This is the Pre-Published Version.

This is a pre-copyedited, author-produced PDF of an article accepted for publication in Physical Therapy following peer review. The version of record Tiev Miller, MSc, Michael Ying, MSc, Charlotte Sau Lan Tsang, MSc, Meizhen Huang, MSc, Marco Y C Pang, MSc, Reliability and Validity of Ultrasound Elastography for Evaluating Muscle Stiffness in Neurological Populations: A Systematic Review and Meta-Analysis, Physical Therapy, Volume 101, Issue 1, January 2021, pzaa188 is available online at: https://doi.org/10.1093/ptj/pzaa188.

1 Reliability & validity of ultrasound elastography for evaluating muscle stiffness among

- 2 neurological populations: a systematic review & meta-analysis
- 3
- 4 Authors: ¹Tiev Miller, MSc, ²Michael Ying, PhD, ¹Charlotte Sau Lan Tsang, PT, ¹Meizhen
- 5 Huang, PhD, & ¹Marco Y. C. Pang, PhD
- 6
- ⁷ ¹Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, 11 Yuk
- 8 Choi Rd, Hong Kong, S.A.R.
- 9 ²Department of Health Technology and Informatics, The Hong Kong Polytechnic University,
- 10 11 Yuk Choi Rd, Hong Kong, S.A.R.
- 11
- 12 Address all correspondence to Professor Marco Pang: marco.pang@polyu.edu.hk
- 13
- 14 PROSPERO systematic review registration #: CRD42017076571
- 15
- 16 Abstract
- 17 Background: Ultrasound elastography is an emerging diagnostic technology used to
- 18 investigate biomechanical properties of the musculoskeletal system. Purpose: To
- 19 systematically review the psychometric properties of the ultrasound elastography techniques

1	in evaluating muscle stiffness among neurological populations. Data Sources: A systematic
2	search of MEDLINE, EMBASE, CINAHL and Cochrane Library databases was performed in
3	accordance with PRISMA guidelines. Data Selection: Using Covidence software, reviewers
4	independently screened citations for inclusion. Peer-reviewed studies which evaluated in
5	vivo muscle stiffness among neurological populations and reported relevant
6	psychometric properties were considered for inclusion. Data Extraction: Twenty-one
7	articles were included for final review. Data relevant to measurement technique, site and
8	neurological condition were extracted. The Consensus-based Standards for the Selection of
9	Health Measurement Instruments (COSMIN) checklist was used to rate methodological
10	quality of included studies. Level of evidence for specific measurement outcomes was
11	determined using a best-evidence synthesis approach. Data Synthesis: Reliability varied
12	across populations, ultrasound systems and assessment conditions (i.e. joint/ body positions,
13	active/ passive muscle, probe orientation) with most studies indicating moderate to good
14	reliability (Intraclass Correlation Coefficient (ICC)=0.5-0.9, n=13). Meta-analysis results
15	showed good overall correlation across studies (r=0.78, 95% Confidence Interval (CI)=0.64-
16	0.86, p \leq 0.00) with no between-group difference based on population (Q=0.00, df=1, p=0.97).
17	Convergent validity was demonstrated by strong correlations between stiffness values and
18	measures of spasticity (n=5), functional motor recovery or impairment (n=5) and grey scale or
19	color histogram pixel intensities (n=3). Discriminant or known-groups validity was also

1	established for multiple studies indicating either significant between-group differences in
2	stiffness values (n=12) or within-group differences between more- and less-affected limbs
3	(n=6). Responsiveness was observed in all intervention studies reporting post-treatment
4	stiffness changes (n=6). Conclusions: Overall, ultrasound elastography techniques show
5	moderate reliability in evaluating in-vivo muscle stiffness, good convergent validity with
6	relevant clinical assessments, and good divergent validity in discriminating tissue
7	changes within and between groups Impact Statement: Ultrasound elastography will have
	changes within and between groups. Impact Suttement. On assound classography with have
8	clinical utility in assessing muscle stiffness, monitoring its temporal changes, and measuring
8 9	clinical utility in assessing muscle stiffness, monitoring its temporal changes, and measuring the response to intervention in populations with neurological conditions.

11 Abstract Word Count = 329

12 Manuscript Word Count: 5,580

1 Introduction

2 Altered muscle tissue mechanics and morphology are resultant corollaries among populations with neurological conditions and neuromuscular dysfunction ^{1,2}. Macro- and microstructural 3 changes have been observed across various strata of muscle tissue in populations with 4 common neurological conditions such as stroke and cerebral palsy (CP) ³⁻⁶. Although the 5 mechanism remains unclear, additional alterations in the biomechanical properties of muscle 6 tissue may be a secondary sequela either associated with or resulting from underlying 7 neurological etiologies (i.e., phasic hyperreflexia, hypertonia) ^{7,8}. Intramuscular collagen 8 9 formation ⁹, extracellular matrix organization ¹⁰ and titin isoform diversity within fibers ¹¹ are other factors thought to contribute to tissue alterations. The assessment of 10 biomechanical properties, such as passive muscle stiffness, may have overt clinical value in 11 determining tissue morphology and response to treatment or rehabilitation ¹². Subjective 12 evaluation of altered muscle properties in neurological populations using qualitative clinical 13 14 assessments such as manual palpation and muscle testing or modified Ashworth (MAS) and Tardieu scales are indirect and suboptimal ^{13,14}. Other quantitative assessments of these 15 properties involving dynamometry and B-mode ultrasound can be procedurally complex, 16 ineffective in isolating specific tissue regions and may not be feasible across clinical settings 17 15,16 18

1	Alternatively, elastography provides a direct, non-invasive stiffness quantification of
2	individual muscle structures in real-time ¹⁷ . As the use of diagnostic musculoskeletal
3	ultrasound is becoming more prevalent in physical medicine and rehabilitation training
4	programs ¹⁸ and in clinical physical therapy ¹⁹ , ultrasound units with tissue imaging
5	capabilities such as elastography may prove advantageous in monitoring transitory or
6	progressive muscle changes associated with neurological conditions ^{20,21} . Elastography
7	has also demonstrated utility in evaluating response to invasive ^{7,22-26} and non-invasive ²⁷
8	clinical intervention strategies for reducing muscle stiffness and spasticity in
9	neurological populations.
10	
11	Ultrasound-based elastography methods developed as an outgrowth of tissue palpation and
12	motion tracking techniques for identifying tissue masses harder and more resistant to
13	displacement than surrounding reference tissues. Since the development of sonoelasticity
14	imaging and static elastography in the early 1990's for quantifying the distribution of the
15	elastic modulus in soft tissues ^{28,29} , ultrasound elastography (UE) methods have continued to
16	evolve ³⁰ . Previous reviews have highlighted the utility of this technology for
17	investigating the biomechanical properties of the musculoskeletal system ^{21,31-34} . There
18	are several different UE techniques capable of providing either quantitative or qualitative
19	measures of these properties ¹⁷ , each differing in frequency, method of excitation and

1	interface ³⁵ . There is currently no consensus with regard to which method may be optimal for
2	assessing muscle stiffness among neurological populations in vivo.

4	As the development and modification of elastography for measuring specific tissue types
5	(e.g., thyroid, breast, muscle) remains on-going ³⁶ , a general knowledge of its underlying
6	mechanisms, technical limitations, measurement attributes and an appraisal of its
7	potential clinical application is warranted. Briefly, the estimation of stiffness using
8	elastography requires measuring tissue displacements in response to the application of a
9	stress generated via mechanical, acoustic radiation or internal endogenous forces ³⁵ .
10	Although UE systems demonstrate great potential in clinical utility, their underlying
11	accuracy is based upon non-biological material testing under absolute conditions ^{36,37} .
12	Attempts have been made to investigate the limitation of material linearity when using UE to
13	evaluate muscle properties among healthy and neurological populations ³⁸⁻⁴⁰ . However,
14	differences in tissue type, geometry and activation remain confounding influences ^{41,42} . There
15	are also operator-dependent sources of error as well as measurement range capabilities to be
16	considered ⁴³⁻⁴⁵ .

18 In the field of musculoskeletal elastography, a comprehensive review which systematically
19 investigates the reliability and validity reported throughout the available literature is currently

1	lacking. The primary objective of this review was to evaluate the evidence regarding the
2	reliability and validity of UE for measuring muscle stiffness in neurological populations.
3	Secondary objectives were to synthesize the information regarding measurement
4	protocols, operators and equipment used for measuring muscle stiffness, and to assess
5	study quality and level of evidence regarding stiffness measures. In healthy populations,
6	UE has shown good reliability ⁴⁶ and correlation with other measures assessing similar ⁴⁷
7	or related physiological constructs ^{48,49} and measures of physical function ⁵⁰ and
8	disability ⁵¹ . Therefore, it was hypothesized that overall measurement reliability and
9	validity of UE for measuring muscle stiffness in neurological populations would be good.
10	
11	Methods
12	Data sources & searches
13	A search was developed using the following concept domains as syntactic framework: (1)
14	musculoskeletal stiffness, (2) ultrasound elastography and (3) validity and reliability.
15	MEDLINE, EMBASE, CINAHL and Cochrane Library databases were searched. Paired and
16	individual keywords, medical subject headings (MeSH), Embase subject headings (Emtree),
17	field codes, boolean and proximity operators used in the search strategy syntax specific to

- 18 each database are included in the supplementary appendices (Supplementary Appendix A).
- 19 Results for each of the concept domains were combined to produce the final search results. In

1	further refining the search, an additional filter was applied limiting the results to references
2	with human subject populations published in English language journals between January 1990
3	and January 2020. References of articles selected for inclusion were reviewed to identify
4	other relevant publications for inclusion. Reference lists from review articles discussing
5	musculoskeletal elastography were also searched. A forward search was performed before the
6	final synthesis and analysis to include studies published after the initial search and data
7	extraction. This review was conducted in accordance with PRISMA guidelines ⁵² and
8	prospectively registered with PROSPERO (registration #: CRD42017076571).
9	
10	Study selection
11	Using Covidence online data extraction and screening software (Cochrane software Csr.
12	Melbourne, Victoria, Australia: Veritas Health Innovation, p. Available at
13	www.covidence.org), two reviewers (TM, MH) independently screened titles and abstracts to
14	determine propriety for inclusion. Hand-searched publications from reference lists were then
15	entered into the full-text screening. Two reviewers (TM, SLT) then extracted relevant data
16	independently. All missing or omitted data were requested from authors of included studies.
17	Data were included under the contingency authors replied within a timeframe of 10 working
18	days. Conflicts arising between reviewers were resolved through discussion or by consulting a
19	third reviewer (MP, MY) to reach consensus.

2	Selection of studies was based on the following criteria. Inclusion criteria: 1. peer reviewed
3	articles published in English between 1990-2020, 2. human subjects studied in vivo, 3. studies
4	investigated UE measurement properties for muscle, tendon, and/or fascia stiffness, 4. data
5	collection took place in research settings or across all stages of the continuum of care, 5.
6	subject populations with a neurological condition (i.e., stroke, spinal cord injury (SCI), CP,
7	etc.), 6. muscle stiffness measured with UE was a primary or secondary diagnostic objective,
8	7. measurement validity and/or reliability of UE was also a primary or secondary outcome, 8.
9	studies reported reliability, convergent, discriminant, known-groups, or criterion validity as
10	determined with the use of a comparator (i.e., previously validated diagnostic methods for
11	evaluating tissue stiffness such as magnetic resonance elastography, electronic palpation
12	imaging, biopsies, and histopathological samples, gelatine-based phantoms, and/or tissue
13	equivalent phantoms) 9. study design was either a case-controlled diagnostic, prospective or
14	retrospective cohort, cross-sectional or longitudinal, pre-post intervention or randomized-
15	controlled trial. Exclusion criteria: 1. published conference proceedings (i.e., presentations,
16	posters, symposium, etc.) 2. book reports or chapters, 3. theses or dissertations, 4. unavailable
17	in full text, 5. incorrect timeframe (i.e., before 1990), 6. involved animals or cadaver samples
18	without comparative in vivo measures, 7. studies focused solely on the assessment of bone,

1	cartilage, entheses, ligaments or joint capsules, 8. UE measured stiffness was not a primary or
2	secondary outcome and 9. measurement properties were not a primary or secondary outcome.
3	
4	Data extraction & quality assessment
5	The following items were extracted from included articles: 1. author information (i.e., names,
6	title, year, location), 2. study design, 3. measurement reliability and validity, 4. diagnostic
7	setting (i.e., inpatient, outpatient, laboratory), 5. ultrasound operator (i.e., technician,
8	clinician, researcher), 6. ultrasound system and probe model, 6. probe alignment in relation
9	to muscle fiber orientation (i.e., parallel, perpendicular or oblique), 7. muscle site, 8.
10	body position and joint angle during testing, 9. subject demographics and characteristics, 10.
11	measurement units (i.e., shear modulus (SM) in kilopascals (kPa) and/or shear wave velocity
12	(SWV) in meters per second (m/s), strain ratio (SR), sonoelastographic index/score) and 11.
13	details of image/data acquisition and processing (i.e., region of interest (ROI), number of
14	trials, contact interface, software).
15	
16	Rating of methodological quality for included studies was performed independently by two
17	reviewers (TM, SLT) using the COnsensus-based Standards for the selection of health
18	Measurement INstruments (COSMIN) Risk of Bias checklist (July 2018 version). Although
19	originally intended for health-related patient-reported outcomes ⁵³ , the checklist also

1	facilitates the election of quality scores for studies in which measurement properties are
2	based on operator or clinician-assessed outcomes of function ⁵⁴ and disability ⁵⁵ in
3	neurological populations. Of the items encompassing the checklist, Boxes 6, 7, 8, 9a, 9b,
4	10a-10d were used to assess reliability, measurement error, criterion validity,
5	convergent validity, discriminant or known-groups validity and responsiveness for each
6	study, respectively. Other items contained within the checklist were omitted for the
7	purposes of this review. The checklist uses a 4-point rating system in assigning ratings for
8	each item. Ratings of 4, 3, 2 or 1 were deemed very good, adequate, doubtful or inadequate,
9	respectively. In determining overall quality for each category, the lowest rating was used (i.e.,
10	worst score counts principle) ^{56,57} . A third reviewer (MP, MY) was consulted regarding any
11	discrepancies. The level of evidence for measurement property results was determined
12	using a best-evidence synthesis approach ⁵⁸ described in a previous systematic review of
13	reliability, validity, and responsiveness for physical capacity tasks that assessed
14	functioning in patients with low back pain ⁵⁹ . Criteria for strong, moderate, limited,
15	unknown, or conflicting levels of evidence are also described in detail ⁵⁹ . Briefly, a
16	positive, indeterminate or negative rating was first assigned according to an established
17	criterion for rating measurement properties reported by Prinsen et al ⁶⁰ . Levels of
18	evidence for measurement property ratings were then assigned according to
19	measurement property rating consistency, combined sample size, and methodological

- quality for articles with similar or comparable outcome measures (i.e., quantitative,
 semi-quantitative estimates of muscle stiffness).
 3
- A qualitative synthesis was conducted by tabulating data according to sample population, 5 measurement site and UE technique. Comprehensive Meta-Analysis software (CMA version 6 3.0, Biostat Inc., Englewood, New Jersey, USA) was used for quantitative analyses. 7 Subgroup analyses consisted of \geq 3 homologous studies which assessed measurement 8 reliability. Correlation coefficients (ICC) were transformed to Fisher's Z scale for analysis ⁶¹. 9 10 The software accommodates the combination of multiple outcomes (i.e., measurement sites, probe orientations or operators) which were pooled to calculate a single metric for analysis. 11 Proportion of variance between studies was interpreted using Higgins' I² statistic and 95% 12 prediction intervals (PI) were calculated to express absolute estimates of heterogeneity for 13 each subgroup analysis ⁶². A random effects model was chosen with the assumption ICCs 14 would vary between studies. Prior to subgroup analyses a univariate meta-regression was 15 performed to determine the effect of independent factors related to study design (i.e., ICC 16 model and form) on overall correlation estimates (i.e., dependent factor) ⁶³. 17

4

Data synthesis & analysis

19 **Results**

1 Screening

2	A flow diagram summarizing the screening process and results is provided in Figure 1.
3	A total of 21 articles involving 326 individuals with neurological conditions and 177
4	control subjects met the criteria for final inclusion ^{7,8,20,22,23,25,27,64-77} . Excluded articles were
5	either case studies ^{20,24} or did not report measurement validity or reliability ³⁸ .
6	
7	Study characteristics
8	A summary of study characteristics and outcomes is provided in Table 1 and a list of all
9	abbreviated terms for tables and figures is provided in the supplementary appendices
9 10	abbreviated terms for tables and figures is provided in the supplementary appendices (Supplementary Appendix B). Study designs varied in type and complexity. Most were
9 10 11	abbreviated terms for tables and figures is provided in the supplementary appendices (Supplementary Appendix B). Study designs varied in type and complexity. Most were observational studies of either cross-sectional or longitudinal design ^{8,23,65-78} with two
9 10 11 12	abbreviated terms for tables and figures is provided in the supplementary appendices (Supplementary Appendix B). Study designs varied in type and complexity. Most were observational studies of either cross-sectional or longitudinal design ^{8,23,65-78} with two measuring reliability as a primary outcome ^{75,77} . Six studies described the use of blinding

14 others described as examiner, experimenter or investigator, or were not explicitly stated.

15 Neurological conditions investigated were stroke, CP, Duchenne muscular dystrophy (DMD)

16 and Parkinson's disease (PD). The medial gastrocnemius (MG), biceps brachii (BB) and

17 tibialis anterior (TA) muscles were the most commonly assessed sites. Measures were

18 collected during either passive or active muscle conditions with and without being

concomitantly monitored by electromyography (EMG). One study used a constant-current
 stimulator to elicit contractions ⁷¹.

3

4 *Ultrasound system*

A summary of system specifications, settings, software, reported units and value ranges 5 6 is provided in Table 2. UE systems varied across studies. All studies reported using linear array probes with frequencies ranging from 4-15MHz. Elastography methods involved either 7 8 a dynamic time-course with an acoustic radiation force application, quasi-static time-course 9 with a mechanical force application or dynamic with mechanical force. Commonly used 10 system settings were either standard musculoskeletal presets or shear wave elastography (SWE) mode. Units were reported as quantitative (SM, SWV) or semi-quantitative 11 12 estimates of muscle stiffness (SR or elastographic index/scores with either grey scale or 13 color histogram pixel intensity values). 14 Acquisition procedures 15 A summary of probe placement, fixation, applied compression, contact interface, 16 processing software and other image and data acquisition methods are found in Table 2. 17 18 For most studies, probe placement during image capture was performed in parallel alignment with fascicle orientation. Two studies investigated parallel and perpendicular alignments ^{75,77}. 19

1	All studies used linear probes suitable for superficial structures. A transmission or stand-off
2	gel couplant was used as the contact interface in several studies. The number of trials or
3	single images captured for each muscle site ranged from 2-15. Selected ROIs ranged from
4	4.8mm in circular diameter to 30mm ² in size and varied in placement depth, number and
5	shape.
6	
7	Reliability
8	A summary of reported ICCs and additional reliability information is provided in Table
9	3. According to the 95% CI of ICC estimations, reported values <0.5, between 0.5-0.75,
10	between 0.75-0.9 and >0.90, were indicative of either poor, moderate, good, or excellent
11	reliability, respectively. When considering all ICCs reported for studies, most demonstrated
12	moderate to good reliability (ICC=0.5-0.9, n=13). However, two studies investigating
13	reliability in patients with CP reported large variance in confidence intervals (95% CI =
14	0.33-0.84) ^{23,64} . Another study among patients with stroke demonstrated the substantial
15	variance in the range of reported ICCs (ICC = $0.00-0.87$) ⁷⁵ . Of all the included studies,
16	this was also the only study to report estimates of measurement error. Ranges for
17	measurement error varied substantially based on differences in probe placement and
18	muscles sites examined (SEM = 0.61-24.81) ⁷⁵ . One other study also assessed
19	measurement reliability using different probe placements among patients with stroke,

1	reporting considerably less variance in the range of ICCs (ICC = 0.55-0.85) ⁷⁷ in
2	comparison to the former ⁷⁵ . Comparative reliability of active versus passive muscle
3	conditions could not be determined from the study which investigated these conditions
4	concomitantly ⁸ . A graphical summary of subgroup analyses is provided in Figure 2. As
5	the results of the meta-regression showed no significant influence of ICC model and form on
6	overall correlation (Q=1.85, df=2, p=0.40), population-based subgroup analyses were
7	conducted. The overall correlation across subgroups was good (n=8, r=0.78, 95% CI=0.64-
8	0.86, p \leq 0.00) with no significant difference between groups based on population (Q=0.00,
9	df=1, p=0.97). For studies involving people with CP (n=4, r=0.78, 95% CI=0.58-0.89,
10	$p \le 0.00$) and with stroke (n=4, r=0.77, 95% CI=0.56-0.89, $p \le 0.00$), the correlation was good.
11	However, estimates of absolute heterogeneity indicated a wide dispersion in reliability
12	across studies involving patients with CP (95% PI=0.02-0.97). Proportion of variance
13	was mostly attributable to sampling error rather than true correlation (31.5%) (I^2 =31.5,
14	p=0.22). There was larger observed dispersion in estimates of absolute heterogeneity
15	across studies involving patients with stroke suggesting greater variance in measures
16	(95% PI=-0.52-0.99). Proportion of variance in true correlation was also larger (53.5%)
17	with less attributed to error (46.5%) (I^2 =53.5, p=0.09).
18	

Convergent validity

1	A summary of convergent validity and study comparators is provided in Table 3. Several
2	studies reported correlations between muscle stiffness and standardized assessments of
3	spasticity and functional motor recovery or impairment. In two studies involving subjects
4	with PD, Unified Parkinson's Disease Rating Scale (UPDRS) scores were positively
5	correlated with SM values (r=0.65, p \leq 0.00) ⁶⁶ and negatively correlated with SR (r=-0.78) ⁶⁸ .
6	For individuals with stroke, Fugl-Meyer assessment (FMA) scores were correlated with
7	side-to-side (i.e., paretic and non-paretic) difference in SWV values ($r^2=0.33$, $p=0.02$) ⁷⁴ and
8	values for paretic sides alone (r= -0.58) ⁶⁹ . Paretic side SWV values were positively correlated
9	with MAS (r=0.66) and TS scores (r=0.54) and negatively correlated with Stroke
10	Rehabilitation Assessment of Movement (STREAM) scores (r=-0.57) ^{8,77} . For individuals
11	with CP, several studies reported significant correlations not only between stiffness values
12	and functional scores $^{23-25,64}$ but also gray scale or color histogram pixel intensities 22,25 .
13	Correlation between stiffness and echo intensity (i.e., grey scale value) was also observed
14	among people with stroke ($r^2=0.70$, $p\leq0.00$) ⁷⁴ .
15	

Divergent validity

A summary of discriminant/known-groups validity is found in Table 3. In comparing
people with CP to controls, stiffness was significantly greater for the CP group in several
studies (p≤0.001) ^{22,64,65,70}. SWV values were also significantly higher in more-affected

1	limbs (p≤0.024) ⁷³ . However, when stratified according to motor function (i.e., GMFCS
2	Levels I and II), there were no significant differences in SWV between groups ⁷³ . In
3	individuals with PD, stiffness was significantly greater compared to controls (p \leq 0.05)
4	^{66,68} , with no difference between markedly and mildly symptomatic limbs (p≤0.05) ⁶⁶ .
5	Stiffness was significantly greater for people with DMD compared to controls across
6	almost all muscle sites and conditions (p≤0.005) ^{71,72,76} . For individuals with stroke,
7	findings varied by condition (i.e., spasticity, joint angle, muscle site, activation) with
8	significantly greater stiffness in paretic versus non-paretic limbs (p≤0.001) ^{8,74} and
9	controls during passive muscle states (p≤0.001) ⁸ . Differences in stiffness were also joint
10	angle specific ^{67,69,77,78} .
11	
12	Responsiveness
13	A summary of responsiveness is found in Table 3. A total of five studies examined pre-
14	to post-intervention changes in muscle stiffness 7,22,23,25,27. Most examined changes
15	following botulinum toxin injections in people with CP ^{7,22,23,25} . These studies reported
16	significant reductions in stiffness values or scores/indices following treatment (p≤0.05).
17	One study examined the effect of a robot-assisted stretching and joint mobility program

- 18 in individuals with stroke and showed that SR values for the paretic Achilles tendon
- 19 increased significantly from pre- to post-training (p=.045) ²⁷. Additionally, two

longitudinal studies examining the effect of disease progression in people with DMD
 showed SM values significantly increased between 0 (pre) and 12 months (post)
 (p<0.001)^{71,72}.

4

5 *Quality assessment & level of evidence*

6 A summary of the quality assessment, measurement property result ratings and level of 7 evidence synthesis is provided in Table 4. Methodological quality ratings for reliability 8 (Box 6) were adequate for most studies, with one study rated as doubtful due to unclear description of testing conditions and time intervals between assessments ⁶⁶. 9 Measurement error (Box 7) assessed for one study was adequate ⁷⁵. Criterion validity 10 11 (Box 8) and responsiveness (Box 10a) using a criterion approach were not assessed due 12 to a lack of concurrent comparators. Convergent validity (Box 9a) and discriminant/ 13 known-groups validity (Box 9b) were very good or adequate for most studies. Two studies were rated as doubtful for convergent validity due to suboptimal analyses and 14 inadequate reporting of outcomes ^{64,76}. Three studies were rated doubtful or inadequate 15 for discriminant/ known-groups validity for inadequate reporting of relevant subgroup 16 characteristics and suboptimal analyses ^{67,76,78}. Responsiveness using a construct 17 approach for outcome (Box 10b), between subgroups (Box 10c) or pre-to-post 18 19 intervention comparisons (Box 10d) was very good for all studies.

1	Several studies stated a priori hypotheses 65,66,68,69,71,73,76,77. When not explicitly stated,
2	the authors expectations or assumptions were compared to reported outcomes (i.e.,
3	correlations, between-group differences, pre-to-post intervention values) in determining
4	measurement property result ratings for validity and responsiveness. Results of the best-
5	evidence synthesis suggest there is a moderate level of evidence for negative ratings of
6	interrater reliability (ICC < 0.70) for stiffness estimates using quantitative UE methods.
7	For intrarater reliability using quantitative methods, the level of evidence was moderate
8	for positive ratings (ICC > 0.70). For semi-quantitative methods, the level of evidence for
9	positive ratings was unknown for interrater reliability and limited for intrarater
10	reliability due low total sample size (< 50). The level of evidence for an indeterminate
11	rating of measurement error in one study using a quantitative method was unknown.
12	For convergent validity (hypothesis testing) of quantitative methods, the level of
13	evidence for positive ratings (i.e., mostly in accordance with hypotheses) was strong. The
14	level of evidence for positive ratings was moderate for semi-quantitative methods due to
15	sample size (< 100). For discriminant/ known-groups validity of quantitative methods,
16	the level of evidence for positive ratings was strong. Limited level of evidence for
17	positive ratings of semi-quantitative methods was also due to lower total sample size (<
18	50). The level of evidence for positive ratings of responsiveness of studies involving

1	quantitative methods was limited. For semi-quantitative methods, the level of evidence
2	for positive ratings was moderate due to higher sample size (> 25).

4 Discussion

5 *Reliability*

6 Studies reporting ICCs indicated mostly moderate to good measurement reliability overall. 7 The methodological quality of most of these studies was also determined to be adequate. 8 However, the results of the level of evidence synthesis suggest that evidence for intrarater reliability was stronger than interrater reliability for both quantitative and 9 semi-quantitative methods. The evidence also ranged from moderate for quantitative 10 estimates of stiffness, to unknown for semi-quantitative estimates. Furthermore, 11 12 estimates of measurement error were not reported in most studies that assessed 13 measurement reliability. This is an important metric not only for reliability, but for interpreting clinically meaningful changes in health-related outcomes ⁷⁹. Subgroup 14 analyses demonstrated pooled estimates of reliability were good overall with roughly 15 equivocal correlations for CP and stroke subgroups. However, of the studies investigating 16 reliability in **people with stroke** as a primary outcome ^{75,77}, there was a large range in 17 18 reported coefficients (ICC range=0.00-0.87). While the dispersion in estimates of 19 heterogeneity were large for the CP subgroup (95% PI=0.02-0.97), the stroke subgroup

1	was comparatively wider (95% PI=-0.52-0.99), suggesting the need for greater precision
2	in measurement protocols. The variability in estimates may be attributable to differences
3	in selected muscle sites, muscle activity, operator experience, probe alignment, ultrasound
4	system and acquisition procedures used and subject age and gender.
5	
6	In adult populations without neurological conditions, stiffness measures have been
7	shown to vary by depth, activity and joint angle. Using a curvilinear probe in deep
8	penetration mode, Blain et al demonstrated greater reliability for the superficial erector spinae
9	than deeper multifidus muscles ⁸⁰ . Alfuraih et al also reported better reliability for more
10	superficial than comparatively deeper muscles ⁸¹ . Generally, the greater the depth of a given
11	anatomical structure, the greater the attenuation effect on acoustic pulse transmission and
12	wave tracking ³⁵ , which may affect reliability ⁸¹ . In isotropic tissues such as the thyroid, signal
13	strength may diminish at depths between 4-6cm. In anisotropic tissues such as muscle, signal
14	diminishment may occur at lesser depths ⁸² . It is unknown to what degree signal
15	attenuation and probe type and measurement depth affect reliability in neurological
16	populations. Stiffness has also been shown to have a linear relationship with joint torque in
17	passive and active muscle ⁴² . The use of EMG may be particularly necessary in order to
18	monitor muscle activation status when assessing patients with spasticity (i.e., stroke). Of the
19	two studies investigating reliability in individuals with stroke as a primary outcome ^{75,77} ,

1	only one involved the use of EMG during measures ⁷⁷ . The other where stiffness was
2	measured at multiple muscle sites and probe orientations demonstrated considerable
3	variance in estimates of reliability and measurement error ⁷⁵ . Although reliability was
4	not a primary outcome, the study by Eby et al investigating muscle stiffness and torque
5	response to passive elbow extension after stroke also incorporated the use of EMG and
6	reported a comparatively smaller range of ICCs (ICC = $0.75-0.99$) ⁷⁸ .
7	
8	The influence of age on the reliability of stiffness measures is inconclusive. Only one study
9	examined age-related differences on muscle stiffness showing that lower limb SM at different
10	lengths was correlated with age in individuals with DMD (r=0.55-0.74, p \leq 0.05) but not
11	among controls (r<0.43) 72 . However, these findings do not suggest age has any substantive
12	impact on reliability.
13	
14	The amount of previous training or experience in musculoskeletal ultrasound and
15	elastography also appears to influence measurement reliability. The range of reported
16	reliability estimates was greater for studies with poorly defined operator experience (ICC
17	range=0.00-0.94) than those with clearly defined experience (ICC range=0.65-0.92). Among
18	these studies, operators were described as radiologists, physicians or physiatrists with 2-17
19	years of relevant experience.

2	There was also considerable variance among studies using multiple probe orientations.
3	Mathevon et al demonstrated slightly greater variance for measures in perpendicular (ICC
4	range=0.00-0.73) compared to parallel probe alignments (ICC range=0.27-0.87) ⁷⁵ . Wu et al
5	also showed greater intrarater and interrater reliability for parallel (ICC=0.85 and 0.76,
6	respectively) compared to perpendicular alignments (ICC=0.71 and 0.55, respectively) ⁷⁷ . As
7	shear waves propagate longitudinally in alignment with muscle fiber direction, aligning the
8	probe parallel to fibers may enhance measurement accuracy ⁸³ . Perpendicular alignments, in
9	contrast, have shown greater dispersion of shear waves ^{39,84} .
10	
11	Other aspects of measurement acquisition may also contribute to variability. ROI varied
12	across most studies, which has been shown to influence values in regional tissue mapping
13	studies ⁸⁵ . Lack of contact interface standardization is another source of variability, as
14	differences in the use of transmission gel have been shown to influence consistency ⁸¹ .
15	Discrepancies in reported values between studies (i.e., kPa, m/s, etc.) is also problematic,
16	as these values are related but separate phenomena ⁸⁶ . Tissue stiffness estimations are
17	predicated upon static deformation models of elastic materials and described as stress
18	(i.e., the force per unit in a given area) divided by strain (i.e., the expansion per unit of
19	length), which is the equivalent of an elastic modulus value ³⁶ . It is important to note that

1	most UE systems operate under an assumption of material linearity wherein tissues are
2	homogenous or structurally similar, isotropic (i.e., identical property values in all
3	directions), and are non-viscous (i.e., identical fluid consistency) ³⁵ . Examples which fit
4	these assumptions in an absolute sense would be materials such as metal or glass.
5	However, muscle tissues are heterogeneous, anisotropic and viscoelastic given the
6	variation in their structural composition and fluid consistency ³³ . For SWE systems,
7	SWV is likely to be the most appropriate unit for interpretability across studies as this a
8	measure of shear wave dispersion ³³ . While the SM (i.e., stiffness estimation under the
9	assumption of an absolute elasticity model) may be appropriate for isotropic tissues like
10	the liver ⁸⁷ , muscle tissues are largely anisotropic due to fascicle order and orientation ⁸⁸ .
10 11	the liver ⁸⁷ , muscle tissues are largely anisotropic due to fascicle order and orientation ⁸⁸ .
10 11 12	the liver ⁸⁷ , muscle tissues are largely anisotropic due to fascicle order and orientation ⁸⁸ . Intersystem differences may also contribute to variance across studies. UE systems use
10 11 12 13	the liver ⁸⁷ , muscle tissues are largely anisotropic due to fascicle order and orientation ⁸⁸ . Intersystem differences may also contribute to variance across studies. UE systems use their own unique algorithms for capturing images and calculating stiffness values and
10 11 12 13 14	the liver ⁸⁷ , muscle tissues are largely anisotropic due to fascicle order and orientation ⁸⁸ . Intersystem differences may also contribute to variance across studies. UE systems use their own unique algorithms for capturing images and calculating stiffness values and can be generally categorized by either quasi-static or dynamic means of excitation ^{35,89} .
10 11 12 13 14	 the liver ⁸⁷, muscle tissues are largely anisotropic due to fascicle order and orientation ⁸⁸. Intersystem differences may also contribute to variance across studies. UE systems use their own unique algorithms for capturing images and calculating stiffness values and can be generally categorized by either quasi-static or dynamic means of excitation ^{35,89}. Dynamic methods are complex involving a varying time-course force application in the
10 11 12 13 14 15 16	the liver ⁸⁷ , muscle tissues are largely anisotropic due to fascicle order and orientation ⁸⁸ . Intersystem differences may also contribute to variance across studies. UE systems use their own unique algorithms for capturing images and calculating stiffness values and can be generally categorized by either quasi-static or dynamic means of excitation ^{35,89} . Dynamic methods are complex involving a varying time-course force application in the form of vibration or an acoustic force pulse with a specific frequency (50 to 500 Hz) and
10 11 12 13 14 15 16 17	the liver ⁸⁷ , muscle tissues are largely anisotropic due to fascicle order and orientation ⁸⁸ . Intersystem differences may also contribute to variance across studies. UE systems use their own unique algorithms for capturing images and calculating stiffness values and can be generally categorized by either quasi-static or dynamic means of excitation ^{35,89} . Dynamic methods are complex involving a varying time-course force application in the form of vibration or an acoustic force pulse with a specific frequency (50 to 500 Hz) and often use ultrafast imaging of induced displacements or deformations ^{30,90} . These

19 propagation speeds (approx. 1500 m/s) or shear waves with low propagation speeds

1	(approx. 1—50 m/s) ⁹¹ . Tissue displacements and wave velocities are then tracked and
2	tissue stiffness estimations are generated based on tissue motion, frequency shifts or
3	velocity changes ⁹² . While static and dynamic methods are similar in that both use an
4	external stress and follow changes in strain, the stress applied in dynamic methods is
5	definable and less operator-dependent, thus holding to the proportionality of Hooke's
6	Law in the estimation of Young's modulus and providing a more quantitative measure
7	^{91,93} . Static methods provide semi-quantitative strain ratio based estimations through
8	manual application of multi-compression cycles. However, long acquisition times and
9	difficulties in producing artifact-free compression cycles are inherent technical
10	challenges ^{84,93} . In studies exploring intersystem comparisons using dynamic and static
11	methods in tissue mimicking phantoms or muscle in vivo, dynamic methods have
12	demonstrated slightly greater measurement reliability ^{43,44,94,95} . In this review, fewer
13	studies used systems requiring mechanical force application (i.e., tissue compression).
14	Although these systems are associated with greater operator-dependent error, Wu et al and
15	Mathevon et al reported the largest variance in reliability using SWE systems (ICC
16	range=0.55-0.85 and 0.00-0.87, respectively) 75,77. Moreover, Gao et al reported good
17	interrater (ICC=0.84) and intrarater reliability (ICC=0.88) using a strain system ⁶⁸ . Good
18	intrarater reliability was also reported by Park et al (ICC=0.85, 0.87) and Kwon et al
19	(ICC=0.81, 0.88) using sonoelastography systems ^{25,70} . Furthermore, the operators in both

1	these studies were described as physiatrists with 16 to 17 years of experience in using
2	musculoskeletal ultrasound ^{25,70} . In comparison, Wu et al described the operator as a
3	physiatrist with 2 years of experience in musculoskeletal ultrasound ⁷⁷ . The operator in
4	the Mathevon et al study was described as an investigator with no mention of additional
5	experience or training outside of the measures collected for the study ⁷⁵ . Although the
6	risk of committing operator-related errors may be reduced with dynamic systems, it is
7	reasonable to assume that acceptable levels of measurement reliability can be achieved
8	with relevant training and experience in the use of other systems.
9	
10	Taken together, the current evidence suggests UE has moderate reliability when used among
11	neurological populations. Care should be taken to ensure measurement acquisition protocols
12	are standardized. Reliability appears to be more difficult to achieve with multiple
13	operators than in instances with a single operator. The use of EMG rather than visual
14	confirmation of muscle activity status may also be an important consideration in assessing
15	patients with characteristic spasticity or hypertonia.
16	
17	Validity
18	As expected, convergent validity was observed in studies with strong correlations between
19	stiffness and reduced functional motor recovery or increased impairment and spasticity.

1	Additionally, strong correlations between stiffness and grey scale or color histogram pixel
2	intensities were also observed. Higher echo intensity in musculoskeletal ultrasound is
3	generally indicative of greater organizational density of collagen rather than the presence of
4	fluid within tissues ⁹⁶ . For subjects with neurological conditions, this may represent changes
5	in composition, fiber type distribution and intrinsic mechanical properties resulting from
6	alterations in muscle tissue innervation ^{5,97} . Tissue composition alterations were also evident
7	in one study involving people with DMD which showed fatty replacement and patchy edema
8	on muscle MRI scans in addition to increased SM values ⁷⁶ . However, there was no
9	significant correlation between these parameters, perhaps due to the small cohort size. The
10	SWE method used was also not found to have any clear diagnostic advantage or greater
11	sensitivity in detecting early changes to muscle in comparison to MRI ⁷⁶ .
12	
13	Discriminant or known-groups validity was observed in more than half of included studies
13 14	Discriminant or known-groups validity was observed in more than half of included studies suggesting that UE may be useful in monitoring muscle pathology over time. The high degree
13 14 15	Discriminant or known-groups validity was observed in more than half of included studies suggesting that UE may be useful in monitoring muscle pathology over time. The high degree of responsiveness observed across intervention studies also suggests that UE may be useful in
13 14 15 16	Discriminant or known-groups validity was observed in more than half of included studies suggesting that UE may be useful in monitoring muscle pathology over time. The high degree of responsiveness observed across intervention studies also suggests that UE may be useful in evaluating response to treatment. However, there is no gold standard method for assessing
13 14 15 16 17	Discriminant or known-groups validity was observed in more than half of included studies suggesting that UE may be useful in monitoring muscle pathology over time. The high degree of responsiveness observed across intervention studies also suggests that UE may be useful in evaluating response to treatment. However, there is no gold standard method for assessing muscle stiffness. While concurrent methods (i.e., echo intensity, spasticity and motor function
13 14 15 16 17 18	Discriminant or known-groups validity was observed in more than half of included studies suggesting that UE may be useful in monitoring muscle pathology over time. The high degree of responsiveness observed across intervention studies also suggests that UE may be useful in evaluating response to treatment. However, there is no gold standard method for assessing muscle stiffness. While concurrent methods (i.e., echo intensity, spasticity and motor function scales) showed strong correlations with stiffness, they are separate constructs. Other methods

1	been used to examine stiffness after stroke ⁹⁸ and in patients with PD ⁹⁹ . Few studies have
2	examined the validity of using myotonometry and UE concurrently ¹⁰⁰ .
3	
4	Limitations of the studies reviewed
5	Many studies did not clearly define operator experience which may influence measurement
6	consistency. Of the included studies reporting estimates of reliability, most did not
7	provide estimates for measurement error. Another limitation was the lack of concurrent
8	comparators necessary for establishing criterion validity. Future research endeavors should
9	explore the concomitant use of existing technologies (i.e., magnetic resonance elastography,
10	myotonometry) in elucidating the validity of UE among neurological populations.
11	Additionally, the concomitant use of EMG may be important not only for reliability, as
12	previous described, but also measurement validity. Although there were strong
13	correlations between clinical assessments of spasticity (i.e., FMA, MAS) and muscle
14	stiffness measures ^{8,69,74,77} , these assessments are limited in their ability to distinguish
15	between active reflex or neurogenic components of stiffness and passive non-reflex
16	mediated components ¹⁰¹ . It is also unknown whether degenerative within-subject
17	factors such as bilateral differences in motor-unit threshold and denervation of affected
18	limbs ¹⁰² also contribute to muscle stiffness. When paired with UE, electrophysiological
19	evaluation may be of value in this regard.

Limitations of this systematic review

3	As overall estimates of reliability were similar for CP and stroke subgroups, differences
4	in measurement protocols may have contributed substantially to the observed
5	heterogeneity between subgroups. These methodological differences negatively influence
6	the interpretability of the review findings. Although the number of studies involving
7	persons with stroke and CP was sufficient for conducting subgroup analyses, the number of
8	studies assessing reliability among other neurological populations (i.e., PD, DMD) were
9	limited. To the knowledge of the authors, there is currently no research examining the use of
10	UE in other neurological populations (i.e., SCI) not described in this review. This will require
11	future investigation. There was also a paucity of studies examining UE responsiveness
12	following non-invasive treatments for individuals with neurological conditions. This may
13	be an important, yet unaddressed, aspect of the technology which translates to routine
14	clinical application. Studies which assess pre- to -post changes in muscle stiffness
15	following common non-invasive therapeutic modalities are needed moving forward.
16	
17	Conclusion

Overall, UE demonstrates moderate reliability evaluating in-vivo muscle stiffness across
a range of neurological populations. This method also demonstrates strong convergent

1	valid	ity with relevant clinical assessments, and strong divergent validity in						
2	discr	iminating tissue changes within and between groups. However, further investigation						
3	regar	ding UE systems, image acquisition procedures and the use of concurrent assessments						
4	may	be warranted to standardize measurement protocols and potentially enhance reliability						
5	and v	validity.						
6								
7	Role	of funding sources						
8	Thre	e of the review team members (TM, SLT, MH) were supported by general research						
9	studentships provided by The Hong Kong Polytechnic University through the							
10	Department of Rehabilitation Sciences.							
11								
12	Conf	lict of interest						
13	The a	authors have no conflicts of interest to declare.						
14								
15 16	Refe	rences						
10 17 18	1.	Foran JR, Steinman S, Barash I, Chambers HG, Lieber RL. Structural and mechanical alterations in spastic skeletal muscle. <i>Dev Med Child Neurol</i> , 2007;47(10);713-717.						
19	2.	Lieber RL, Ward SR. Cellular Mechanisms of Tissue Fibrosis. 4. Structural and						
20		functional consequences of skeletal muscle fibrosis. Am J Physiol Cell Physiol.						
21		2013;305(3):C241-C252.						
22	3.	Ito J-I, Araki A, Tanaka H, Tasaki T, Cho K, Yamazaki R. Muscle histopathology in spastic						
23	4	cerebrai paisy. <i>Brain Dev.</i> 1996;18(4):299-303.						
24	4.	Ponten LIVI, Stal PS. Decreased capillarization and a shift to fast myosin heavy chain						

1 2		IIx in the biceps brachii muscle from young adults with spastic paresis. <i>J Neurol Sci.</i> 2007:253(1-2):25-33
-	5.	Smith LR. Lee KS. Ward SR. Chambers HG. Lieber RL. Hamstring contractures in
4		children with spastic cerebral palsy result from a stiffer extracellular matrix and
5		increased in vivo sarcomere length. <i>J Physiol.</i> 2011;589(Pt 10):2625-2639.
6	6.	Lieber RL. Fridén J. Spasticity causes a fundamental rearrangement of muscle-joint
7	•	interaction. <i>Muscle Nerve</i> . 2002:25(2):265-270.
8	7.	Brandenburg JE. Eby SF. Song P. Bamlet WR. Sieck GC. An KN. Quantifying Effect of
9		Onabotulinum Toxin A on Passive Muscle Stiffness in Children with Cerebral Palsy
10		Using Ultrasound Shear Wave Elastography. Am J Phys Med Rehabil. 2018:97(7):500-
11		506.
12	8.	Lee SSM, Jakubowski KL, Spear SC, Rymer WZ. Muscle material properties in passive
13		and active stroke-impaired muscle. J Biomech. 2018.
14	9.	Haus JM, Carrithers JA, Trappe SW, Trappe TA. Collagen, cross-linking, and advanced
15		glycation end products in aging human skeletal muscle. J Appl Physiol.
16		2007;103(6):2068-2076.
17	10.	Kjær M. Role of Extracellular Matrix in Adaptation of Tendon and Skeletal Muscle to
18		Mechanical Loading. Physiol Rev. 2004;84(2):649-698.
19	11.	Neagoe C, Opitz CA, Makarenko I, Linke WA. Gigantic variety: expression patterns of
20		titin isoforms in striated muscles and consequences for myofibrillar passive stiffness. J
21		Muscle Res Cell Motil. 2003;24(2):175-189.
22	12.	Miscio G, Del Conte C, Pianca D, et al. Botulinum toxin in post-stroke patients:
23		stiffness modifications and clinical implications. J Neurol. 2004;251(2):189-196.
24	13.	Escolar DM, Henricson EK, Mayhew J, et al. Clinical evaluator reliability for
25		quantitative and manual muscle testing measures of strength in children. Muscle
26		Nerve. 2001;24(6):787-793.
27	14.	Alhusaini AAA, Dean CM, Crosbie J, Shepherd RB, Lewis J. Evaluation of Spasticity in
28		Children With Cerebral Palsy Using Ashworth and Tardieu Scales Compared With
29		Laboratory Measures. J Child Neurol. 2010;25(10):1242-1247.
30	15.	Seynnes OR, Bojsen-Moller J, Albracht K, et al. Ultrasound-based testing of tendon
31		mechanical properties: a critical evaluation. J Appl Physiol. 2015;118(2):133-141.
32	16.	Barber L, Barrett R, Lichtwark G. Passive muscle mechanical properties of the medial
33		gastrocnemius in young adults with spastic cerebral palsy. J Biomech.
34		2011;44(13):2496-2500.
35	17.	Brandenburg JE, Eby SF, Song P, et al. Ultrasound elastography: the new frontier in
36		direct measurement of muscle stiffness. Arch Phys Med Rehabil. 2014;95(11):2207-
37		2219.
38	18.	Bockbrader MA, Thompson RD, Way DP, et al. Toward a Consensus for

1		Musculoskeletal Ultrasonography Education in Physical Medicine and Rehabilitation:
2		A National Poll of Residency Directors. Am J Phys Med Rehabil. 2019;98(8):715-724.
3	19.	Kooijman MK, Swinkels ICS, Koes BW, de Bakker D, Veenhof C. One in six
4		physiotherapy practices in primary care offer musculoskeletal ultrasound - an
5		explorative survey. BMC Health Serv Res. 2020;20(1):246.
6	20.	Eby SF, Zhao H, Song P, et al. Quantifying spasticity in individual muscles using shear
7		wave elastography. Radiol Case Rep. 2017;12(2):348-352.
8	21.	Park GY, Kwon DR. Application of real-time sonoelastography in musculoskeletal
9		diseases related to physical medicine and rehabilitation. Am J Phys Med Rehabil.
10		2011;90(11):875-886.
11	22.	Boyaci A, Tutoglu A, Boyaci N, et al. Changes in spastic muscle stiffness after
12		botulinum toxin A injections as part of rehabilitation therapy in patients with spastic
13		cerebral palsy. NeuroRehabil. 2014;35(1):123-129.
14	23.	Ceyhan Bilgici M, Bekci T, Ulus Y, Bilgici A, Tomak L, Selcuk MB. Quantitative
15		assessment of muscle stiffness with acoustic radiation force impulse elastography
16		after botulinum toxin A injection in children with cerebral palsy. J Med Ultrason
17		(2001). 2018;45(1):137-141.
18	24.	Kwon DR, Park GY, Kwon JG. The change of intrinsic stiffness in gastrocnemius after
19		intensive rehabilitation with botulinum toxin a injection in spastic diplegic cerebral
20		palsy. Ann Rehabil Med. 2012;36(3):400-403.
21	25.	Park GY, Kwon DR. Sonoelastographic evaluation of medial gastrocnemius muscles
22		intrinsic stiffness after rehabilitation therapy with botulinum toxin a injection in
23		spastic cerebral palsy. Arch Phys Med Rehabil. 2012;93(11):2085-2089.
24	26.	Vasilescu D, Vasilescu D, Dudea SM, Sfringeu S, Cosma D. Sonoelastography
25		contribution in cerebral palsy spasticity treatment assessment, preliminary report: a
26		systematic review of the literature apropos of seven patients. Med Ultrason.
27		2010;12(4):306-310.
28	27.	Shao Y-H, Peng Z, Kong X, Wang B, Zhang H. Real-time ultrasound elastography
29		evaluation of achilles tendon properties in patients with mild hemiplegic stroke after
30		rehabilitation training. J Ultrasound Med. 2019;38(3):713-723.
31	28.	Lerner RM, Huang SR, Parker KJ. "Sonoelasticity" images derived from ultrasound
32		signals in mechanically vibrated tissues. Ultrasound Med Biol. 1990;16(3):231-239.
33	29.	Ophir J, Céspedes I, Ponnekanti H, Yazdi Y, Li X. Elastography: A Quantitative Method
34		for Imaging the Elasticity of Biological Tissues. Ultrason Imaging. 1991;13(2):111-134.
35	30.	Bercoff J, Tanter M, Fink M. Supersonic shear imaging: a new technique for soft tissue
36		elasticity mapping. IEEE Trans Ultrason Ferroelectr Freq Control. 2004;51(4):396-409.
37	31.	Lima K, Costa Junior JFS, Pereira WCA, Oliveira LF. Assessment of the mechanical
38		properties of the muscle-tendon unit by supersonic shear wave imaging elastography:

1		a review. Ultrasonography. 2018;37(1):3-15.
2	32.	Pedersen M, Fredberg U, Langberg H. Sonoelastography as a Diagnostic Tool in the
3		Assessment of Musculoskeletal Alterations: A Systematic Review. Ultraschall in Med.
4		2012;33(05):441-446.
5	33.	Ryu J, Jeong WK. Current status of musculoskeletal application of shear wave
6		elastography. Ultrasonography. 2017;36(3):185-197.
7	34.	Wu C-H, Chen W-S, Park G-Y, Wang T-G, Lew HL. Musculoskeletal Sonoelastography: A
8		Focused Review of its Diagnostic Applications for Evaluating Tendons and Fascia. J
9		Med Ultrasound. 2012;20(2):79-86.
10	35.	Sarvazyan A, J Hall T, W Urban M, Fatemi M, R Aglyamov S, S Garra B. An overview of
11		elastography-an emerging branch of medical imaging. Curr Med Imaging Rev.
12		2011;7(4):255-282.
13	36.	Sigrist RMS, Liau J, Kaffas AE, Chammas MC, Willmann JK. Ultrasound Elastography:
14		Review of Techniques and Clinical Applications. Theranostics. 2017;7(5):1303-1329.
15	37.	Barr RG. Elastography in clinical practice. Radiol Clin North Am. 2014;52(6):1145-
16		1162.
17	38.	Rasool G, Wang AB, Rymer WZ, Lee SS. Altered viscoelastic properties of stroke-
18		affected muscles estimated using ultrasound shear waves—Preliminary data. Paper
19		presented at: Engineering in Medicine and Biology Society (EMBC), 2016 IEEE 38th
20		Annual International Conference.
21	39.	Brum J, Bernal M, Gennisson JL, Tanter M. In vivo evaluation of the elastic anisotropy
22		of the human Achilles tendon using shear wave dispersion analysis. Phys Med Biol.
23		2014;59(3):505-523.
24	40.	Aubry S, Nueffer J-P, Tanter M, Becce F, Vidal C, Michel F. Viscoelasticity in Achilles
25		Tendonopathy: Quantitative Assessment by Using Real-time Shear-Wave
26		Elastography. <i>Radiology</i> . 2015;274(3):821-829.
27	41.	Ooi CC, Malliaras P, Schneider ME, Connell DA. "Soft, hard, or just right?" Applications
28		and limitations of axial-strain sonoelastography and shear-wave elastography in the
29		assessment of tendon injuries. Skeletal Radiol. 2014;43(1):1-12.
30	42.	Koo TK, Hug F. Factors that influence muscle shear modulus during passive stretch. J
31		Biomech. 2015;48(12):3539-3542.
32	43.	Mulabecirovic A, Vesterhus M, Gilja OH, Havre RF. In Vitro Comparison of Five
33		Different Elastography Systems for Clinical Applications, Using Strain and Shear Wave
34		Technology. Ultrasound Med Biol. 2016;42(11):2572-2588.
35	44.	Alfuraih AM, O'Connor P, Tan AL, Hensor E, Emery P, Wakefield RJ. An investigation
36		into the variability between different shear wave elastography systems in muscle.
37		Med Ultrason. 2017;19(4):392-400.
38	45.	Helfenstein-Didier C, Andrade RJ, Brum J, et al. In vivo quantification of the shear

1		modulus of the human Achilles tendon during passive loading using shear wave
2		dispersion analysis. Phys Med Biol. 2016;61(6):2485-2496.
3	46.	Lacourpaille L, Hug F, Bouillard K, Hogrel JY, Nordez A. Supersonic shear imaging
4		provides a reliable measurement of resting muscle shear elastic modulus. Physiol
5		Meas. 2012;33(3):N19-28.
6	47.	Kelly JP, Koppenhaver SL, Michener LA, Proulx L, Bisagni F, Cleland JA. Characterization
7		of tissue stiffness of the infraspinatus, erector spinae, and gastrocnemius muscle
8		using ultrasound shear wave elastography and superficial mechanical deformation. J
9		Electromyogr Kinesiol. 2018;38:73-80.
10	48.	Andonian P, Viallon M, Le Goff C, et al. Shear-Wave Elastography Assessments of
11		Quadriceps Stiffness Changes prior to, during and after Prolonged Exercise: A
12		Longitudinal Study during an Extreme Mountain Ultra-Marathon. PLoS One.
13		2016;11(8):e0161855.
14	49.	Gilbert F, Klein D, Weng AM, et al. Supraspinatus muscle elasticity measured with real
15		time shear wave ultrasound elastography correlates with MRI spectroscopic
16		measured amount of fatty degeneration. BMC Musculoskelet Disord. 2017;18(1):549.
17	50.	Zhang ZJ, Ng GY, Lee WC, Fu SN. Changes in morphological and elastic properties of
18		patellar tendon in athletes with unilateral patellar tendinopathy and their
19		relationships with pain and functional disability. PLoS One. 2014;9(10):e108337.
20	51.	Masaki M, Aoyama T, Murakami T, et al. Association of low back pain with muscle
21		stiffness and muscle mass of the lumbar back muscles, and sagittal spinal alignment
22		in young and middle-aged medical workers. Clin Biomech (Bristol, Avon).
23		2017;49:128-133.
24	52.	Liberati A, Altman DG, Tetzlaff J, et al. The PRISMA statement for reporting systematic
25		reviews and meta-analyses of studies that evaluate healthcare interventions:
26		explanation and elaboration. BMJ. 2009;339:b2700.
27	53.	Mokkink LB, Terwee CB, Patrick DL, et al. The COSMIN checklist for assessing the
28		methodological quality of studies on measurement properties of health status
29		measurement instruments: an international Delphi study. Qual Life Res.
30		2010;19(4):539-549.
31	54.	Yang L, Liao LR, Lam FM, He CQ, Pang MY. Psychometric properties of dual-task
32		balance assessments for older adults: a systematic review. Maturitas. 2015;80(4):359-
33		369.
34	55.	Oftedal S, Bell KL, Mitchell LE, Davies PS, Ware RS, Boyd RN. A systematic review of
35		the clinimetric properties of habitual physical activity measures in young children
36		with a motor disability. Int J Pediatr. 2012;2012:976425.
37	56.	Mokkink LB, de Vet HCW, Prinsen CAC, et al. COSMIN Risk of Bias checklist for
38		systematic reviews of Patient-Reported Outcome Measures. Qual Life Res.

1		2018;27(5):1171-1179.
2	57.	Terwee CB, Mokkink LB, Knol DL, Ostelo RW, Bouter LM, de Vet HC. Rating the
3		methodological quality in systematic reviews of studies on measurement properties:
4		a scoring system for the COSMIN checklist. Qual Life Res. 2012;21(4):651-657.
5	58.	Vet HCWd. Measurement in medicine : a practical guide. Cambridge
6		New York: Cambridge University Press; 2011.
7	59.	Jakobsson M, Gutke A, Mokkink LB, Smeets R, Lundberg M. Level of Evidence for
8		Reliability, Validity, and Responsiveness of Physical Capacity Tasks Designed to Assess
9		Functioning in Patients With Low Back Pain: A Systematic Review Using the COSMIN
10		Standards. Phys Ther. 2018;99(4):457-477.
11	60.	Prinsen CA, Vohra S, Rose MR, et al. How to select outcome measurement
12		instruments for outcomes included in a "Core Outcome Set" - a practical guideline.
13		Trials. 2016;17(1):449.
14	61.	Borenstein M. Introduction to meta-analysis. Chichester: John Wiley & Sons; 2009.
15	62.	Borenstein M, Higgins JP, Hedges LV, Rothstein HR. Basics of meta-analysis: I(2) is not
16		an absolute measure of heterogeneity. <i>Res Synth Methods</i> . 2017;8(1):5-18.
17	63.	Borenstein M, Hedges LV, Higgins JP, Rothstein HR. A basic introduction to fixed-effect
18		and random-effects models for meta-analysis. Res Synth Methods. 2010;1(2):97-111.
19	64.	Bilgici MC, Bekci T, Ulus Y, et al. Quantitative assessment of muscular stiffness in
20		children with cerebral palsy using acoustic radiation force impulse (ARFI) ultrasound
21		elastography. J Med Ultrason (2001). 2018;45(2):295-300.
22	65.	Brandenburg JE, Eby SF, Song P, et al. Quantifying passive muscle stiffness in children
23		with and without cerebral palsy using ultrasound shear wave elastography. Dev Med
24		Child Neurol. 2016;58(12):1288-1294.
25	66.	Du LJ, He W, Cheng LG, Li S, Pan YS, Gao J. Ultrasound shear wave elastography in
26		assessment of muscle stiffness in patients with Parkinson's disease: a primary
27		observation. Clin Imaging. 2016;40(6):1075-1080.
28	67.	Gao J, He W, Du LJ, et al. Quantitative Ultrasound Imaging to Assess the Biceps Brachii
29		Muscle in Chronic Post-Stroke Spasticity: Preliminary Observation. Ultrasound Med
30		<i>Biol.</i> 2018.
31	68.	Gao J, He W, Du L-J, et al. Ultrasound strain elastography in assessment of resting
32		biceps brachii muscle stiffness in patients with Parkinson's disease: a primary
33		observation. Clin Imaging. 2016;40(3):440-444.
34	69.	Jakubowski KL, Terman A, Santana RVC, Lee SSM. Passive material properties of
35		stroke-impaired plantarflexor and dorsiflexor muscles. Clin Biomech (Bristol, Avon).
36		2017;49:48-55.
37	70.	Kwon DR, Park GY, Lee SU, Chung I. Spastic Cerebral Palsy in Children: Dynamic
38		Sonoelastographic Findings of Medial Gastrocnemius. Radiology. 2012;263(3):794-

801. 1 2 71. Lacourpaille L, Gross R, Hug F, et al. Effects of Duchenne muscular dystrophy on 3 muscle stiffness and response to electrically-induced muscle contraction: A 12-month 4 follow-up. Neuromuscul Disord. 2017;27(3):214-220. 5 72. Lacourpaille L, Hug F, Guevel A, et al. Non-invasive assessment of muscle stiffness in 6 patients with Duchenne muscular dystrophy. Muscle Nerve. 2015;51(2):284-286. 7 73. Lee SS, Gaebler-Spira D, Zhang LQ, Rymer WZ, Steele KM. Use of shear wave 8 ultrasound elastography to quantify muscle properties in cerebral palsy. Clin Biomech 9 (Bristol, Avon). 2016;31:20-28. 10 Lee SS, Spear S, Rymer WZ. Quantifying changes in material properties of stroke-74. impaired muscle. Clin Biomech (Bristol, Avon). 2015;30(3):269-275. 11 12 75. Mathevon L, Michel F, Aubry S, et al. Two-dimensional and shear wave elastography 13 ultrasound: A reliable method to analyse spastic muscles? Muscle Nerve. 14 2018;57(2):222-228. 15 76. Pichiecchio A, Alessandrino F, Bortolotto C, et al. Muscle ultrasound elastography and 16 MRI in preschool children with Duchenne muscular dystrophy. Neuromuscul Disord. 17 2018;28(6):476-483. 18 77. Wu CH, Ho YC, Hsiao MY, Chen WS, Wang TG. Evaluation of Post-Stroke Spastic 19 Muscle Stiffness Using Shear Wave Ultrasound Elastography. Ultrasound Med Biol. 20 2017;43(6):1105-1111. 21 Eby S, Zhao H, Song P, et al. Quantitative Evaluation of Passive Muscle Stiffness in 78. 22 Chronic Stroke. Am J Phys Med Rehabil. 2016;95(12):899-910. 23 79. Crosby RD, Kolotkin RL, Williams GR. Defining clinically meaningful change in health-24 related quality of life. J Clin Epidemiol. 2003;56(5):395-407. 25 Blain M, Bedretdinova D, Bellin MF, et al. Influence of thoracolumbar fascia stretching 80. 26 on lumbar back muscle stiffness: A supersonic shear wave elastography approach. 27 *Clin Anat.* 2019;32(1):73-80. 28 81. Alfuraih AM, O'Connor P, Hensor E, Tan AL, Emery P, Wakefield RJ. The effect of unit, 29 depth, and probe load on the reliability of muscle shear wave elastography: Variables 30 affecting reliability of SWE. J Clin Ultrasound. 2018;46(2):108-115. 31 82. Goertz RS, Amann K, Heide R, Bernatik T, Neurath MF, Strobel D. An abdominal and 32 thyroid status with Acoustic Radiation Force Impulse Elastometry – A feasibility study. 33 Eur J Radiol. 2011;80(3):e226-e230. 34 Gennisson J-L, Deffieux T, Macé E, Montaldo G, Fink M, Tanter M. Viscoelastic and 83. 35 Anisotropic Mechanical Properties of in vivo Muscle Tissue Assessed by Supersonic 36 Shear Imaging. Ultrasound Med Biol. 2010;36(5):789-801. 37 84. Deffieux T, Montaldo G, Tanter M, Fink M. Shear wave spectroscopy for in vivo 38 quantification of human soft tissues visco-elasticity. IEEE Trans Med Imaging.

1		2009;28(3):313-322.
2	85.	Le Sant G, Nordez A, Andrade R, Hug F, Freitas S, Gross R. Stiffness mapping of lower
3		leg muscles during passive dorsiflexion. J Anat. 2017;230(5):639-650.
4	86.	Urban MW, Nenadic IZ, Chen S, Greenleaf JF. Discrepancies in reporting tissue
5		material properties. J Ultrasound Med. 2013;32(5):886-888.
6	87.	Ferraioli G, Filice C, Castera L, et al. WFUMB guidelines and recommendations for
7		clinical use of ultrasound elastography: Part 3: liver. Ultrasound Med Biol.
8		2015;41(5):1161-1179.
9	88.	Hoyt K, Kneezel T, Castaneda B, Parker KJ. Quantitative sonoelastography for the in
10		vivo assessment of skeletal muscle viscoelasticity. Phys Med Biol. 2008;53(15):4063-
11		4080.
12	89.	Prado-Costa R, Rebelo J, Monteiro-Barroso J, Preto AS. Ultrasound elastography:
13		compression elastography and shear-wave elastography in the assessment of tendon
14		injury. Insights Imaging. 2018;9(5):791-814.
15	90.	Cosgrove D, Piscaglia F, Bamber J, et al. EFSUMB guidelines and recommendations on
16		the clinical use of ultrasound elastography. Part 2: Clinical applications. Ultraschall
17		Med (Stuttgart, Germany : 1980). 2013;34(3):238-253.
18	91.	Gennisson JL, Deffieux T, Fink M, Tanter M. Ultrasound elastography: principles and
19		techniques. Diagn Interv Imaging. 2013;94(5):487-495.
20	92.	Bamber J, Cosgrove D, Dietrich CF, et al. EFSUMB guidelines and recommendations on
21		the clinical use of ultrasound elastography. Part 1: Basic principles and technology.
22		Ultraschall Med. 2013;34(2):169-184.
23	93.	Drakonaki EE, Allen GM, Wilson DJ. Ultrasound elastography for musculoskeletal
24		applications. Br J Radiol. 2012;85(1019):1435-1445.
25	94.	Ariji Y, Nakayama M, Nishiyama W, Nozawa M, Ariji E. Shear-wave sonoelastography
26		for assessing masseter muscle hardness in comparison with strain sonoelastography:
27		study with phantoms and healthy volunteers. Dentomaxillofac Radiol.
28		2016;45(2):20150251.
29	95.	Ewertsen C, Carlsen JF, Christiansen IR, Jensen JA, Nielsen MB. Evaluation of healthy
30		muscle tissue by strain and shear wave elastography - Dependency on depth and ROI
31		position in relation to underlying bone. <i>Ultrasonics</i> . 2016;71:127-133.
32	96.	Whittaker JL, Stokes M. Ultrasound imaging and muscle function. J Orthop Sports
33		Phys Ther. 2011;41(8):572-580.
34	97.	Sions JM, Tyrell CM, Knarr BA, Jancosko A, Binder-Macleod SA. Age- and stroke-
35		related skeletal muscle changes: a review for the geriatric clinician. J Geriatr Phys
36		Ther. 2012;35(3):155-161.
37	98.	Chuang LL, Wu CY, Lin KC. Reliability, validity, and responsiveness of myotonometric
38		measurement of muscle tone, elasticity, and stiffness in patients with stroke. Arch

1		Phys Med Rehabil. 2012;93(3):532-540.						
2	99.	Marusiak J, Jaskólska A, Budrewicz S, Koszewicz M, Jaskólski A. Increased muscle belly						
3		and tendon stiffness in patients with Parkinson's disease, as measured by						
4		myotonometry. <i>Mov Disord.</i> 2011;26(11):2119-2122.						
5	100.	Feng YN, Li YP, Liu CL, Zhang ZJ. Assessing the elastic properties of skeletal muscle and						
6		tendon using shearwave ultrasound elastography and MyotonPRO. Sci Rep.						
7		2018;8(1):17064.						
8	101.	Lorentzen J, Grey MJ, Crone C, Mazevet D, Biering-Sorensen F, Nielsen JB.						
9		Distinguishing active from passive components of ankle plantar flexor stiffness in						
10		stroke, spinal cord injury and multiple sclerosis. <i>Clin Neurophysiol.</i>						
11		2010;121(11):1939-1951.						
12	102.	Kallenberg LA, Hermens HJ. Motor unit properties of biceps brachii in chronic stroke						
13		patients assessed with high-density surface EMG. <i>Muscle Nerve.</i> 2009;39(2):177-185.						
14								
4 -	D!	- Lease de						
15	Figur	e legends						
16								
10								
17	Figur	e 1 Flow diagram						
17	Tigui							
18	Flow	diagram illustrating article screening and selection in accordance with PRISMA						
	1 10 11							
19	guidelines ⁵² . A total of 21 articles were included in the final review.							
	8							
20								
21	Figur	e 2. Forest plot						
	8	1						
22	Grap	hical summary of subgroup analyses for studies involving patients with CP or						
	•							
23	strok	e. Correlation coefficients were transformed to Fisher's Z scale for analysis.						
24	Overa	all correlation across subgroups was r=0.78 (95% CI=0.64–0.86, p≤0.00).						
25								

Table 1. Study characteristics

Study	Sample Characteristics					
	Neurological Group	Control Group	Muscle Site(s)	Passive/ Active	Body Position/ Joint Angle	Assessor/ Blinding
Bilgici 2018(a) - Cross sectional - (Turkey)	17 patients w/ CP (32 legs) 2 = hemiplegic MAS 1 = 3 (1.72 (0.35)), MAS 2 = 8 (2.79 (0.61)), MAS 3 = 17 (3.31 (0.50)), MAS 4 = 4 (4.37 (0.19)) m/f = 9/8 age: 9.25 (2.68)y, range: 6–14y weight: 24.53 (7.77)kg, range: 17–45kg	25 controls (50 legs) children of similar age w/o systemic/ neurological disease visiting hospital for other reasons m/f = 10/15 age: 10.40 (2.76)y, range: 7-15y weight: 36.48 (13.42)kg, range: 20- 63kg	MG	Passive, no EMG	Prone position w/ feet in neutral position (0°) over the edge of the examination table	Assessor: Radiologist w/ 4ys of UE experience Blinding: Blinded to patient MAS scores
Bilgici 2018(b) – Pre-post intervention - (Turkey)	12 patients w/ CP (24 legs) m/f = 6/6 age: 8.58 (2.48)y, range: 6–14y weight: 21.83 (5.13)kg	N/A	MG	Passive, no EMG	Prone position w/ feet in neutral position (0°) over the edge of the examination table $% \left(\frac{1}{2}\right) =0$	Assessor: Radiologist w/ 4ys of UE experience Blinding: Blinded to patient MAS scores
Boyaci 2014 – Pre- post intervention - (Turkey)	16 CP children (25 legs) 9 = diplegic, 7 = hemiplegic m/f = 11/5 age: 48.87 (16.47)mo weight: 15.87 ± 3.55kg	17 children w/o neurological history (34 legs) age: 45.52 (20.13)mo weight: 17.29 (5.92)kg	MG, LG, SOL	Passive, no EMG	Prone position w/ feet over the edge of the examination couch	Assessor: Radiologist w/ 6ys of ultrasound experience Blinding: Not explicitly stated
Brandenburg 2018 - Prospective longitudinal cohort (intervention) - (USA)	9 children w/ spastic CP bilateral = 5, unilateral = 4 GMFCS: level I = 4, level II = 3, level III = 2 m/f = 5/4 median age: 60 (35-92)mo, age range: 25- 105mo median BMI: 16.7 (15.9-17.9), BMI range: 15.3-18.6	N/A	LG (most affected leg)	Passive w/ sEMG (U- Control; Thought Technology Ltd.) set at lowest scale range (X1, upper threshold 3.0)	Prone position w/ feet over the edge of the examination table	Assessor: Not stated, assumed to be the researcher Blinding: No explicitly stated
Brandenburg 2016 – Cross sectional - (USA)	13 children w/ CP m/f = 7/6 median age: 5y 1m, IQ range: 4y 4m-7y 8m	13 typically developing children m/f = 7/6 median age: 5y 3m, IQ range: 4y 4m - 9y 4m	LG (most affected leg)	Passive w/ sEMG (U- Control; Thought Technology Ltd.) set at lowest scale range (X1, upper threshold 3.0)	Prone position w/ feet over the edge of the examination table	Assessor: Not stated, assumed to be the researcher Blinding: Not explicitly stated
Du 2016 – Cross sectional - (China)	46 patients w/ PD (British Brain Bank clinical criteria) m/f = 27/19 age: 47.9 (2.8)y	31 healthy controls m/f = 18/13 age: 46.7 (3.2)y	BB	Passive, no EMG	Supine position w/ limbs kept in full relaxation	Assessor: Not stated, assumed to be 2 researchers Blinding: Not explicitly stated
Eby 2016 – Cross sectional - (USA)	9 subjects w/ chronic stroke m/f = 7/2 age: 58.3y, range: 41-79y	4 healthy controls m/f = 2/2 age: 56y, range: 42-70y	BB (long head)	Passive w/ sEMG (MA-300, Motion Lab Systems) and a dynamometer	80° and 150° elbow flexion/extension and at 3 preselected joint angles ranging btw 85° and 150°	Assessor: Not stated, assumed to be the same rater/ researcher Blinding: Not explicitly stated
Gao 2018 - Cross sectional - (USA)	8 patients w/ stroke m/f = 5/3 age: 59y, range: 34-72y	8 healthy controls m/f = 4/4 age: 49y, range: 40-56y	BB	Passive, w/ the use of VTIQ quality map to monitor patient or probe motion during image capture, no EMG	Supine position w/ arm relaxed and forearm supinated	Assessor: A single observer (J.G.) acquired VTIQ SWV images Blinding: Not explicitly stated
Gao 2016 - Cross sectional - (USA)	14 patients w/ PD disease duration: 78 (13)mo, range: 6- 134mo muscle rigidity scores: high (UPDRS III–IV) = 3, low (UPDRS I–II) = 11 m/f = 8/6 scrift 1 (10)v, range = 41, 78v.	10 healthy controls m/f = 5/5 age: 60 ± 11y, range: 54-82y	BB	Passive, probe and subject arms were held stable by the researchers to minimize movement during compression cycles, no EMG	Supine position w/ arm relaxed, elbow extended and the forearm supinated (forearm elevated 15° from the bed)	Assessor: Physician w/ experience in MSK ultrasound. For reliability measures, 2 observers assessed 10 healthy controls Blinding: Blinded to UPDRS motor score and disease duration, aware of symptomatic patients w/ PD
Jakubowski 2017 - Cross sectional -	14 subjects w/ chronic stroke stroke duration: 10.6 (7.3)y, range: 4.3-	N/A	MG, TA	Passive, w/ EMG (Bagnoli, Delsys Inc.)	Seated w/ foot secured to a dynamometer (Biodex Medical systems Inc.) and knee in extension, bilateral ankle moved passively by the	Assessor: Described as an experimenter Blinding: Not explicitly stated

(USA)	29.3y FMA: 19.1 (6.1), range: 8-28 m/f = 6/8 age: 60.1 (5.9)y, range: 46–68y height: 1.7 (0.1)m, range: 1.5-1.8m body mass: 77.6 (12.5)kg, range = 58.0– 96 Ake				experimenter in 6 positions: neutral 90°, 15° PF, max DF, max PF, and 2 intermediate angles where the torque on the paretic side was btw max DF and neutral or max PF and neutral, respectively	
Kwon 2012 - Cross sectional - (South Korea)	15 children w/ spastic CP (27 legs) diplegia = 12, hemiplegia = 3 m/f = 10/5 are: 58.7 (20.6)mo	13 children w/o neurological or MSK disability (26 legs) m/f = 4/9 age: 46.9 (20.2)mo	MG, SOL	Passive, no EMG	Prone w/ feet hanging from the edge of an examination plinth	Assessor: Physiatrist (G.Y.P.) w/ 16ys of MSK ultrasound and 3ys of UE experience Blinding: Not explicitly stated
Lacourpaille 2017 – Longitudinal - (France)	10 patients w/ DMD (genetically confirmed) age: 13.6 (6.3)y, range: 7-23y	9 age matched healthy controls	MG, TA, VL, BB, TB, and ADM	Passive for stiffness measures and active for EMD measures, a constant-current stimulator (Digitimer DS7A, Digitimer) was used to elicit contractions	Seated. MG: knee flexed at 90° (shortened) or fully extended (stretched) w/ ankle in neutral, TA: knee extended fully w/ ankle in neutral or 20° PF, VL: knee fully extended or flexed at 90°, BB: elbow flexed at 90° or overextended w/ hand in neutral, TB: arm extended or abducted and flexed at 90°, ADM: hand in pronation w/ 5th finger in maximal abduction or in alignment w/ 5th metacarpal	Assessor: Not stated, assumed to be the researcher. Blinding: Not explicitly stated
Lacourpaille 2015 - Cross sectional - (France)	14 patients w/ DMD age: 13.3 (5.9)y, range 5–22y	13 age-matched healthy controls age: 12.8 (5.5)y, range 6-24y	MG, TA, VL, BB, TB, and ADM	Passive, no EMG	Lying on a plinth. MG: knee flexed at 90° (shortened) or fully extended (stretched) w/ ankle in neutral, TA: knee extended fully w/ ankle in neutral or 20° PF, VL: knee fully extended or flexed at 90°, BB: elbow flexed at 90° or overextended w/ hand in neutral, TB: arm extended or abducted and flexed at 90°, ADM: hand in pronation w/ 5th finger in maximal abduction or in alignment w/ 5th metacarpal	Assessor: Described as an examiner, assumed to be the researcher Blinding: Not explicitly stated
Lee 2018 - Cross sectional - (USA)	14 subjects w/ chronic stroke stroke duration: 10.2 (8.4)y, range: 2.1- 27.3y FMA: 19.6 (15.0), range: 4-48 MAS range: 0-3 TS: 1–3 muscle quality, 62°-145° catch angle for 3 speeds m/f = 5/9 age: 58.9 (7.4)y height: 1.68 (0.10)m body mass: 85.5 (18.2)kg	8 age- and sex-matched controls w/o neurological or muscular disorders m/f = 4/4 age: 57.4 (7.4)y height: 1.68 (0.11)m body mass: 75.0 (12.0)kg	BB	Active and Passive w/ sEMG (Bagnoli Delsys, Inc.)	Seated in a dynamometer (Biodex Medical Systems Inc.), upper arm resting on a plastic support, forearm secured in a fiberglass cast w/ wrist and forearm in neutral position and placed in a ring-mount interface mounted on the table, shoulder positioned w/ humerus abducted 45° and elbow at 90° of flexion	Assessor: Not clearly stated, assumed to be the researcher. Blinding: Not explicitly stated
Lee 2016 - Cross sectional - (USA)	8 subjects w/ spastic hemiplegic CP GMFCS: level I = 3, level II = 5 m/f = 5/3 age: 9.4 (3.7)y height: 1.31 (0.17)m body mass: 33.3 (12.8)kg	N/A	MG and TA	Passive w/ EMG	Seated in an IntelliStretch rotary actuator (IntelliStretch Rehabilitation Robot, Rehabtek LLC) to monitor ankle angle and torque continuously, knee placed in max extension w/ foot strapped to the device, MG and TA measures taken in 5 ankle positions (neutral, maximum DF, maximum PF, and 2 intermediary angles)	Assessor: Not clearly stated, assumed to be the researcher. Blinding: Not explicitly stated
Lee 2015 - Cross sectional - (USA)	16 subjects w/ chronic stroke stroke duration: 11.6 (11.4)y, range: 1.9– 42.2y FMA: 19 (15), range: 4-48 MAS range: 0-3 TS: 1-3 muscle quality, 62°-145° catch angle for 3 speeds m/f = 6/10 age: 60.7 (8.0)y height: 1.71 (0.15)m body more: 85 = 5(18.2)kr	N/A	BB	Passive w/ sEMG	Seated in a dynamometer (Biodex Medical Systems Inc.), upper arm resting on a plastic support, forearm secured in a fiberglass cast w/ wrist and forearm in neutral position and placed in a ring-mount interface mounted on the table, shoulder positioned w/ humerus abducted 45° and elbow at 90° of flexion	Assessor: Not clearly stated, assumed to be the researcher. Blinding: Not explicitly stated
Mathevon 2018 – Observational/ Reliability - (France)	4 subjects w/ stroke stroke duration: 39mo, range: 6-255mo paretic side left/right: 6/8 m/f = 10/4 age: 56.9 (10.8)y height: 170.9 (8.9)cm weight: 80.9 (13.2)kg	N/A	MG and TA	Passive and during DF, no EMG	TA at rest and max DF: Supine. MG at rest: prone w/ feet below the table and no hip rotation at maximum passive-ankle DF w/ full knee extension. Stretching was performed manually by a second investigator (L.F.A.) in all trials.	Assessor: Described as an experimental investigator, assessed each patient twice at an interval of 1 week at the same time of the day Blinding: Not explicitly stated

Park 2012 – Pre- post intervention - (South Korea)	17 children w/ CP diplegia = 12, hemiplegia = 5 m/f = 10/7 age: 57 (22)mo, range: 26-110mo weight: 12 kgr. range: 11-15kg	N/A	MG	Passive, no EMG	Prone w/ feet hanging from the edge of an examination table	Assessor: Physiatrist w/ 17ys of MSK ultrasound and 4ys of RTS experience Blinding: image analysis conducted by another physiatrist
Pichiecchio 2018 - Cross sectional - (Italy)	S children w/ DMD (clinical and molecular diagnosis of dystrophinopathy) m/f = 5/0 median age: 48mo, range 38-59mo BMI <30	5 age-matched healthy controls m/f = 4/1 median age: 39mo, range: 39-47mo BMI <30	GM, RF, VM, VL, AM, TA, and MG	Passive, no EMG	Supine on an examination bed (or in their mother's arms) and then in prone position	SWE Assessors: 2 radiologists (C.B., F.C.), w/ 5y of MSK ultrasound experience Blinding: blinded to subject characteristics MRI Assessors: 2 radiologists (A.P., F.A.), one w/ considerable expertise in neuromuscular disorders and the other, a resident, w/ 4ys of MRI experience
Shao 2019 - Pre- post intervention (China)	24 patients w/ mild hemiplegic stroke and impaired plantar flexion (MAS ≥ 2) stroke duration: 10.1 (3.7)mo m/f = 14/10 age: 60.7 (8.8)y, range: 41–75y	N/A	AT	Passive, no EMG	Prone w/ feet hanging from the edge of an examination table	Assessor: MSK radiologist w/ > 6y of MSK ultrasound imaging experience Blinding: Not explicitly stated
Wu 2016 - Cross sectional - (Taiwan)	31 patients w/ acute stroke stroke duration < 3m in 29 patients stroke duration : 8.4 (7.6)wks infarct = 19, hemorrhage = 12 paretic right/left = 11/20 m/f = 21/10 age: 60.3 (13.0)y height: 164.7 (6.9)m weight: 63.4 (12.3)kø	21 healthy controls m/f = 14/7 age: 31.2 (7.9)y height: 168.5 (7.1)m weight: 168.5 (7.1)kg	ВВ	Passive w/ sEMG used to monitor muscle activity	Supine on an examination bed w/ shoulders and elbows in a relaxed neutral position. SWV obtained at 0° (full extension) and 90° of elbow flexion using an custom elbow stabilizer	Assessor: Physiatrist w/ 2ys of MSK ultrasound experience (> 1000 cases), familiarized w/ the study protocol for optimization of SWV measures by examining 15 unimpaired subjects not included in the study (preliminary test) Blinding: Physical appearance of patients and controls prevented blinding of the rater to paretic limbs

Table 2. System specifications and acquisition procedures

2
•
/
_

Study	tudy System Specifications				Acquisition Method					
					Probe			Transducer	Contact	
	System	Probe	Settings/ Software	Units Reported	Alignment	ROI	Number of Trials	Pressure/ Placement	Interface	Image Acquisition/ Processing
Bilgici	Acuson S2000 US	linear array	N/A	SWV (m/s) (range	parallel	ROI box 0.5 cm ² in size	5 measures for each	minimal	N/A	Value "x.xx" displayed in case of
2018(a)	system (Siemens	(914)		of 0-9)		placed in the mid-section	muscle w/ the mean	compression applied	,	faulty measures repeated until
2010(0)	Medical)	(521)		0.0 37		of the MG corresponding	value used for analysis	w/ the probe weight		valid values were obtained
	Wiedicaly					to the largest	value used for analysis	w/ the probe weight		valid values were obtained
						co the largest				
Dilaini	Anuson C2000 LIC	linear array	V/TIO coffuero	CMU/ (m/s) (range	norollol	DOI how 0.5 cm ² in size	E monouros for onch	minimal	NI/A	Value "www" displayed in ease of
Dilgici	ACUSOII S2000 US	(OLA)	VIIQ SOILWARE	swv (m/s) (range	parallel	ROI DOX 0.5 CITI III SIZE	5 measures for each	minimai	N/A	value x.xx uispiayeu in case of
2018(b)	System (Siemens	(914)		010-9)		placed in the mid-section	muscle w/ the mean	compression applied		laulty measures, repeated until
	wiedical)					of the MG corresponding	value used for analysis	w/ the probe weight		valid values were obtained, ving
						to the largest				sonware
Davia - 2014	Mulah Tudas UC	base allowed	21/2	FLV 2/4 Index and	a s as li s l	circumference		N1/A	N1/A	Divel color action in 0 to 255
Boyaci 2014	iviyiab Twice US	broadband	N/A	ELX 2/1 Index and	parallel	RUI of 7.5×7.5 mm in size,	N/A	N/A	N/A	Pixel color pattern in 0 to 255
	system w/	linear array		color pattern pixel		ELX 2/1 Index calculated				range, w/ median blue, green, and
	sonoelastography	(12MHz)		intensities		as a ratio of the elastic				red pixel histogram intensities
	and Doppler (Esaote)					properties of the MG, LG				analyzed w/ ImageJ software
						and SOL w/in the ROI				(National Institutes of Health)
Brandenburg	Aixplorer US scanner	linear array	MSK preset	SM (kPa)	parallel	circular ROI w/ mean	measures at 3 foot	minimal pressure on	N/A	Open-source imaging plug-in for the
2018	(SuperSonic Imagine)	(SL15-4;				diameter of 4.8–5.0mm	positions and repeated	skin by one of the		DICOM reader (OsiriX Imaging
		SuperSonic				w/in the elastogram	twice, average of 3	examiners		Software) used to measure
		Imagine)					measures used for			modulus values w/in the ROI
							analysis			
Brandenburg	Aixplorer US scanner	linear array	MSK preset, SWE	SM (kPa)	parallel	circular ROI w/ mean	measures at 3 foot	minimal pressure on	N/A	Open-source imaging plug-in for the
2016	(version 4.0;	(SL15–4;	Optimization: Standard, HD/			diameter of 4.8–5.0mm	positions and repeated	skin by one of the		DICOM reader (OsiriX Imaging
	SuperSonic Imagine)	SuperSonic	Frame Rate: Balanced,			w/in the elastogram	twice, average of 3	examiners		Software) used to measure
		Imagine)	Zoom: 120%, Smoothing: 5,				measures used for			modulus values w/in the ROI
			Persistence: High				analysis			
Du 2016	Aixplorer US scanner	linear array	MSK setting, Q-Box software	SM (kPa)	parallel	5mm diameter circle in	3 measures per muscle	gently placed on skin	N/A	Q-Box software
	(SuperSonic Imagine)	(4–15 MHz)				the ROI center w/	and side w/ the average	w/o compression		
						homogeneous color	3 measures used for			
						distribution for a 3	analysis			
						seconds minimum				
Eby 2016	Verasonics US	linear array	CUSE and SWE settings	SM (kPa) w/ color	assumed to	approx. 160 mm ² ROI	3 measures at 80° and	custom holder	transmission	Shear wave motion recorded using
	scanner (Verasonics	(L7-4, Philips		bar range 0-16	be parallel	using CUSE	150° elbow angles	securely fixed to the	gel couplant	a high frame rate technique and
	Inc.)	Healthcare)		(m/s)				arm maintaining	applied	calculated from image data based
								continuous contact		on one-dimensional autocorrelation
								pressure		
Gao 2018	Acuson S3000 HELX	linear array	pre-locked settings w/	SWV (m/s)	parallel	ROI of 1.5 × 1.5 mm, 1-3	10 trials w/ 5 ROIs of	N/A	transmission	VTIQ software
	(Siemens Medical)	(9L4)	mechanical index 1.1, depth			cm depth from the skin	1.5cm depth and 5 ROIs		gel couplant	
	. ,	. ,	4cm, scanning frequency 7			w/in a color coded SWV	of 2.0cm depth from		applied	
			MHz, Map D/Space time (0).			map	skin surface at both 90°			
			total gain 0dB, dynamic				passive elbow flexion			
			range 70dB, single focus.				and max passive elbow			
			harmonic imaging kent				extension (up to 180°)			
			constant VTIO software				extension (up to 100)			
Gao 2016	Logic F911S scanner	linear array	gravscale imaging settings	SR	narallel	Reference strain	3 compression cycles w/	sand hag (1.5 kg) tied	transmission	Strain of target muscle and
000 2010	(General Electric)	(19-3)	for SE ontimized for speckle	511	paraner	standardized to 5mm axial	2 minute time interval	to probe for constant	gel counlant	reference tissues estimated w/ 2-D
	(General Electric)	(15 5)	tracking high frame rate			region in subcutaneous	htw trials	compression 5	applied	speckle tracking software
			(N40 frames per second)			tissue (distance from	bew thus	second compression	upplied	(EchoInsight Ensilon Imaging)
			single focus turn off speckle			skin to muscle)		cycles used to during		(Lenonsight, Lpshon maging)
			reduction low scanning			skii to musclej		tissue deformation		
			frequency (6 MHz)							
lakubowski	Aivolorer US system	linear array		SW// (m/c)	narallel	ROL of 30mm width w/	3 trials ner ankle	custom neoprene	Ν/Δ	images manually cropped and
2017	(SuperSonic Imagina)	(A_15 MU-	19/5	3444 (111/5)	paraller	depth set to musclo	nosition	cleave used to	IN/A	exported for off-line processing
2017	(Supersonic magine)	Super				thickness	position	minimize probe		using custom-written program in
		Linear 15-4				CHICKIESS		movement		Matlah (Mathworks)
		Lilledi 15-4)						movement		iviatian (ividtiiwurks)

Kwon 2012	Acuson S2000 US system w/ B-mode and DS (Siemens Medical)	multi frequency linear (4–9 MHz)	N/A	SWV (m/s), SR, DS score and color pixel intensity	parallel	ROI of 5 x 5 mm ² for SWV acquisition, ROI for pixel analysis set to cover entire muscle, excluding hyperechoic epimysium	2 trials w/ 2 representative images taken during each	compression adjusted according to quality factor display, factor ≥ 60 indicated optimal compression	N/A	color pattern (0 to 255 pixel range) of images analyzed w/ Image J software (National Institutes of Health), median blue and red pixel intensities obtained w/ color histogram
Lacourpaille 2017	Aixplorer US scanner (version 7, SuperSonic Imagine)	linear array (4–15 MHz)	SWE and research mode to acquire raw radio-frequency signals at 4 kHz, force and US data synchronized w/ transistor to transistor logic pulses	SM (kPa)	parallel	ROI corresponded to the largest muscular region w/o fascia	10 trails for each muscle and position, then averaged to obtain representative values	probe placed on thickest part of muscle belly	N/A	SSI recordings exported from system software (Version 7.0, SuperSonic Imagine) as mp4 and sequenced in jpeg format w/ custom program in Matlab (version 10.0, Mathworks Inc.), color maps were converted to SM
Lacourpaille 2015	Aixplorer US scanner (SuperSonic Imagine)	linear array (4–15 MHz)	SWE mode	SM (kPa)	not stated, not inferable due to lack of images and figures depicting alignment	N/A	10 trails for each muscle and position, then averaged to obtain representative values	probe placed on thickest part of muscle belly	N/A	N/A
Lee 2018	Aixplorer US system (SuperSonic Imagine)	Not explicitly stated	N/A	SWV (range 0-16 m/s)	parallel	circular region w/ varying diameters w/in an ROI of 12 x 12mm btw superficial and deep aponeuroses	3 trials per % max voluntary contraction	custom neoprene sleeve used to minimize probe movement	N/A	images cropped and muscle area w/in the ROI analysed w/ a custom program in Matlab (Mathworks Inc.)
Lee 2016	Aixplorer US system (SuperSonic Imagine)	linear array (4–15 MHz, Super Linear 15-4)	SSI software (Q Box)	SWV (m/s)	parallel	circular region w/ varying diameters w/in an ROI of 12 x 12mm, all manually cropped areas w/in the muscle used to calculate SWV spatial averages	60 trials (2 legs, 2 muscles, 15 trials per muscle)	custom neoprene sleeve used to minimize probe movement, placed over muscle belly mid-region	N/A	image were analysed w/ custom program in Matlab (Mathworks Inc.), Q Box software used to generate SWV values w/ a quality factor > 0.8.
Lee 2015	Aixplorer US system (SuperSonic Imagine)	linear array (4–15 MHz, SuperLinear 15–4)	SSI software (Q Box)	SWV (m/s)	parallel	ROI of 12 x 12mm placed in the mid-section btw superficial and deep aponeuroses	N/A	custom neoprene sleeve used to minimize probe movement	N/A	SWV and quality factor values in the ROI extracted and analysed w/ custom program in Matlab (Mathworks)
Mathevon 2018	Aixplorer US scanner (version 6.1.1, SuperSonic Imagine)	linear array (4–15 MHZ, SuperLinear 15–4)	2D muscle measures w/ B- mode US, data processed w/ SSI software (Q-Box)	SM (kPa)	parallel (sagittal) and perpendicular (axial)	circular ROI (Q-boxes) positioned over the largest contiguous area possible	mean value of 5 measures over 5 seconds used for analysis	compression limited by a thick layer of gel and the support of the examin table	transmission gel couplant applied	data processed w/ system software (Q-Box)
Park 2012	Antares US system w/ B-mode and RTS (Siemens Medical)	multi frequency linear (5-13 MHz)	image color pattern analyzed w/ Image J software (National Institutes of Health)	RTS score	parallel	ROI set to cover the entire muscle, excluding hyperechoic perimysium	N/A	manually adjusted compression, perimysium appeared yellow to red on RTS, w/ standardized color scale encoding	N/A	image color pattern analyzed w/ ImageJ software (National Institutes of Health), RTS score graded semi- quantitatively as follows: 1 (purple to green: soft), 2 (green to yellow), 3 (yellow to red), and 4 (red: hard)
Pichiecchio 2018	Toshiba Aplio 500 SWE US scanner (Toshiba Medical)	multi frequency linear array (4-15 MHz)	shear wave module (Toshiba Medical)	SM (kPa)	Assumed to be parallel	Circular ROI of 5mm w/ homogeneous stiffness values w/in an area void of tendon, fascial tissue	N/A	probe placed in a fixed position	transmission gel couplant applied	N/A
Shao 2019	Acuson S2000 US system (Siemens Medical)	linear array (5–14 MHz, Siemens)	elastographic unit w/ strain quality indicator (proprietary software, Siemens)	SR and elasticity score	parallel	Depth 3x AT thickness, SR ROI 2cm above insertion w/ corresponding deep fat reference area	3 trials to calculate SR	appropriate pressure applied	10mm gel pad (SONAR- AID)	Score/ grade calculated accordingly: SR=B/A (fat-to-tendon SR), elasticity: 3=red (soft), 2=green/ yellow (medium), 1=blue (hard)
Wu 2016	Acuson S2000 US system (Siemens Medical)	linear array (7-9 MHz, 9L4, Siemens)	Virtual Touch Quantification Technology (VTQ) (Siemens)	SWV (m/s)	parallel (longitudinal) and perpendicular (transverse)	ROI of 0.5 x 0.5cm in the mid-muscle belly	5 trials per arm in each elbow posture and averaged for analysis	probe held stationary during acquisition	transmission gel couplant applied	N/A

Table 3. Reliability and validity summary

2
-

Study	Reliability	Validity						
•	•	Convergent/ Concurrent	Discriminant/ Known Groups	Responsiveness	Comparator(s)			
Bilgici 2018(a)	Interrater Reliability: ICC=.65 (agreement, 95% CI=.33–.84, p=.001)	Convergent Validity: SWV values of MG correlated w/ ankle spasticity MAS scores (p=.001)	Known Groups Validity: Mean SWV values for the MG in patients w/ CP (3.17±.81, min-max 1.291-4.540) were significantly higher than controls (1.45±.25, min-max .938– 2.080, p=.001)	N/A	Controls and MAS			
Bilgici 2018(b)	Interrater Reliability: ICC=.65 (agreement, 95% CI=.33–.84, p=.001)	Convergent Validity: SWV values positively correlated w/ MAS score (q=.578, p=0.003)	N/A	Responsiveness: Significant difference in mean SWV values pre-BTA (3.20±.14) and post-BTA (2.45±.21, p=.001)	SWV and MAS measured pre-BTA and 1 mo post			
Boyaci 2014	N/A	Convergent Validity: ELX 2/1 index was correlated w/ median red pixel intensity in the CP group (r=.516, p=.008). Mean MAS for the ankle decreased, from 3.4 to 2.6 (p<.05). Mean MAS scores decreased significantly from pre- (3.44±.58) to post-trial (2.60±.64, p<.001), while mean GMFM scores increased significantly from pre- (54.28±19.19) to post-trial (59.03±16.49, p=.001)	Known Groups Validity: ELX 2/1 indices of the CP group (MG=2.27±.88, LG=1.84±.85) were significantly higher than controls (MG=1.12±.27, LG=1.17±.39, p<.05)	Responsiveness: ELX 2/1 indices in the GM and GL muscles in the CP group decreased significantly post-treatment (p<.05)	Controls, pixel intensity, ELX 2/1 index, MAS and GMFM scores measured pre- procedure and 1 month post			
Brandenburg 2018	N/A	Convergent Validity: Spearman rank correlations used to explore the relationship btw SM and continuous variables (BoNT-A dose, and ankle DF passive ROM). However, no outcomes were reported	N/A	Responsiveness: Despite no significant change in ankle ROM or spasticity, there was a significant difference in LG SM after BoNT-A injections	MAS, max ankle DF ROM, GMFCS			
Brandenburg 2016	N/A	Convergent Validity: No correlation btw SM values and GMFCS level, MAS grade, or history of calf muscle botulinum toxin injection. There was a significant difference in median ankle ROM btw the CP group (-12° to 20°) and controls (5° to 31°)	Known Groups Validity: SM at all 3 foot positions were significantly greater for CP children $(20^{\circ} PF = 15.0 (11.6, 17.5), 10^{\circ} PF = 19.1 (15.0, 23.6), 0^{\circ} PF = 28.9 (24.6, 44.2))$ than controls (20^{\circ} PF = 7.8 (6.1, 11.0), 10^{\circ} PF = 9.6 (7.3, 15.6), 0^{\circ} PF = 14.9 (10.9, 20.9)). CP children had greater variability in SM, indicated by larger SD for measures at all ankle positions	N/A	Healthy controls (age- and gender-matched typically developing children), MAS, maximal ankle DF ROM, GMFCS			
Du 2016	(9 control subjects only) Interrater Reliability: ICC(3,2)=.74 (95% CI=.6878) Intrarater Reliability: ICC(3,1)=.78 (95% CI=.7582)	Convergent Validity: Positive linear correlation found btw SM values and UPDRS motion scores in patients w/ PD (r=.646, p=.000)	Known Groups Validity: Significant difference in SM of the BB btw PD (54.94±20.91) and controls (24.44±5.09, p<.05) Discriminant Validity: No significant difference btw remarkably (54.94±20.91) and mildly symptomatic arms (47.77±24.00, p<.05)	N/A	Remarkably and mildly symptomatic arms in patients w/ PD, btw patients and controls, and btw SM and UPDRS			
Eby 2016	Intrarater Reliability: ICC(1,1) range=.7699 at both 80° and 150° for all subjects ICC(1,1) range=.7597 for 3 preselected joint angles (ICCs indicated consistent stiffness throughout testing for dominant sides of controls, but largely inconsistent stiffness for other study conditions)	Convergent Validity: No association was found btw stroke mechanism, location, or hemisphere and MAS or FMA scores. SM values and torque during all 40°/sec trials: A= controls, w/ minimal torque and SM responses; y=17.394x + 7.898, R ² =.103. B= S1, w/ strong torque and SM responses to passive extension; y=36.856x + 18.197, R ² =.829, and C= S6, S3, S7, w/ strong torque response and minimal SM responses; y=2.712x + 6.676, R ² =.181.	Known Groups Validity: Torque and passive stiffness increased minimally for controls and was most pronounced in contralateral limbs of subjects w/ stroke. Several patterns of SM and torque responses to passive elbow extension were identified, w/ a subset of several subjects displaying very strong torque response w/ minimal stiffness response	N/A	Healthy controls and velocity dependent torque			
Gao 2018	Intrarater Reliability: ICC=.94 (agreement, p<.001) for non- spastic BB ICC=.82 (agreement, p<.01) for spastic BB Software Usage: VTIQ indicates SWV quality and reliability w/ homogeneous green color scale throughout image maps	Convergent Validity: A strong negative correlation was found btw SWV and passive ROM (R ² =88, p<.0001) in spastic upper limbs. The correlation btw mean SWV and other MAS and TS parameters was weak (p>.05).	Known Groups Validity: At 90°, there was no significant difference in SWV btw controls and spastic BB or btw non- spastic and spastic BB. However, there was a significant difference btw controls and non-spastic BB based on Bonferroni correction. At max elbow extension, the difference in SWV btw healthy and spastic BB, and btw non-spastic and spastic BB, was significant (all values p<.01), but not significant btw controls and non-spastic BB (p>.05)	N/A	Controls (btw subjects), non-paretic arm (w/in subjects), SWV, ROM, MAS, TS and echogenicity across 3 groups (healthy, non-spastic and spastic BB muscles)			
Gao 2016	Intrarater Reliability: ICC=.88 Interrater Reliability: ICC=.84	Convergent Validity: A negative correlation was found btw SR values and UPDRS scores (<i>r</i> =78)	Known Groups Validity: There was a significant difference in SR btw patients w/ PD (2.65±.36) and controls (3.30±.27). There was also no significant gender or side-to-side difference in SR among controls	N/A	Controls and UPDRS for muscle rigidity			
Jakubowski 2017	N/A	Convergent Validity: Weak correlations were found btw MG SWV and joint stiffness for non-paretic (r=.384, p=.001) and paretic sides (r=.363, p=.002). Ankle angle, joint torque, and fascicle strain were significantly correlated w/ MG and TA SWV. (SWV vs ankle angle: MG=.705, TA=.574, p<.001), (SWV vs	Discriminant Validity: There were significant increases of 27.7% and 26.9% in SWV for the paretic compared to the non- paretic MG at 90° (p=.033) and 15° PF (p=.001). However, no significant difference was found btw-sides for the TA. Paretic MG and TA SWV at torque-matched position btw max PF and	N/A	Joint torque, ankle angle, fascicle strain, and estimates of clinical measures (FMA, passive/ active ROM), joint stiffness, muscle			

		joint torque GM=.626, TA=475, p<.001), (SWV vs fascicle strain: MG=.665, TA=.397, p<.001). FMA score was correlated w/ SWV for the paretic TA at 15° PF (r=586, p=035). No correlations were found for the MG at any ankle angle. As muscle thickness increased, SWV decreased for both non- paretic (r=565, p=.035) and paretic MG (r=648, p=.012) at one	neutral was 18.7% (p=.109) greater and 14.7% (p=.109) less than non-paretic sides. SWV of paretic MG and TA at torque- matched position btw neutral and max DF were 16.8% (p=.033) greater and 16.3% (p=.109) less than non-paretic sides. Stiffness estimates of paretic TA from torque and angle measures were significantly greater by 23.1% (p=.033) than non-paretic TA he circling of the from torque for MG		architecture (thickness, fascicle length, pennation angle) and stiffness on each leg and muscle independently
Kwon 2012	Intrarater Reliability: ICC=.812 (repeated measures, CP group DS scores) ICC=.886 (repeated measures, control group DS scores)	Convergent Validity: MAS score was positively correlated w/ the DS score (r=.712) and SWV (r=.710) and negatively correlated w/ SR (r=-0.766, p=.001)	Known Groups Validity: MG DS score was significantly higher for the CP group than controls (2.5±.5 vs 1.1±.3, p=.01). MG SWV was also significantly higher for the CP group than controls (2.5±.7 vs 1.3±.4). SR was significantly lower for the CP group than that controls (.5±.4 vs 1.3±.8, p=.01)	N/A	Controls, MAS, SR (MG to SOL muscles), and DS score interpreted as: 1 (purple/ green =soft), 2 (green/ yellow= mostly soft), 3 (yellow/ red= mostly hard), 4 (red= hard)
Lacourpaille 2017	N/A	Convergent Validity: For controls, evoked max torque increased at T+12mo (+11.2±7.6%, d=2.1, p<.001) but Tm (p=.382) and EMD (p=.999) did not change. In contrast, DMD children showed no change in evoked max torque (p=.222) but both EMD (+12.9±11.3%, d=2.5, p<.001) and Tm (+10.1±21.6%, d=1.27, p=.003) were significantly longer at T+12 than T0.	Known Groups Validity: Muscle stiffness increased at T+12mo in DMD children for the TA (+75.1±93.5%, p=.043), MG (+144.8±180.6%, p=.050) and TB (+35.5±32.2%, p=.005). Analysis of SM maps for MG (stretched position) and TA (shortened position) and group (DMD, controls) showed significant time × group interaction for TA (p=.043) and TB (p=.005) and a significant time × length × group interaction for MG SM (p=.050).	Responsiveness: TA (+75.1±93.5%, d=1.04, p=.009) and TB SM (+35.5±32.2%, d=.29, p<.001) were significantly higher at T+12 than T0 in DMD children, regardless of the muscle length, w/ no change for controls (all p>.369). Also a significant increase in GM SM (lengthened) at T+12 (p<.001) compared to T0 (+123.6±180.2%, d=1.05; in DMD but not controls (p>.715)	Controls, electromechanical delay (EMD) and electrically induced maximal torque (elbow flexion)
Lacourpaille 2015	N/A	Convergent Validity: SM of the MG at both muscle lengths correlated w/ age in patients w/ DMD (lengthened: τ =.74, p=.005 shortened: r=.55, p=.050). No significant correlation was found for controls (r<.43 in all cases). SM of GM at both lengths correlated w/ age in patients w/ DMD (long: r=.74, p=.005, short: r=.55, p=.050) No significant correlation was found for healthy participants (r<.43 in all cases).	Known Groups Validity: SM was significantly higher in patients w/ DMD compared to controls for all muscles (main effect for group, p<.033 in all cases), except for ADM (p=.394). For lengthened muscle, SM of the TA (p=.005) and BB (p=.017) were significantly higher in patients w/ DMD than controls, but no difference btw groups for short TA (p=.991) and BB (p=.999). A significant group x muscle length interaction was found for TA (p=.06) and BB (p=.048).	Responsiveness: Effect of DMD on changes in SM from T0 to T+12mo was moderate to large for all muscles (Cohen's d range=.4899) except the ADM (d=.33)	Controls, muscle length and age
Lee 2018	No ICC reported for this study Preliminary Reliability Assessment: Repeatability and reliability of SWV was previously tested among 3 controls and 3 subjects w/ stroke twice on separate days. ICC=.932, CV=4.5% (controls) ICC=.821, CV=6.5% (non-paretic side) ICC=.715, CV=9.2% (paretic side)	Convergent Validity: As voluntary activation increased, SWV increased non-linearly, w/ an average power fit of R ² =.833.09 for the non-paretic side, R ² =.61±.24 for the paretic side, and R ² =.24±.15 for controls. Passive SWV on the paretic side was correlated w/ MAS scores for the elbow extensors (p=.044)	Known Groups Validity: Mean passive SWV across all subjects were significantly different btw the non-paretic (2.34±.41) and paretic sides (3.30±1.20, p<.001) and btw paretic sides and controls (2.24±.18, p<.001). There was no significant difference in SWV btw-sides or controls in active muscles (10, 25, 50, 75, 100% max voluntary contraction). Discriminant Validity: Non-paretic arms showed significantly greater passive and active elbow ROM than paretic arms (non- paretic: active=149±15° to 44±11°, passive=182±4° to 37±6°), (paretic: active=145±27° to 59±10°, passive=175±8° to 45±7°), (active: =0.006), (passive: p=.001)	N/A	Voluntary muscle activation (active muscle condition only), MAS and ROM
Lee 2016	No ICC reported for this study Preliminary Reliability Assessment: Repeatability and reliability of SWV was previously tested among 3 unimpaired subjects twice on separate days. ICC=.932, CV=4.5%	Convergent Validity: MG and TA muscle thickness and fascicle length w/ the ankle at 90°, were significantly reduced on the more-affected side. There was no significant correlation btw SWV of the MG or TA and ankle ROM as indicated by max DF angle	Known-Groups Validity: There was no significant difference in SWV btw CP children w/ GMFCS Levels I and II. Discriminant Validity: MG and TA SWV was significantly higher in the more- than less-affected limb (MG: S1, S3, S5–S8, TA: S3– S8) at 90° in 6/8 subjects. Average difference was 14% (MG) and 20% (TA) greater in the more- than less-effected limbs, (more-affected MG=5.05±.55), (less-affected MG=4.46±.57, p=.024), (more-affected TA=3.86±.79) and (less-affected TA=3.22±.40, p=.03)	N/A	SWV, muscle thickness, fascicle strain, torque, and ankle angle and clinical assessments (ankle ROM and GMFCS Levels I and II)
Lee 2015	No ICC reported for this study Preliminary Reliability Assessment: Repeatability and reliability was previously tested among 3 unimpaired subjects twice on separate days. ICC= 932, CV=4.5% (SWV) ICC=.882, CV=4.2% (Echo Intensity)	Convergent Validity: Btw-sides differences in SWV and echo intensity were strongly correlated (R^2 =.703, p=.002). A significant linear relationship was observed for the btw-sides difference in SWV and stroke duration (R^2 =.301, p=.03) as well as a linear relationship btw SWV and elapsed time since stroke onset. Btw-sides difference in SWV was significantly correlated w/ FMA score (R^2 =.327, p=.02)	Discriminant Validity: Measures of SWV were 69.5 % greater in paretic (3.67±1.28) than non-paretic BB (2.23±.40, p=.001). Echo intensity was 15.5% greater in paretic (109.48±21.90) than non-paretic BB (83.03±28.96, p=.004).	N/A	Btw-sides comparison, FMA score, echo intensity

Mathevon 2018	Software Usage: Each value was accompanied by a "quality factor" indicating SWV reliability Intrarater Reliability: Axial (rest): (CV=53.91, SEM=20.02, ICC=.00, paretic MG), (CV=42.15, SEM=9.29, ICC=.73, non- paretic MG), (CV=40.74, SEM=2.25, ICC=.64, paretic TA), (CV=37.00, SEM=24.81, ICC=.51, non-paretic TA) Sagittal (rest): (CV=9.86, SEM=0.61, ICC=.87, paretic MG), (CV=17.64, SEM=1.70, ICC=.36, non- paretic MG), (CV=15.00, SEM=2.09, ICC=.43, paretic TA), CC=18.50, SEM=4.35, ICC=.27, non-paretic TA) Sagittal (max passive DF): (CV=0.58, SEM=18.21, ICC=.11, paretic MG), (CV=24.05, SEM=8.32, ICC=.30, non- paretic MG) Other: CV for MG thickness and pennation angle were acceptable at rest and in DF on both sides. CV for TA thickness were acceptable for both sides, but not pennation angle on either side	N/A	N/A	N/A	Muscle thickness and pennation angle
Park 2012	Intrarater Reliability (pre-intervention, repeated measures): ICC=.855 (RTS scores) ICC=.906 (red pixel intensity) ICC=.915 (blue pixel intensity) Intrarater Reliability (post-intervention, repeated measures): ICC=.878 (RTS scores) ICC=.912 (red pixel intensity) ICC=.926 (blue pixel intensity)	Convergent Validity: RTS score was positively correlated w/ mean red pixel intensity in the MG (r=.756) and negatively correlated w/ mean blue pixel intensity (r=.605). MAS score was positively correlated w/ RTS score (r=.778). There was no correlation btw RTS and GMFM scores.	N/A	Responsiveness: Mean RTS score of the MG before and at 4 weeks after intervention decreased significantly from 3.4 to 1.5 (p=.05).	Color pixel intensity, MAS and GMFM scores
Pichiecchio 2018	N/A, no values from the statistical analyses were reported	Convergent Validity: DMD children showed fatty replacement and patchy edema on muscle MRI and increased stiffness on SWE. However, there was no significant correlation btw stiffness values and MRI scores. Muscle MRI 11-w images showed fatty replacement in 3/5 children in the GM, w/ thigh and leg muscles affected in 2/5 children. Hyperintensity of STIR was identified in 4/5 children	Known Groups Validity: Stiffness was moderately higher in DMD children compared to controls in the RF, VL, AM and GM muscles	N/A	Controls, MRI and NSAA
Shao 2019	N/A	Convergent Validity : positive correlation btw SR and 10MWT (re.38, pe.009), and TUG scores (re.87, pe.012), and moderately positive correlation btw elasticity score and 10MWT (re.58, pe.048), and TUG scores (re.62, pe.011)	N/A	Responsiveness: pre-training, SR were significantly lower for impaired (2.924.83) than healthy AT (3.50±.64) (p=.009). Post-training, SR of impaired AT increased significantly by 9 wks (3.39±.75) compared to pre-training (2.924.83) (p=.045)	10MWT, TUG, AT length and thickness
Wu 2016	Intrarater Reliability: ICC=.852 (95% CI=.565–.955, longitudinal axis) ICC=.711 (95% CI=.260–.907, transverse axis) Interrater Reliability ICC=.768 (95% CI=.373–.927, longitudinal axis) ICC=.552 (95% CI=.002–.846, transverse axis)	Convergent Validity: At 90°, paretic side SWV correlated positively w/ post stroke duration (r=.467, p=.008), MAS (r=.662, p=.001)and TS (r=.536, p=.002) and negatively w/ STREAM score (r=572, p=.001)	Known Groups Validity: SWV was significantly greater on the paretic side than the non-paretic side at both 90° (2.23±.15 vs. 1.88±.08, p=.036) and 0° (3.28±.11 vs. 2.93±.06, p=.002). For controls, SWV did not significantly differ btw-sides at 0° (p=.431) or 90° (p=.436) or btw males and females at 0° (2.94±.03 vs.2.96±.07, p=.881) or 90° (1.92±.06 vs.1.73±.06, p=.063). For the subgroup analysis conducted among 9 patients w/ no change in muscle tone (MAS score=0), SWV was significantly lower on the paretic than non-paretic sides at 9° (1.49±.06 vs.1.76±.16, p=.046), but not at 0° (2.90±.14 vs. 2.98±.11, p=.529)	N/A	Controls, Subgroup analysis for differences in SWV btw spastic and non-spastic patients w/ stroke (MAS score=0), Stroke duration, MAS, MTS, and STREAM

1 Table 4. Quality assessment and level of evidence synthesis

UE Method	Outcome Measure(s)	Study	Sample Size (Patients/Controls)	Quality Rating (COSMIN) ⁵³	Results Rating ⁶⁰	Level of Evidence ⁵⁸
Reliability						
	SW0/(m/c)	Bilgici 2018(a)	17/25	Adequate	Interrator (-)	
	SWV (11/S)	Bilgici 2018(d)	17/25	Adequate	Interrator ()	
	SVVV (III/S)	Du 2016	12/0	Adequate	Internater (+) Internator (+)	Total N = 60/55, Interrater,
	SIVI (KPd)	Du 2016	0/9	Adequate	Interfacer (+), Intrafacer (+)	Moderate (-);
Quantitative	SIVI (KFd)	Eby 2010	5/4	Adequate	Intrarator (+)	
	SWV (11/S)	Gao 2018 Kwon 2012	6/6 15/13	Adequate	Intrarater (+)	Total N = 63/46, Intrarater,
	SMV (11/3)	Mathoven 2018	14/0	Adequate	Intrarater (-)	Moderate (+)
	SWV (m/s)	Wu 2016	31/21	Adequate	Interrater (-), Intrarater (+)	
	SR	Gao 2016	14/10	Adequate	Interrater (+), Intrarater (+)	Total N = 14/0, Interrater,
Semi-Quantitative	SR, DS score, color pixel intensity	Kwon 2012	15/13	Adequate	Intrarater (+)	Unknown (+);
	RTS score	Park 2012	17/0	Adequate	Intrarater (+)	Total N = 46/23, Intrarater, Limited (+)
Measurement Error						
Quantitativa	SM (PD)	Mathewan 2018	14/0	Adequate	(2)	Total N = $14/0$ Unknown (2)
Quantitative		Wathoven 2018	14/0	Adequate	(!)	Iotan N = 14/0, Onknown (!)
Hypothesis Testing (Convergent Va	alidity) ^{a1}					
	SWV (m/s)	Bilgici 2018(a)	17/25	Doubtful	(+)	
	SWV (m/s)	Bilgici 2018(b)	12/0	Very good	(+)	
	SM (kPa)	Brandenburg 2018	9/0	Adequate	(-)	
	SM (kPa)	Brandenburg 2016	13/13	Adequate	(-)	
	SM (kPa)	Du 2016	46/31	Adequate	(+)	
	SM (kPa)	Eby 2016	9/4	Adequate	(+)	
	SWV (m/s)	Gao 2018	8/8	Adequate	(+)	
Quantitativa	SWV (m/s)	Jakubowski 2017	14/0	Very good	(+)	Total N = $107/07$ Strong (+)
Quantitative	SWV (m/s)	Kwon 2012	15/13	Adequate	(+)	Iotal N = 157/57, Stiolig (+)
	SM (kPa)	Lacourpaille 2017	10/9	Very good	(+)	
	SM (kPa)	Lacourpaille 2015	14/3	Adequate	(+)	
	SWV (m/s)	Lee 2018	14/8	Adequate	(+)	
	SWV (m/s)	Lee 2016	8/0	Very good	(+)	
	SWV (m/s)	Lee 2015	16/0	Adequate	(+)	
	SM (kPa)	Pichiecchio 2018	5/5	Doubtful	(-)	
	SWV (m/s)	Wu 2016	31/21	Very good	(+)	
	ELX 2/1 Index. color pixel intensity	Boyaci 2014	16/17	Adequate	(+)	
	SR	Gao 2016	14/10	Adequate	(+)	
Semi-Quantitative	SR, DS score, color pixel intensity	Kwon 2012	15/13	Adequate	(+)	Total N = 86/40, Moderate (+)
	RTS score	Park 2012	17/0	Very good	(+)	
	SR, elasticity score	Shao 2019	24/0	Very good	(+)	
Hypothesis Testing (Discriminative	e/ Known-Groups Validity) ^{a2}					
	SWV (m/s)	Bilgici 2018(a)	17/25	Very good	(+)	
	SM (kPa)	Brandenburg 2016	13/13	Very good	(+)	
Quantitative	SM (kPa)	Du 2016	46/31	Very good	(+)	Total N = 198/123, Strong (+)
	SM (kPa)	Eby 2016	9/4	Doubtful	(+)	
	SWV (m/s)	Gao 2018	8/8	Doubtful	(+)	

	SWV (m/s) SWV (m/s) SM (kPa) SWV (m/s) SWV (m/s) SWV (m/s) SMV (m/s) SWV (m/s) SWV (m/s)	Jakubowski 2017 Kwon 2012 Lacourpaille 2017 Lacourpaille 2015 Lee 2018 Lee 2016 Lee 2015 Pichiecchio 2018 Wu 2016	14/0 15/13 10/9 14/3 14/8 8/0 16/0 5/5 31/21	Very good Very good Adequate Very good Very good Very good Inadequate Very good	(+) (+) (+) (+) (+) (+) (+) (+) (-) (+)	
Semi-Quantitative	ELX 2/1 Index, color pixel intensity SR SR, DS score, color pixel intensity	Boyaci 2014 Gao 2016 Kwon 2012	16/17 14/10 15/13	Very good Very good Adequate	(+) (+) (+)	Total N = 45/40, Limited (+)
Responsiveness						
Quantitative	SWV (m/s) SM (kPa) SM (kPa) SM (kPa)	Bilgici 2018(b) Brandenburg 2018 Lacourpaille 2017 Lacourpaille 2015	12/0 9/0 10/9 14/13	Very good ^d Adequate ^d Very good ^c Very good ^c	(+) (-) (+) (+)	Total N = 36/22, Limited (+)
Semi-Quantitative	ELX 2/1 Index, color pixel intensity RTS score SR, elasticity score	Boyaci 2014 Park 2012 Shao 2019	16/17 17/0 24/0	Very good ^{b,d} Very good ^{b,d} Very good ^{b,d}	(+) (+) (+)	Total N = 57/17, Moderate (+)

^{a1}COSMIN Box 9a - Comparison with other outcome measures (Convergent validity)
 ^{a2}COSMIN Box 9b - Comparison between subgroups (Discriminative or known-groups validity)
 ^bCOSMIN Box 10b - Responsiveness (Construct approach - comparisons with other outcome measures)
 ^cCOSMIN Box 10d - Responsiveness (Construct approach - pre-to-post intervention)
 ^cCOSMIN Box 10d - Responsiveness (Construct approach - pre-to-post intervention)
 ^cResults Rating: (+) = Positive, (?) = Indeterminate, (-) = Negative