and (7), we get

v0(x) =− δW(q)
(x) + β

(
Z

(q)
(x) +

ψ′(0+)

q

)
+ β

(
Z(q)

(x)− Z(q)
(x) + δW(q)

(x)
)

+

(
1− β − βq

δϕ(q)

) Z(q)(x) + q
(
W(q)

(x)−W (q)
(x)
)

q
δ

=
δ

q
+ β

(ψ′(0+)

q
+ Z(q)

(x)− δ

q
− 1

ϕ(q)
Z(q)(x)

)
.
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4 Selection of the Candidate Threshold

We shall choose the candidate threshold b∗ so that the corresponding expected
NPV vb∗ can be smooth at b∗. Lemma 3.1 and integration by parts imply that

vb(x)

=− δW(q)
(x− b) + β

(
Z

(q)
(x) +

ψ′(0+)

q

)
+ βδ

(
Z(q)(b)W(q)

(x− b) + q

∫ x

b

W(q)
(x− y)W (q)(y)dy

)
− f(b)

q

[
Z(q)(x) + qδ

(
W (q)(b)W(q)

(x− b) +

∫ x

b

W(q)
(x− y)W (q)′(y)dy

)]
.

By differentiating this, we have

v′b(x) =− δW(q)(x− b) + βZ(q)(x)

+ βδ
[
Z(q)(b)W(q)(x− b) + q

∫ x

b

W(q)(x− y)W (q)(y)dy
]

−f(b)
[
W (q)(x) + δ

(
W (q)(b)W(q)(x− b) +

∫ x

b

W(q)(x− y)W (q)′(y)dy
)]
,

(9)

which is continuous for x 6= 0, b.
In particular, for x < b, by (5), we get

v′b(x) = βZ(q)(x)−W (q)(x)f(b). (10)

It follows that

v′b(b+)− v′b(b−) = δW(q)(0)g(b), (11)

where

g(b) := βZ(q)(b)− 1−W (q)(b)f(b)

=
(
βZ(q)(b)− 1

)(
1− W (q)(b)

ϕ(q)
∫∞
0
e−ϕ(q)yW (q)(y + b)dy

)
− βqW (q)(b)

ϕ(q)
.

(12)

For the case of bounded variation, where W(q)(0) > 0 (see Remark 3.1(ii)),
it is straightforward to see that vb is continuously differentiable at b if and
only if g(b) = 0.

For the case of unbounded variation, where W(q)(0) = 0, by differentiating
(9), we have, for x 6= b, that

vb′′(x) =− δW(q)′(x− b) + βqW (q)(x)

+ βδ
[
Z(q)(b)W(q)′(x− b) + q

∫ x

b

W(q)′(x− y)W (q)(y)dy
]
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−f(b)
[
W (q)′(x) + δ

(
W (q)(b)W(q)′(x− b)

+

∫ x

b

W(q)′(x− y)W (q)′(y)dy
)]
,

which is continuous for x 6= 0, b and hence vb′′(b+)−vb′′(b−) = δW(q)′(0+)g(b).
These observations, together with the smoothness of the scale function on

R\{0} as in Remark 3.1, are summarized as follows.

Lemma 4.1 Suppose that there exists b > 0 such that g(b) = 0. Then, vb is
continuously (resp. twice continuously) differentiable on ]0,∞[ when X is of
bounded (resp. unbounded) variation.

Remark 4.1 (slope at b) The condition g(b) = 0 is equivalent to v′b(b−) = 1, if
b > 0. Indeed, by (10), (11), and (12), we have

v′b(b−) = 1 + g(b), b > 0,

v′b(b+) = 1 + (1 + δW(q)(0))g(b), b ≥ 0.

Remark 4.2 (Continuity/smoothness at zero) (i) By Lemma 3.1, we have that
vb is continuous at zero for b ≥ 0.

(ii) If b > 0, (10) gives v′b(0+) = β −W (q)(0)f(b) = β = v′b(0−) for the
case of unbounded variation.

Let us define our candidate threshold by

b∗ := inf{b ≥ 0 : g(b) ≤ 0}, (13)

with the convention that inf ∅ =∞.

Lemma 4.2 We have b∗ = 0 if and only if X is of bounded variation and

β − 1 +

(
1− β − βq

δϕ(q)

)
δ

c
≤ 0. (14)

Proof By the definition of b∗ as in (13), we have that b∗ = 0 if and only if

g(0) ≤ 0, where g(0) = β − 1 +
(

1− β − βq
δϕ(q)

)
δW (q)(0) by (8) and (12).

For the case of unbounded variation (where W (q)(0) = 0), g(0) = β−1 > 0
and hence b∗ > 0. On the other hand, for the case of bounded variation, by
Remark 3.1(ii), b∗ = 0 if and only if (14) holds. ut

To continue, we can further show that b∗ <∞.

Lemma 4.3 (i) Define h(b) := 1 − W (q)(b)
ϕ(q)

∫∞
0
e−ϕ(q)yW (q)(y+b)dy

, b ≥ 0. Then,

for b ≥ 0,

g(b)

h(b)
= βZ(q)(b)− 1− βqW (q)(b)

∫∞
0
e−ϕ(q)yW (q)(y + b)dy∫∞

0
e−ϕ(q)yW (q)′(y + b)dy

= βEb
[
e−qκ

b,−
0 1{κb,−

0 <∞}

]
− 1, (15)
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where κb,−0 := inf{t > 0 : U bt < 0} and U b is the refracted Lévy process of
[12], which is the unique strong solution to the stochastic differential equation

U bt = Xt − δ
∫ t
0

1{Ub
s>b}ds, for t ≥ 0.

(ii) We have 0 ≤ b∗ <∞.

Proof (i) We have, by (12), that

g(b) = (βZ(q)(b)− 1)h(b)− βq

ϕ(q)
W (q)(b). (16)

On the other hand, by integration by parts,

h(b)−1 = ϕ(q)

∫∞
0
e−ϕ(q)yW (q)(y + b)dy∫∞

0
e−ϕ(q)yW (q)′(y + b)dy

. (17)

Therefore, due to (16) and (17), we obtain the first equality of (15). The second
equality of (15) holds by Theorem 5 (ii) of [12].

(ii) For b ≥ 0, because W (q) is strictly increasing on [0,∞[, we get

h(b) = 1− W (q)(b)

ϕ(q)
∫∞
0
e−ϕ(q)yW (q)(y + b)dy

> 1− W (q)(b)

ϕ(q)
∫∞
0
e−ϕ(q)yW (q)(b)dy

= 0.

Using the fact that U b ≥ Y and hence that κb,−0 is dominated from below by the

down-crossing time of Y , we have the convergence Eb[e−qκ
b,−
0 1{κb,−

0 <∞}] → 0

as b → ∞. This and (15) imply that limb→∞ g(b)/h(b) = −1. Hence, by the
positivity of h, g(b) must be negative for a sufficiently large b. Consequently,
it follows that 0 ≤ b∗ <∞. ut

5 Verification of Optimality

In this section, we provide a rigorous verification argument for the choice of b∗

defined in (13) such that the value function of the stochastic control problem
(1) can be achieved.

With the selected barrier b∗, by Lemma 3.1, our value function becomes

vb∗(x) =− δW(q)
(x− b∗) + β

(
Z

(q)
(x) +

ψ′(0+)

q

)
+ βδ

∫ x

b∗
W(q)(x− y)Z(q)(y)dy

− f(b∗)

q

(
Z(q)(x) + qδ

∫ x

b∗
W(q)(x− y)W (q)(y)dy

)
.

(18)

Here, for the case b∗ > 0, because g(b∗) = 0, by (12) and (15), we derive that

f(b∗) =
βZ(q)(b∗)− 1

W (q)(b∗)
= βq

∫∞
0
e−ϕ(q)yW (q)(y + b∗)dy∫∞

0
e−ϕ(q)yW (q)′(y + b∗)dy

. (19)

For the case b∗ = 0, vb∗ = v0 is already given in Remark 3.2.
Our goal is to prove the main result of this paper given below.
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Theorem 5.1 The strategy πb
∗

is optimal and the value function of the stochas-
tic control problem (1) is given by v = vb∗ .

Let L be the infinitesimal generator associated with the process X applied
to a C1 (resp. C2) function F for the case where X is of bounded (resp.
unbounded) variation, i.e., for x ∈ R,

LF (x) := γF ′(x) +
1

2
σ2F ′′(x)

+

∫
(−∞,0)

[
F (x+ z)− F (x)− F ′(x)z1{−1<z<0}

]
Π(dz).

Further, let LY be that of Yt := Xt− δt. We have LY F (x) = LF (x)− δF ′(x).
To show the optimality, it suffices to verify variational inequalities. The

proof of the next lemma is omitted as it is essentially the same as the spectrally
positive case in Lemma 4.2 of [5]. Here we slightly relax the assumption on the
smoothness at zero, which can be achieved by applying the Meyer-Itô formula
as in Theorem 4.71 of [15]. We refer to [1,6,16,17] for other stochastic control
problems and verification lemmas with spectrally one-sided Lévy processes.

Lemma 5.1 (Verification lemma) Suppose π̂ ∈ A such that vπ̂ is suffi-
ciently smooth on ]0,∞[, continuous on R, and, for the case of unbounded
variation, continuously differentiable at zero. In addition, we assume that

sup
0≤r≤δ

(
(L − q)vπ̂(x)− rv′π̂(x) + r

)
≤ 0, x > 0,

v′π̂(x) ≤ β, x > 0, (20)

inf
x≥0

vπ̂(x) > −m, for some m > 0.

Then, vπ̂(x) = v(x) for all x ≥ 0, and hence, π̂ is an optimal strategy.

We shall first compute the generator parts.

Lemma 5.2 Fix b ≥ 0. (i) If b > 0, we have (L − q)vb(x) = 0 for 0 < x < b.
(ii) We have (LY − q)vb(x) + δ = (L − q)vb(x) + δ(1− v′b(x)) = 0 for x > b.

Proof (i) For 0 < x < b, Theorem 2.1 in [8] leads to

(L − q)vb(x) = β(L − q)
(
Z

(q)
(x) +

ψ′(0+)

q

)
− f(b)

q
(L − q)Z(q)(x) = 0.

(ii) On the other hand, for x > b, Theorem 2.1 in [8] implies that

(LY − q)W
(q)

(x− b) = q−1(LY − q)(Z(q)(x− b)− 1) = 1,

(LY − q)
(
Z

(q)
(x) +

ψ′(0+)

q

)
= −δ ∂

∂x

(
Z

(q)
(x) +

ψ′(0+)

q

)
= −δZ(q)(x),

(LY − q)Z(q)(x) = −δZ(q)′(x) = −δqW (q)(x).

In addition, we get (LY − q)
( ∫ x

b
W(q)(x− y)l(y)dy

)
= l(x) by the argument

in the proof of Lemma 4.5 of [18], for l = Z(q),W (q). Applying these in (18),
we have that claim (2) holds. ut
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Lemma 5.3 For the threshold b∗ defined by (13), we have β ≥ v′b∗(x) ≥ 1 for
x < b∗, and 0 ≤ v′b∗(x) ≤ 1 for x ≥ b∗.

Proof Step (i): Suppose b∗ > 0. By (9) and (19), we have

v′b∗(x) =− δW(q)(x− b∗) + βZ(q)(x)

+ βδ
[
Z(q)(b∗)W(q)(x− b∗) + q

∫ x

b∗
W(q)(x− y)W (q)(y)dy

]
− βZ(q)(b∗)− 1

W (q)(b∗)

[
W (q)(x) + δ

(
W (q)(b∗)W(q)(x− b∗)

+

∫ x

b∗
W(q)(x− y)W (q)′(y)dy

)]

=βZ(q)(x) + βδq

∫ x

b∗
W(q)(x− y)W (q)(y)dy

− βq
∫∞
0
e−ϕ(q)yW (q)(y + b∗)dy∫∞

0
e−ϕ(q)yW (q)′(y + b∗)dy

(
W (q)(x)

+ δ

∫ x

b∗
W(q)(x− y)W (q)′(y)dy

)
=βEx

[
e−qκ

b∗,−
0 1{κb∗,−

0 <∞}

]
, (21)

where the second equality holds by the second equality of (19), and the last
equality holds by Theorem 5 (ii) in [12]. Thanks to (21), we deduce that
0 ≤ v′b∗(x) ≤ β = v′b∗(0−) and v′b∗(x) is non-increasing for x > 0. This and
v′b∗(b

∗) = 1 implied by Remark 4.1 complete the proof.
Step (ii): Suppose b∗ = 0 (then, necessarily X is of bounded variation by

Lemma 4.2). By Remark 3.2, we have, for x 6= 0,

v′0(x) =β
(
Z(q)(x)− q

ϕ(q)
W(q)(x)

)
,

v′′0 (x+) =βqW(q)(x)
(

1− 1

ϕ(q)

W(q)′(x+)

W(q)(x)

)
.

It is known that x 7→ W(q)′(x+)/W(q)(x) is monotonically decreasing in x as
in (8.18) and Lemma 8.2 of [19], and it converges to ϕ(q). Hence, v′′0 (x+) < 0,
which implies that v0 is concave.

On the other hand, we have v′0(0+) = 1+(1+δW(q)(0))g(0) by Remark 4.1.
As g(0) ≤ 0 (see Lemma 4.2), we have v′0(0+) ≤ 1. It follows that v′0(x) ≤ 1 for

all x. Finally, we have v′0(x)
x↑∞−−−→ 0 because Z(q)(x)− qW(q)(x)/ϕ(q) vanishes

in the limit by Theorem 8.1 (ii) of [19]. Hence, we have v′0(x) ≥ 0. ut

Remark 5.1 By the monotonicity of vb∗ in view of Lemma 5.3 and Assumption
1, we have infx≥0 vb∗(x) ≥ vb∗(0) > −∞.
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Proof (of Theorem 5.1) We shall show that vb∗ satisfies all conditions given
in Lemma 5.1. First, by Lemma 4.1 and Remark 4.2, the desired continu-
ity/smoothness of vb∗ holds.

It is left to verify the variational inequalities (20). Lemma 5.3 leads to

sup
0≤r≤δ

r
(
1− v′b∗(x)

)
=

{
δ
(
1− v′b∗(x)

)
≤ δ, if x > b∗,

0, if 0 < x ≤ b∗.

This and Lemma 5.2 yield the first item of (20) with equality. The second item
holds by Lemma 5.3. Lastly, the third item holds by Remark 5.1. ut

Remark 5.2 Regardless of the negative jumps of X, our conclusion interest-
ingly indicates that our conjectured threshold strategy is still the optimal
strategy. However, as the term ψ′(0+) = EX1 = γ +

∫
]−∞,−1] zΠ(dz) appears

in the value function, the negative jumps clearly have direct impacts on the
optimal solution.

Another important impact of the jumps can be seen in the bounded varia-
tion case, where the optimal threshold can be b∗ = 0, which implies that it is
optimal to always pay dividends. This outcome does not occur in the classical
Brownian motion model.

6 Numerical Examples

We conclude this paper with a sequence of numerical experiments on the under-
lying process modeled by the spectrally negative Lévy process with phase-type
jumps of the form that Xt −X0 = ct+ σBt −

∑Nt

n=1 Zn, for 0 ≤ t <∞. Here,
B = (Bt; t ≥ 0) is a standard Brownian motion, N = (Nt; t ≥ 0) is a Poisson
process with arrival rate κ, and Z = (Zn;n = 1, 2, . . .) is an i.i.d. sequence of
phase-type random variables that approximate the Weibull distribution with
shape parameter 2 and scale parameter 1 (see [16] for the parameters of the
phase-type distribution and also [20] for the accuracy of approximation). The
processes B, N , and Z are assumed to be mutually independent. We refer the
reader to [14] and [20] for the forms of the corresponding scale functions. We
consider Case 1 (unbounded variation) with σ = 0.2 and c = 2 and Case 2
(bounded variation) with σ = 0 and c = 4. For other parameters, let us set
κ = 2, q = 0.05, β = 1.5 and δ = 1 unless stated otherwise.

Recall that the optimal threshold b∗ is given by (13). In Figure 1, we plot
the function b 7→ g(b)/h(b) (recall that h is uniformly positive) for various
values of β for Cases 1 and 2. For the case g(0) ≤ 0 (and hence g(0)/h(0) ≤ 0),
we have b∗ = 0. Otherwise, g/h is monotonically decreasing and b∗ becomes
the value at which g (and g/h) vanish. As observed in Lemma 4.2, for Case 1
(unbounded variation), b∗ > 0 for any value of β > 1 while in Case 2 (bounded
variation case), b∗ = 0 if β is sufficiently close to 1. In order to confirm the
optimality of the selected threshold strategy πb

∗
, we plot, as shown in Figure

2 (for β = 1.5), the value function vb∗ together with vb for b 6= b∗. For Case
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1, we have b∗ > 0; while for Case 2, we have b∗ = 0. It is illustrated in the
figure that vb∗ satisfactorily dominates vb uniformly in x.

In Figure 3, we present the sensitivity of the optimal solutions with respect
to parameters β and δ focusing on Case 1. On the left panel, we plot vb∗ for β
ranging from 1.01 to 3. The graph indicates that the value function decreases in
β uniformly in x and that the optimal threshold b∗ increases as β increases. On
the right panel, we show vb∗ for δ varying from 0.01 to 3 along with results in
the case without the absolutely continuous assumption as in [1]. It is observed
that the value function converges increasingly to that in [1]. The convergence
of b∗ to the optimal barrier in [1] is also confirmed.

7 Conclusions

We solved the dividend problem with capital injection under the constraint
that the cumulative dividend strategy is absolutely continuous. In particular,
we proved that the solution is a refraction-reflection strategy that reflects the
surplus from below at zero and decreases the drift at a suitable threshold.

It is noted that the methods and results in this current paper can poten-
tially be applied in other related stochastic control problems driven by one
dimensional spectrally one-sided Lévy processes. In inventory/cash manage-
ment control problems as in [21], it is of interest to pursue the optimality of
refraction-reflection strategies under suitable absolutely continuous assump-
tions. Using the results in [7], smooth fit and verification are expected to be
carried out in an efficient way as in this current paper.
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Fig. 1: Plots of b 7→ g(b)/h(b) for Case 1 (left) and Case 2 (right) for β =
1.01, 1.05, 1.1, 1.5, 2 and 3, which correspond to curves from bottom to top. The circles
indicate the points at b∗.
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Fig. 2: (Left) plots of x 7→ vb∗ (x) (solid) for Case 1 along with vb (dotted) for b = b∗/3, 2b∗/3
and 4b∗/3, which correspond to dotted curves from bottom to top. (Right) plots of x 7→
vb∗ (x) (solid) for Case 2 along with vb (dotted) for b = 1/4, 1/2, 3/4 and 1, which correspond
to dotted curves from top to bottom. The circles and down-pointing triangles indicate the
points at b∗ and b, respectively.
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Fig. 3: (Left) plots of x 7→ vb∗ (x) for β = 1.01, 1.02, . . ., 1.09, 1.1,1.2, . . ., 2.9 and 3, which
correspond to curves from top to bottom. (Right) plots of x 7→ vb∗ (x) (dotted) x 7→ vb∗ (x)
for δ = 0.01, 0.02, . . ., 0.09, 0.1, 0.2, . . ., 2.9 and 3, which correspond to curves from bottom
to top, along with the value function in [1] (solid). The circles indicate the points at b∗ and
the square indicates the point at the optimal barrier in [1].
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7. Pérez, J. L., Yamazaki, K.: On the refracted-reflected spectrally negative Lévy processes.
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