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Abstract

We derive a model with qualitative implications for options pricing under counterparty

credit risk and provide empirical evidence using the data from the Hong Kong derivatives

market during 2005-2014. We find that the log-price difference between a derivative warrant

with counterparty credit risk and an otherwise identical option without counterparty credit

risk is significantly and negatively associated with the credit default swap spread on the

warrant issuer. We also find that the prices of out-of-the-money put warrants are more

sensitive to credit risk than those of other warrants. Our results show counterparty credit

risk matters for derivative pricing.
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1. Introduction

Counterparty credit risk refers to the risk that a counterparty will not pay up as obli-

gated in a contract. In recent years, counterparty credit risk has become a prominent risk

for market participants. In 2007-2008, many financial institutions all over the world suf-

fered large and unexpected losses from mortgage-backed securities that culminated in the

global credit crisis. Fears of systemic default were widespread shortly after the bankruptcy

of Lehman Brothers in September 2008. European financial institutions’ large holdings of

deteriorating sovereign debt further exacerbated their solvency problems during the Euro-

pean sovereign debt crisis in the late 2012.

The effect of counterparty credit risk on derivative pricing has been thoroughly studied

in theoretical models where such derivatives are known as vulnerable derivatives. Earlier

models include the options pricing models of Johnson and Stulz (1987), Hull and White

(1995), Jarrow and Turnbull (1995), and Klein (1996). Pricing implications are derived un-

der the then-popular assumption that the underlying value follows a geometric Brownian

motion process. In particular, independence is assumed for the credit event and the un-

derlying value of the options. More recently, the literature has expanded into counterparty

credit risk on other derivatives.1 However, despite the importance of counterparty credit

risk in the financial markets, there are few empirical studies on its pricing in derivative

securities. Earlier studies focus almost exclusively on the interest rate swap market. These

studies typically find that the effect of counterparty credit risk on the swap rate in interest

rate swaps is extremely small. Later studies extend to currency swaps and credit default

swaps (CDS). Again, these limited studies find that counterparty credit risk is priced, but

the magnitude is vanishingly small.2 One key reason that these studies find very limited

1For example, Cooper and Mello (1991), Sorensen and Bollier (1994), Duffie and Huang (1996), Duffie
and Singleton (1997), Jarrow and Yu (2001), Liu, Longstaff, and Mandell (2006), and Yu (2007).

2A partial list of empirical studies on the effects of counterparty credit risk on interest rate swaps
includes Litzenberger (1992), Sun, Sundarensan, and Wang (1993), Minton (1997), Eom, Subrahmanyam,
and Uno (2000, 2002), and Bomfim (2002). Cossin and Pirotte (1997) examine both currency swaps and
interest rate swaps. Arora, Gandhi, and Longstaff (2012) examine how the credit risk of CDS dealers affects
the CDS spreads they quote. Cserna, Levy, and Wiener (2013) examine the pricing of counterparty credit
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roles for counterparty credit risk in determining the prices of derivative securities, even

in crisis periods, is related to the credit risk mitigating mechanisms required for over-the-

counter (OTC) transactions such as collateral and netting. Collateral partially reduces

credit risk, or at least transforms the credit risk to other types of risk, such as market risk

or liquidity risk. The netting mechanism ensures that, in case one of the counterparties

involved in a transaction defaults, all contracts between the counterparties are aggregated

to give a net amount. This mechanism reduces counterparty credit risk and makes the

actual credit risk involved in the transactions difficult to measure.

To obtain evidence for the effect of counterparty credit risk on options pricing, we

use derivative warrants and options data from the Hong Kong market. The call and put

derivative warrants traded in Hong Kong resemble the usual call and put options traded

in the US and elsewhere, except that they can be issued, i.e., sold short, only by certain

financial institutions approved by regulators.3 Several key features of Hong Kong derivative

warrants and options data make them well suited, though not perfect, for examining the

effects of counterparty credit risk on options pricing. The derivative warrants and options

in our sample are both traded on the Hong Kong Stock Exchange (HKEx). Exchange-

traded options bear virtually no credit risk because margins are required for writing options

and they are settled through a central clearing house. In contrast, derivative warrants

are subject to the credit risk of their issuers, who are not required to put up collateral

against the warrants they issue, unlike OTC derivatives that requires collateral. Derivative

warrants are option-type derivatives, where the issuer assumes liability for the transaction.

This makes the impact of credit risk on pricing easier to detect, unlike the case of forward-

type derivatives, such as interest rate swaps and CDS, where counterparties might assume

liability such that it cancels out to a large extent. In our sample, a large number of

risk in exchange-traded notes, which are unsecured structured products issued by financial institutions,
but they find only weak evidence that counterparty credit risk is priced.

3Derivative warrants are also traded in Germany, Switzerland, Italy, UK, Australia, Singapore, Korea,
and several other countries under different names. Derivative warrant is the term used in Hong Kong. The
Hong Kong derivative warrant market was the largest in the world in terms of trading volume in 2007-2009
and 2011-2014.
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matched pairs of derivative warrants and options with the same contract specifications are

available. The use of derivative warrant-option pairs means that our analyses need not rely

on specific options pricing models, which can suffer from model specification errors. It also

overcomes the need to round up all possible explanatory variables that can affect the prices

of derivative warrants.

More specifically, we use the derivative warrants and options written on the Hang Seng

Index (HSI) during the period 2005-2014. More than 20 major international investment

banks issue warrants on the HSI. All of them also issue their own bonds/debt, and there is

active trading of CDS on these banks. We use their CDS spread as a measure of credit risk

and examine its effect on the pricing of the warrants they issue relative to the pricing of the

options with the same strike price and maturity. The sample period covers both relatively

quiet periods and two episodes of financial crisis, the US subprime debt crisis of 2008 and

the European sovereign debt crisis of 2011-2012, in which the credit quality of US and

European financial institutions deteriorated. The variations in the counterparty credit risk

and derivative warrant prices enable identifying their relation. Our empirical results show

that counterparty credit risk has a significant impact on the pricing of derivative warrants,

controlling for other factors that can affect warrant prices. The relation between the CDS

spreads of issuers and the prices of derivative warrants is economically significant. A one

percentage point increase in the CDS spread leads to a 1%-1.1% decrease in the price of

the derivative warrant.

Our empirical analyses are guided by a simple model that has a minimal parametric

structure and yet is rich enough to yield qualitative implications suitable for empirical

examination. In particular, we introduce the dependence between the underlying value and

the default event of the warrant issuer. Earlier models of vulnerable options, for example,

that of Johnson and Stulz (1987), assume independence. The independence assumption

fares poorly with the data. During the two financial crises, the HSI plunged, while the

default intensity rose among all warrant issuers. The negative association between the

underlying value and the default intensity implies that put warrants will lose more value
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than call warrants, each relative to their options counterparts. Panel A of Fig. 1 plots

the average log-price difference between warrants and options, where warrants were issued

by Lehman Brothers, and the options are chosen to best match the warrants. The plots

are made for puts and calls separately from the beginning of 2008 to the bankruptcy of

Lehman Brothers. Panel B of Fig. 1 shows the corresponding five-year CDS spread of

Lehman Brothers. The figure shows that the prices of put warrants relative to the prices

of put options moved inversely with the CDS spread, especially in the first segment of

this period, while the prices of call warrants relative to the prices of call options remained

relatively stable.4 The intuition is straightforward. When the underlying asset suffers a

big loss, put options provide protection that is valuable, while call options are out of the

money with limited value. If an issuer of warrants defaults with a higher probability when

the underlying value declines, the protection that put warrants promise to offer becomes

much less trustworthy, so its value declines. The value of call warrants also declines but

not as much because they are not valuable to begin with even without credit concerns.

The intuition is verified in our model under very mild technical conditions. The pattern

observed for warrants issued by Lehman Brothers is also verified in our empirical work

for other warrants issuers. In fact, our data support a more delicate implication of the

model that out-of-the-money put warrants are more sensitive to counterparty credit risk

than in-the-money put warrants.

Figure 1 here

The paper contributes to the literature in several aspects. First, we show an economi-

cally and statistically significant effect of counterparty credit risk on derivative prices, thus

filling a void in the literature. This verifies earlier theories suggesting that counterparty

credit risk has an impact on vulnerable derivatives. We accomplish this by exploiting the

difference in credit risk mitigating mechanism between otherwise similar derivative warrants

4The large fluctuation in both the relative put prices and CDS spread during mid-March was caused
by the fall of Bear Stearns. “Market analysts suggested that Lehman Brothers would be the next major
investment bank to fall” (quote from Wikipedia, https://en.wikipedia.org/wiki/Lehman Brothers).
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and options. Second, we abolish the independence assumption made in earlier literature

for the underlying value and the default of the derivative issuer and derive implications on

the difference in the effect of counterparty credit risk on vulnerable options between puts

and calls. The implications, and their extensions, are empirically verified in this paper.

Third, we extend the study on the derivative warrants market.5 Besides liquidity, which

is found to be relevant for derivative warrants pricing, this study adds counterparty credit

risk and a measure of retail investors’ lottery-like trading behavior as extra factors.

The remainder of this paper proceeds as follows. Section 2 presents a simple model

with qualitative implications to be tested in later sections. Section 3 provides a brief

introduction to the derivative warrants and options markets in Hong Kong and describes

our data. Section 4 examines the effects of the credit risk of derivative warrant issuers on

the price of the derivative warrants they issue. Section 5 presents several robustness checks

of the main results. Finally, Section 6 sets forth our conclusions.

2. A theoretical framework

Several factors can influence the prices of derivatives. Since the main purpose of this

paper is to show empirically the influence of counterparty credit risk on the pricing of

derivatives, we first present a simple pricing model of vulnerable options, which focuses on

the credit risk only, as in the literature. We then discuss other potential factors and their

joint effects on the pricing of derivatives.

5There are other studies of derivative warrants in the Hong Kong market, but they are unrelated to
counterparty credit risk. Duan and Yan (1999) use a semi-parametric approach to price derivative warrants
that substantially improves upon the Black–Scholes (1973) model. Chan and Wei (2001), Chen and Wu
(2001), and Draper, Mak, and Tang (2001) focus on the effect of introducing derivative warrants on the
price and trading volume of underlying securities. Chow, Li, and Liu (2009) examine the trading records of
market makers on the Hong Kong derivative warrants market to understand their inventory management.
Li and Zhang (2011) show that price differences between derivative warrants and options arise from their
liquidity differences. Fung and Zeng (2012) suggest that the implied volatility from derivative warrants
provides an unbiased forecast of the future realized volatility of the underlying asset.
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2.1. A simple model with qualitative implications

For ease of exposition, vulnerable options will be called (derivative) warrants in this

paper. The defining property of warrants here is that their buyers/holders face counterparty

credit risk. The model developed here does not describe warrants per se but rather the

difference between warrants and otherwise identical options. That way, it makes minimal

assumptions on the parametric structure but is rich enough to generate implications testable

using available data.6

Suppose the value of the underlying asset and the event that a warrant seller defaults

follow a joint jump-diffusion model. Let W c(t, T,K) and W p(t, T,K) be the prices of a

call and a put warrant, respectively, with strike price K and time to expiration T − t. Let

Oc(t, T,K) and Op(t, T,K) be the prices of the otherwise identical default-free options.

Theoretically speaking,

Oc(t, T,K) = Ẽt[e
−r(T−t)(ST −K)+], (1)

Op(t, T,K) = Ẽt[e
−r(T−t)(K − ST )+], (2)

W c(t, T,K) = Ẽt[e
−r(T−t)(ST −K)+(1(η>T ) + v1(η≤T ))], (3)

W p(t, T,K) = Ẽt[e
−r(T−t)(K − ST )+(1(η>T ) + v1(η≤T ))], (4)

where r is the risk-free rate; Ẽt is the expectation under a risk-neutral measure conditional

on the information set at time t; a+ = max(a, 0); η is the time when the seller of the

warrant becomes insolvent and triggers a credit event, in which the issuer pays a fraction

6There are two reasons why only a simple model with qualitative implications on the differences between
warrants and options is attempted here. The first is that options pricing literature has not settled on a
model that can accurately price options, even without counterparty credit risk. Evidence suggests that
sophisticated options pricing models with stochastic volatility and jumps in the underlying asset (Bates,
2000; Pan, 2002) and with jumps in both underlying asset and asset volatility (Eraker, 2004) cannot fit
the cross-section of options data satisfactorily. Evidence also shows that the class of popular affine jump-
diffusion models suffers from misspecification errors in general (see for example, Jones, 2003; Christoffersen,
Jacobs, and Mimouni, 2010; and Li and Zhang, 2013). Adding counterparty credit risk to such models is
doomed to fail when real data are used due to the problems with the options pricing part, even if the credit
risk part is perfect. The second reason is that, besides counterparty credit risk, other nontrivial factors
influence warrants pricing. Some of them are not suitable for modeling, as they can involve irrational
behavior.
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v, known as the recovery rate, of its obligation; and 1(η>T ) is the indication function for

the seller not becoming insolvent before T . Rewrite W c(t, T,K) as

W c(t, T,K) = Ẽt[e
−r(T−t)(ST −K)+ − e−r(T−t)(ST −K)+(1 − v)1(η≤T )]

= Oc(t, T,K) − Ac(t, T,K) (5)

= Oc(t, T,K)[1 −Bc(t, T,K)Ẽt(YT )], (6)

where

YT = (1 − v)1(η≤T ), (7)

Ac(t, T,K) = Ẽt[e
−r(T−t)(ST −K)+YT ], (8)

Bc(t, T,K) =
Ẽt[e

−r(T−t)(ST −K)+YT ]

Ẽt[e−r(T−t)(ST −K)+]Ẽt[YT ]
. (9)

Likewise,

W p(t, T,K) = Op(t, T,K) − Ap(t, T,K) (10)

= Op(t, T,K)[1 −Bp(t, T,K)Ẽt(YT )], (11)

with

Ap(t, T,K) = Ẽt[e
−r(T−t)(K − ST )+YT ], (12)

Bp(t, T,K) =
Ẽt[e

−r(T−t)(K − ST )+YT ]

Ẽt[e−r(T−t)(K − ST )+]Ẽt[YT ]
. (13)

In general, Ac(t, T,K), Bc(t, T,K), Ap(t, T,K), and Bp(t, T,K) are functions of strike price

K, the time to expiration T − t, and whatever state variables that enter the conditional

expectation Ẽ.

Let Dc(t, T,K) = W c(t, T,K) − Oc(t, T,K), Dp(t, T,K) = W p(t, T,K) − Op(t, T,K),

dc(t, T,K) = log[W c(t, T,K)/Oc(t, T,K)], and dp(t, T,K) = log[W p(t, T,K)/Op(t, T,K)].

The price differences between warrants and default-free options are

Dc(t, T,K) = −Ac(t, T,K) < 0, (14)

Dp(t, T,K) = −Ap(t, T,K) < 0, (15)

dc(t, T,K) = log[1 −Bc(t, T,K)Ẽt(YT )] ≈ −Bc(t, T,K)Ẽt(YT ) < 0, (16)

dp(t, T,K) = log[1 −Bp(t, T,K)Ẽt(YT )] ≈ −Bp(t, T,K)Ẽt(YT ) < 0. (17)
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The price differences are negative because all of the multiplicative terms in Ac(t, T,K),

Ap(t, T,K), Bc(t, T,K), and Bp(t, T,K) are positive, and Ẽt(YT ) > 0 as assumed for

warrants. Obviously the prices of warrants, both calls and puts, carry a vulnerability

discount, which is a counterparty credit discount. The discount is related to the risk-

adjusted probability of default status and the loss given default, YT . More qualitative

statements can be made in terms of the difference between calls and puts and the effect of

moneyness.

First, if ST and YT are independent, then Ac(t, T,K) = Oc(t, T,K)Ẽt(YT ), Ap(t, T,K) =

Op(t, T,K)Ẽt(YT ), and Bc(t, T,K) and Bp(t, T,K) are both equal to one, so the log-price

differences for both calls and puts are equal to log[1 − Ẽt(YT )] ≈ −Ẽt(YT ), which, when

further assuming the independence between default and recovery rate, is equal to Ẽt(1 −

v) · P̃ (η ≤ T ), i.e., the product of the risk-neutral expected loss given default and the

risk-neutral default probability.

Suppose ST and YT are not independent. We say ST and YT are strictly positively

quadrant-dependent under a probability P if P (ST < s, YT < y) > P (ST < s)P (YT < y)

for all (s, y). Similarly, ST and YT are said to be negatively quadrant-dependent if the

probability inequality is reversed.

Positive (negative) quadrant dependence between ST and YT implies that

Covt(f(ST ), g(YT )) > 0 (< 0) (18)

for all increasing functions f and g, where Covt is the time t conditional covariance under

probability P . Since (ST −K)+ is increasing in ST for calls and (K − ST )+ is decreasing

in ST for puts, Proposition 1 follows immediately.

Proposition 1. (i) If ST and YT are strictly positively quadrant-dependent under the risk-

neutral probability, then Ac(t, T,K) > Oc(t, T,K)Ẽt(YT ), Ap(t, T,K) < Op(t, T,K)Ẽt(YT ),

Bc(t, T,K) > 1, and Bp(t, T,K) < 1 so that calls have larger vulnerability discounts

than puts, other things being equal. (ii) If ST and YT are strictly negatively quadrant-

dependent under the risk-neutral probability, then Ac(t, T,K) < Oc(t, T,K)Ẽt(YT ), and
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Ap(t, T,K) > Op(t, T,K)Ẽt(YT ), Bc(t, T,K) < 1, and Bp(t, T,K) > 1 so that puts have

larger vulnerability discounts than calls, other things being equal.

The intuition behind the proposition is clear. Default-free calls gain more than puts

when the underlying value is high. If the underlying value and default are positively

quadrant-dependent, the fact that call writers may default renders the vulnerable calls less

valuable. Similarly, default-free puts gain more than calls when the underlying value is

low. If the underlying value and default are negatively quadrant-dependent, the fact that

put writers may default reduces the value of vulnerable puts. The situation in (ii) is more

relevant for the empirical results of the paper. In the example of Lehman Brothers, a

prestige investment bank at the time, ST is the HSI, an index for large-cap stocks traded

in Hong Kong, or stocks of large companies. The underlying asset price and the risk-

neutral probability of default multiplied by the loss given default are obviously negatively

quadrant-dependent. Hence we see that puts are more discounted than calls. We will show

in the empirical section that this is also true for warrants written on the HSI issued by all

of the other investment banks.

Since the deviation from one for the B(t, T,K) function comes from the dependence

between the underlying value and the warrant writer’s credit risk, it is conceivable that

for the same type of warrants, i.e., calls or puts, the valuation can be different for warrant

writers with different degrees of dependence. For two warrant writers, coded as 1 and 2, with

the same probability of default P (Y1T < y) = P (Y2T < y) for all y, we say that the quadrant

dependence between one’s credit risk and the underlying value is strictly more positive for

warrant writer 1 than for warrant writer 2, if P (ST < s, Y1T < y) > P (ST < s, Y2T < y)

for all (s, y). Note that this does not require the credit risk of either warrant writer to

have positive quadrant dependence with the underlying value. Since it is relative between

the two warrant writers, we do not need to separately define a more negative quadrant

dependence.

That warrant writer 1 has a strictly more positive quadrant dependence between its
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credit risk and the underlying value than warrant writer 2 implies that P ((ST − K)+ <

s, Y1T < y) > P ((ST − K)+ < s, Y2T < y) and P ((K − ST )+ < s, Y1T < y) < P ((K −

ST )+ < s, Y2T < y) for all (s, y). This immediately translates to inequalities in terms of

expectations. Therefore, we have Proposition 2.

Proposition 2. Suppose that warrant writer 1 has a strictly more positive quadrant de-

pendence between its credit risk and the underlying value than warrant writer 2 under the

risk-neutral probability. Then, (i) Ac1(t, T,K) > Ac2(t, T,K) and Ap1(t, T,K) < Ap2(t, T,K);

and (ii) Bc
1(t, T,K) > Bc

2(t, T,K) and Bp
1(t, T,K) < Bp

2(t, T,K).

The next result pertains to the effect of moneyness on the vulnerability discount, holding

other factors constant. For notational simplicity, assume r = 0 without loss of generality.

For absolute price differences, we note that

∂Ac(t, T,K)

∂K
= −Ẽt[1(K,∞)(ST )YT ] < 0 (19)

∂Ap(t, T,K)

∂K
= Ẽt[1(0,K)(ST )YT ] > 0. (20)

So the vulnerability discount in terms of the absolute price differences increases as an option,

be it a call or a put, becomes more in the money. For proportional price differences,

∂Bc(t, T,K)

∂K
=

Ẽt[1(K,∞)(ST )]

Ẽt[(ST −K)+]Ẽt[YT ]
·

[
Ẽt[(ST −K)+YT ]

Ẽt[(ST −K)+]
−
Ẽt[1(K,∞)(ST )YT ]

Ẽt[1(K,∞)(ST )]

]

=
Ẽt[1(K,∞)(ST )]

Ẽt[(ST −K)+]Ẽt[YT ]
· Ẽt[f(ST )YT ], (21)

where

f(ST ) =
(ST −K)+

Ẽt[(ST −K)+]
−

1(K,∞)(ST )

Ẽt[1(K,∞)(ST )]
, (22)

with f ′(ST ) ≥ 0 and Ẽt[f(ST )] = 0. Therefore, if ST and YT are positively quadrant-

dependent, then Ẽt[f(ST )YT ] > Ẽt[f(ST )]Ẽt[YT ] = 0, so ∂Bc(t,T,K)
∂K

> 0, and if ST and YT

are negatively quadrant-dependent, then ∂Bc(t,T,K)
∂K

< 0.

Similarly, for put warrants,

∂Bp(t, T,K)

∂K
=

Ẽt[1(0,K)(ST )]

Ẽt[(K − ST )+]Ẽt[YT ]
· Ẽt[g(ST )YT ], (23)
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where

g(ST ) =
1(0,K)(ST )

Ẽt[1(0,K)(ST )]
− (K − ST )+

Ẽt[(K − ST )+]
, (24)

with g′(ST ) ≥ 0 and Ẽt[g(ST )] = 0. Therefore, ∂Bp(t,T,K)
∂K

> 0 if ST and YT are positively

quadrant-dependent, and ∂Bp(t,T,K)
∂K

< 0 if ST and YT are negatively quadrant-dependent.

We summarize the above results in Proposition 3.

Proposition 3. (i) ∂Ac(t,T,K)
∂K

< 0, ∂Ap(t,T,K)
∂K

> 0; that is, the more in the money a warrant

is, be it a call or a put, the larger the absolute discount. (ii) If ST and YT are strictly

positively quadrant-dependent, then ∂Bc(t,T,K)
∂K

> 0 and ∂Bp(t,T,K)
∂K

> 0. (iii) If ST and YT are

strictly negatively quadrant-dependent, then ∂Bc(t,T,K)
∂K

< 0 and ∂Bp(t,T,K)
∂K

< 0.

Proposition 3 (i) states that the more in the money a warrant is, the greater the absolute

vulnerability discount, whether the warrant is a call or a put. This is intuitive. Proposition

3 (ii) and (iii), however, state that the proportional discount depends on whether the

dependence between the underlying value and the credit risk is positive or negative and is

opposite for calls and puts. To understand it, let’s focus on the case in which the underlying

value and the credit risk are negatively quadrant-dependent. With a smaller K, the put

payoff is nonzero only when ST is lower, while YT takes on a higher value in the conditional

expectation in the numerator of Eq. (13), and Bp is larger as a result. In contrast, with a

larger K, the call payoff is nonzero only when ST is higher, and YT takes on a lower value

in the conditional expectation in the numerator of Eq. (9), and Bc is smaller.

These implications can all be examined in the later empirical study to various extent.

It should be pointed out that the implications derived in this subsection are unique to

counterparty credit risk. These implications are not associated with other factors that

could potentially affect the prices of derivative warrants.

2.2. Implications for the empirical specifications

Suppose the warrant issuer also sells a zero-coupon bond maturing at the same time

as the warrant, and the bond is pari passu with the warrant. The value of the bond with
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the face value normalized to one equals e−r(T−t)[1 − Ẽt(YT )]. The yield to maturity of the

bond is r− [log(1− Ẽt(YT ))]/(T − t). The yield spread is then −[log(1− Ẽt(YT ))]/(T − t),

approximated to Ẽt(YT )/(T−t). The annualized CDS spread, if written on the zero-coupon

bond, is theoretically the same as the yield spread. The equations for the proportional price

difference between warrants and options, Eq. (16) and Eq. (17), can then be written as

dc(t, T,K) ≈ −Bc(t, T,K) · CDSτ, (25)

dp(t, T,K) ≈ −Bp(t, T,K) · CDSτ, (26)

where the unannualized CDS spread, CDSτ , is the premium paid over τ = T − t period

for the protection of the bond issued by the warrant issuer. An important feature of the

analysis is that, when counterparty credit risk is the only factor in the warrant pricing, the

proportional price difference between a warrant and an option in a pair, up to the first-

order approximation, depends on the strike price, the time to expiration, and whatever

state variables only through the slope coefficient of CDSτ . We can use observable CDS

spreads on the warrant issuers as a proxy for Ẽt(YT )/(T − t) to conduct empirical analysis,

although, technically, the two differ slightly in many aspects.7

Since Bc(t, T,K) and Bp(t, T,K) are both equal to one if ST and YT are indepen-

dent, the slope coefficient β1 must be equal to -1 in a benchmark regression of the type

d(t, T,K) = β1CDSτ + ε. This simple case serves to provide fresh evidence of the existence

of the vulnerability discount in derivative pricing given that the literature has failed to

demonstrate its economic significance empirically as mentioned in Introduction.

If ST and YT are negatively quadrant-dependent under the risk-neutral probability,

Proposition 1 implies that when a simple regression of the type d(t, T,K) = β1CDSτ + ε is

applied to the call sample and the put sample separately, the slope coefficient for the call

sample will be less negative than -1, while that for the put sample will be more negative

7For example, in CDS trading, the settlement is at default upon the conclusion of CDS auction a couple
of weeks later, not at the CDS maturity. For derivative warrants, the defaulted seller of warrants will pay
a fraction of promised claims valued at the expiration day of warrants. The assumption of the recovery
rate as in Eq. (3) and Eq. (4) is consistent with the practice in the Hong Kong derivative warrants market
but not with that of the CDS market.
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than -1. Alternatively, when the simple regression is applied to the whole sample, but with

the additional cross-product term 1p · CDSτ , where 1p is the dummy variable for puts, the

coefficient of CDSτ is less negative than -1, and the coefficient of 1p · CDSτ is negative.

In general, the slope coefficient of CDSτ is a function of the strike price, time to ex-

piration, and the state variables: β1(t, T,K,Xt) where Xt represents the vector of state

variables. We examine this by assuming a linear functional form as the first approxima-

tion in the robustness check section and through semi-nonparametric estimation without

assuming any functional form.

The notion of quadrant dependence between ST and YT in the propositions is stronger

than correlation but the weakest among several other dependence notions. Checking quad-

rant dependence empirically is difficult, however, as it requires the knowledge of joint and

marginal distributions of (ST , YT ) or the sign of Covt(f(ST ), g(Yt)) for all increasing func-

tions f and g. But fortunately, the condition regarding quadrant dependence is sufficient

rather than necessary, for the propositions. More specifically,

• for Proposition 1 (ii) to hold, we need Covt((ST − K)+, YT ) < 0 and Covt((K −

ST )+, YT ) > 0 for relevant Ks only,

• for Bp
1(t, T,K) < Bp

2(t, T,K) in Proposition 2 (ii) to hold, we need Covt((K −

S1T )+, YT ) < Covt((K − S2T )+, YT ) for relevant Ks only,

• and for ∂Bp(t,T,K)
∂K

< 0 in Proposition 3 (iii) to hold, we need Covt(g(ST ), YT ) < 0 for

relevant Ks only, where g(·) is defined in Eq. (24).

Another issue pertains to the difference in these covariances between risk-neutral prob-

ability in the model and physical probability in empirical work. Although, theoretically,

the covariances can differ between the two probabilities, many empirical studies in various

similar contexts assume that they are the same simply because there is not enough informa-

tion in the data to identify risk premiums associated with all state variables, for example,

Pan (2002) and Broadie, Chernov, and Johannes (2007). In our case, the requirement for
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linking the covariances under the two probabilities is weaker. The covariances under the

two probabilities do not have to be the same. As long as the ordering of the covariances

across different warrant issuers remains the same for the two probabilities, Proposition 2

can be restated in terms of the physical probability. Since the warrant issuers are all major

international investment banks and there is no specific reason, a priori, to assign a different

risk premium per unit of risk associated with the covariance to one bank from others, it is

conceivable that the orderings of the conditional covariances among all the warrant issuers

are the same under both risk-neutral and physical probabilities. In the empirical work

below, this is assumed.

2.3. Other factors influencing warrant prices

In additional to counterparty credit risk, derivative warrants traded in the Hong Kong

market and elsewhere are priced differently than options of the same strike price and ma-

turity for two other reasons. One is that they have difference levels of liquidity, and the

other pertains to the overpricing caused by retail investors’ lottery-like trading behavior.

We describe them in turn.

The difference in liquidity between derivative warrants and options stems from their

minimum trading sizes, as shown by Li and Zhang (2011). The exchange stipulates that a

round lot of options on stocks is the same as or more than a round lot of the underlying

stocks, while a round lot of derivative warrants, determined by the issuer, is typically only

one-tenth of a round lot of the underlying stocks. The difference in trading sizes between

derivative warrants and options on stock indexes is even greater. This creates a clientele

effect. Options traders tend to be either institutional traders or wealthy, sophisticated

individual traders. Derivative warrants traders tend to be small, unsophisticated traders

with short holding periods. The HKEx also requires each issuer to appoint a liquidity

provider to input bid and ask prices into the trading system and be prepared to trade

with other traders. This further improves the liquidity of the derivative warrants market.

Derivative warrants have a much larger trading volume and turnover than options; they
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also have a much lower Amihud illiquidity measure than options, except for out-of-money,

short-term derivative warrants.8

The small trading size of derivative warrants with high liquidity attracts small retail

investors. Some of these investors exhibit trading behavior that is difficult to justify. Since

derivative warrants can only be issued by institutions that have permission from regulators

and investors without such permit cannot sell them short, the prices of derivative warrants

can be biased upward. Although this is widely believed to be the case by market pun-

dits and mentioned in various media sources, the degree to which it is true has not been

rigourously shown in academic studies. A comprehensive study of this is beyond the scope

of our paper, but we devise simple measures of this potential bias in the price difference

between derivative warrants and options, as control variables in identifying of the effect of

counterparty credit risk. Our measures pertain to the common moneyness of a warrant-

option pair and their common time to expiration, which are not expected to have any effect

on the price differences between pairs of derivative warrants and options, provided that no

bias exists. However, retail investors who pursue a lottery-buying (or skewness preference)

trading strategy tend to overpay for those derivative warrants that appear to be cheap. In

this sense, short-term, out-of-money derivative warrants are more susceptible to such bias.

Since liquidity and lottery-buying behavior are not the main focus of this paper, we

do not formally model them. Instead, we use measures of these potential forces as control

variables and focus on our main query about the effect of counterparty credit risk on the

pricing of vulnerable derivatives. This is equivalent to assuming that there is a liquidity

premium and a skewness-preference premium in the form of

Ŵ (t, T,K) = e(β0t+β2LIQ+β3MON+β4LTE)W (t, T,K), (27)

for call and put warrants. W is the price of a vulnerable option, which differs from an

option by the counterparty credit risk discount only, and Ŵ is the price of a warrant that

8In the recent literature of bond pricing including Chun et al. (2017), models with credit risk and
liquidity risk have been developed. The situation is much more complicated in the case of derivative
warrants because their liquidity differs across issuers for the same option and differs across derivative
warrant-option pairs for the same issuer.
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accounts for additional liquidity and skewness-preference premiums. LIQ is the measure

of liquidity; MON is moneyness, defined as 1 − K/St for a call and K/St − 1 for a put;

and LTE is the logarithm of time to expiration for individual warrants. In particular, β2

is a positive coefficient, β3 and β4 are negative coefficients, and β0t is a function of state

variables. The log-price difference, d̂(t, T,K) = log(Ŵ (t, T,K)/O(t, T,K)), equals

d̂(t, T,K) = β0t + β1(t, T,K,Xt)CDSτ + β2LIQ + β3MON + β4LTE. (28)

This equation is the main focus of our empirical examination.

3. Derivative warrants and options in Hong Kong

3.1. Description of the markets

Trading of derivative warrants and options in Hong Kong is conducted on the HKEx,

which is divided into the securities market, the derivatives market, and the base metals

market. Stocks and derivative warrants, among others, are traded in the securities market,

in which derivative warrants accounted for about 16% of the total trading volume from

2005 to 2014. Futures and options on indexes and individual stocks, interest rate futures,

current futures, and gold futures are traded in the derivatives market. The acquisition of

the London Metal Exchange in 2012 by HKEx forms its base metals market.

There are two types of warrants in Hong Kong, equity warrants and derivative war-

rants. In recent years, most warrants traded on the HKEx are derivative warrants. Equity

warrants are issued by a listed company and give holders the right to subscribe for equity

securities of that company. When these warrants are exercised, the listed company issues

new shares to their holders and collects extra capital. Derivative warrants are structured

products. They are issued by a third party, usually an investment bank that is unrelated

to the issuer of the underlying asset. Both call and put derivative warrants exist. The

underlying assets can be a single security or a basket of securities, stock indices, currencies,

commodities, or futures contracts. When a call derivative warrant on a single stock is exer-
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cised, no new shares of the underlying company are issued. Almost all derivative warrants

currently traded in Hong Kong are European style and cash settled. Issuers of derivative

warrants include several major US, European, and Australian banks, such as Goldman

Sachs, Citigroup, JP Morgan, Lehman Brothers, Société Générale, KBC, Deutsche Bank,

BNP Paribas, and Macquarie Bank. Each underlying asset can have multiple issuers that

compete with each other to offer popular contract specifications, lower prices, and better

liquidity.

Derivative warrants represent issuers’ or their guarantors’ general contractual obliga-

tions. They are not secured on any of the issuers’ or guarantors’ assets or collateral and

rank equally with other general unsecured obligations of the issuers/guarantors. Thus,

derivative warrants are subject to the credit risk of issuers or guarantors. The credit risk of

the issuer is usually the first risk factor disclosed in the listing document of a derivative war-

rant. The HKEx issues advisory letters periodically to remind derivative warrant investors

of the credit risk associated with derivative warrant issuers and provides information on

the credit ratings of issuers on its web site and updates the ratings on a daily basis. One

important case regarding the counterparty credit risk of derivative warrant issuers is the

collapse of Lehman Brothers.

Since 2001, the HKEx has required that all issuers appoint a liquidity provider to input

bid and ask prices into the trading system, either continuously or on request. Some issuers

also provide information, such as the average bid-ask spread and the average size of bid

and ask quotes of the derivative warrants issued by them, to advertise the quality of their

liquidity provision. This requirement has improved the liquidity of the derivative warrants

market in Hong Kong, and the market has been ranked the largest in the world in terms of

trading volume in recent years. Most warrant issuers act as liquidity providers themselves

and become active traders in the market while making the market. In fact, their degree of

involvement in trading becomes the best measure of liquidity for a given warrant.

Index options in Hong Kong are European style and settled in cash, while stock options
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are American style with physical delivery of the underlying assets upon exercise. The

contract specifications of the options are set by the exchange. To trade in the options

market in Hong Kong, an investor can either open a cash account or a margin account with

a broker registered with the HKEx. If the investor maintains a cash account with a broker,

he or she can carry long option positions only and is not subject to paying margins. If the

investor maintains a margin account with a broker, he or she can take both long and short

positions and will be required to pay margin based on the Standard Portfolio Analysis of

Risk (SPAN) margin methodology. SPAN is a risk-based portfolio approach for calculating

the daily margin requirement developed by the Chicago Mercantile Exchange. It constructs

scenarios of futures price movements and volatility changes to estimate the potential losses

of the entire portfolio in the following trading day and computes the margin requirement

to cover those losses.

3.2. Data sources

We focus on derivative warrants and options written on the HSI. A comparison between

derivative warrants and options on the HSI is clean, as they are both European style and

cash settled. The HSI is the benchmark index in the Hong Kong stock market, and the

derivatives written on it are the most liquid. We refer to derivative warrants on the HSI

simply as warrants because the underlying asset is an index and there is no confusion.

The data on warrants and options on the HSI are obtained from the HKEx. The

warrants data include daily closing bid and ask prices, trading share volume, dollar volume,

and contract specifications, such as maturity and strike price. The options data include

intraday bid and ask quotes, daily trading volume, maturity, and strike price. The options

market closes at 4:15 pm, and the warrants market closes at 4:00 pm. We select the intraday

bid and ask quotes of options closest to 4:00 pm and match them with the closing prices of

warrants. We use a sample of warrants and options matched by maturity and strike price so

that their prices can be compared.9 We require both warrants and options to have positive

9Warrant issuers can choose the specifications of warrants to issue. However, they tend to issue warrants
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daily volumes to mitigate the concern of stale quotes. We remove the observations with

option prices less than 0.25% of the HSI level to reduce the large proportional pricing errors

from these low-priced options, which account for about 1% of the sample. The closing HSI

level is obtained from Yahoo! Finance. The sample period is from January 1, 2005, to

December 31, 2014.

We use CDS spreads of warrant issuers to measure their credit risk. A CDS is a

derivative security to insure against the default risk of a particular entity. The buyer of the

CDS makes periodic payments—known as the CDS spread—to the seller until the end of

the life of the CDS or until the default of the entity in which case the buyer has the right

to sell the bond issued by the entity for the face value back to the seller. The CDS spread

is approximately equal to the excess of the par yield on the bond over the par yield on the

risk-free bond with the same maturity. When the credit risk of the underlying entity is

high, CDS buyers are willing to pay a high premium, i.e., the CDS spread, to insure against

the risk. CDS spreads offer some advantages as a measure of credit risk relative to other

measures, such as corporate bond yield spreads. For example, CDS spreads represent more

timely market information and are less contaminated by liquidity and tax effects, and CDS

contracts are standardized and comparable across firms. The end-of-day average closing

bid and ask quotes of CDS spreads are downloaded from Markit.10 We linearly interpolate

or extrapolated senior CDS spreads of available tenors to match the time to expiration

of warrants and use them to measure the counterparty credit risk of the corresponding

warrants. In Section 5, we also use the senior six-month CDS spreads, the tenor best

matched with that of warrants among available CDS spreads, to run the main regressions

with the same specifications as available options. About 25% of HSI warrants cannot be matched with
options of the same maturity and strike price, and these are excluded from our sample. Lehman Brothers
issued warrants on HSI for only a very brief period in the summer of 2008 without perfectly matched
options. As a result, it is not included in the sample.

10End-of-day quotes on CDS spreads are made according to either New York time or London time,
depending on the individual entity, which gives rise to the time difference between the CDS spreads and
prices of warrants and options traded in Hong Kong. We find that the results are essentially the same
regardless of whether warrant and option prices are matched with CDS spreads on the same calendar day
or with a one-day lag. In the results reported below, two sets of data are matched on the same calendar
day.
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again as a robustness check. It should be noted that, while the warrants and options

on HSI are traded in Hong Kong only, CDSs on the warrant issuers are traded globally.

Potential market segmentation can cause the relation between relative warrant prices and

CDS spreads not to follow exactly what the model implies.

3.3. Warrants issuers

Table 1 reports the names of issuers and the number of warrants issued in the sample

period. There are 21 issuers in the sample. European banks, including Société Générale,

KBC, Deutsche Bank, and BNP Paribas, are the most active issuers. Some American and

Australian banks, such as Goldman Sachs and Macquarie Bank, are also important issuers

in the warrants market. The number of call warrants and that of put warrants are roughly

the same. Issuers tend to issue calls and puts with the same strike price and maturity for

hedging purposes. In our sample, there are 3,213 different warrants and 78,793 warrant-day

observations matched with options.

Table 1 here

Panel A of Fig. 2 shows the time-series plots of the 10th percentile, median, and 90th

percentile of the monthly average of six-month CDS spreads in percentage points across

warrant issuers. CDS spreads were low and stable from 2005 to the first half of 2007. From

the second half of 2007, CDS spreads began to increase. The first spike in the time series

corresponds to the collapse of Bear Stearns in early 2008. CDS spreads increased further

from the second half of 2008 to early 2009. After a relatively stable period from late 2009

to early 2011, CDS spreads increase again in the second half of 2011 amid the European

sovereign debt crisis. After then, CDS spreads began to decrease and stayed at low levels.

The cross-sectional differences in CDS spreads were small in 2005-2007 and 2013-2014 and

large in 2008-2012, a pattern resembling that of the average CDS spreads. The dispersion

of CDS spreads peaked in September 2008, when Lehman Brothers filed for bankruptcy.

Panel B of Fig. 2 shows the time-series plots of the average six-month, one-, and two-year
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CDS spreads. The term structure of CDS spreads sloped upward for most of the time,

except for late 2008 and early 2009 when CDS spreads of both maturities shot up.

Figure 2 here

The time-series mean and standard deviation of the daily six-month CDS spreads for

individual issuers are tabulated in Table 2. Some American and Australian banks, such

as Morgan Stanley, Merrill Lynch, and Macquarie Bank, were among the banks with the

highest CDS spreads during the sample period, whereas HSBC and Rabobank had the

lowest CDS spreads. The volatilities of CDS spreads tend to be high for banks with high

average CDS spreads. Since there are substantial differences in the level of credit risk, as

well as cross-sectional variation across the sample period, as suggested in Fig. 2, we further

divide the sample into two subsamples. The high CDS spread sample concerns the period

2008-2012, and the low CDS spread sample concerns the periods 2005-2007 and 2013-2014.

The level and volatility of CDS spreads in the high CDS spread sample are substantially

higher than those in the low CDS spread sample for all issuers.

Table 2 here

We use the entire sample to estimate unconditional correlations between weekly CDS

spread changes and normalized payoffs of calls,

CSC(MON) = Corr[(ST/St −K/St)
+,CDS6m

T − CDS6m
t ], (29)

for each issuer and various strike prices, K, where MON = 1 − K/St and CDS6m is the

six-month CDS spread. Similarly, we estimate unconditional correlations between weekly

CDS spread changes and negative normalized payoffs of puts,

CSP(MON) = Corr[−(K/St − ST/St)
+,CDS6m

T − CDS6m
t ], (30)

where MON = K/St − 1. The scatter plots of among CSC(MON) and CSP(MON) are

shown in Fig. 3. For various values of MON, CSP(MON) is negative for all issuers, and
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CSC(MON) is also negative, except for one issuer. This provides supporting evidence

for the condition of Proposition 1 (ii). The figure also suggests that CSC(MON) and

CSP(MON) of issuers are highly and positively correlated for various pairs of MONs. This

indicates that issuers with more negative correlations for a given MON are likely to have

more negative correlations for other MONs. Because rankings of correlations among issuers

for various values of MON are rather stable, we can separate issuers with different degrees

of dependence and test Proposition 2.11 These correlations tend to be more negative during

the high CDS spread period.

Figure 3 here

We also calculate unconditional correlations between weekly CDS spread changes and

f(ST ) in Eq. (22) as

CSC−(MON) = Corr

[
(ST/St −K/St)

+

E[(ST/St −K/St)+]
−

1(K/St,∞)(ST/St)

E[1(K/St,∞)(ST/St)]
,CDS6m

T − CDS6m
t

]
,

(31)

where MON = 1 − K/St, and unconditional correlations between weekly CDS spread

changes and g(ST ) in Eq. (24) as

CSP−(MON) = Corr

[
1(0,K/St)(ST/St)

E[1(0,K/St)(ST/St)]
− (K/St − ST/St)

+

E[(K/St − ST/St)+]
,CDS6m

T − CDS6m
t

]
,

(32)

where MON = K/St − 1. Fig. 4 shows for various values of MON, CSP−(MON) and

CSC−(MON) are negative for most of the issuers, and they are highly and positively corre-

lated for various pairs of MONs. These results provide supporting evidence for the condition

of Proposition 3 (iii).

Figure 4 here

11Proposition 2 requires rankings of issuers based on covariances between payoffs and CDS spreads
conditional on the level of CDS spreads. Because the variance of CDS spreads is strongly and positively
associated with the level of CDS spreads, the correlations calculated here are already controlled for the
level of CDS spreads.
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3.4. Summary statistics

We denote the value of HSI at the end of a day as S and express the price of warrants

Ŵ and options O as the actual bid-ask average price multiplied by 100 and divided by

S. The reason for normalizing by S is so that we can make the price data comparable

across time. Defined in this way, the prices of warrants and options are expressed in terms

of the percentage of the HSI level. The time to expiration is measured by the number of

calendar days and denoted by TTE, and LTE is the log of TTE. The log-price difference of

a matched pair of warrant and option, d̂ = log(Ŵ )− log(O), is the main variable of interest

in this paper, for which normalization by S is inconsequential.12 LIQ is the proportion of

warrant trading attributed to liquidity providers, calculated as the share volume traded

by liquidity providers divided by the total share volume for a warrant contract on a day

on which the total trading volume is positive. The higher the value of LIQ, the more

actively liquidity providers supply liquidity to the market. WVL and OVL are the daily

dollar trading volumes normalized by 1000S for a warrant and an option, respectively, and

DVL is the difference between WVL and OVL. WSP and OSP are the proportional bid-ask

spreads for a warrant and an option, respectively, and DSP is their difference. WCS is the

warrant contract size, i.e., the number of shares of the underlying assets for one round lot

of warrants, and DCS is the difference in contract sizes between derivative warrants and

options. VIX is the volatility index of HSI. CDSfit is the annualized CDS spread of a warrant

issuer for the remaining tenor of the warrant, fitted (linearly interpolated or extrapolated)

from CDS spreads of available tenors. CDSτfit is the unannualized CDS spread, i.e., CDSfit

multiplied by TTE in years, the main variable measuring the counterparty credit risk of

the warrant issuers. The percentiles of the distributions of the key variables are reported

in Table 3.

Table 3 here

12We focus on relative (i.e., proportional) differences, rather than absolute differences, to save space.
All of the implications for the absolute differences from the propositions are verified and available upon
request.
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The sample of matched warrants and options are near the money with the moneyness

of majority between -14% and 5%. The warrants typically mature six months after issue,

although issuers are allowed to issue warrants that do not mature until five years later at

most. The actively traded warrants and options mostly mature within six months. The

medians of Ŵ and O are 2.6% and 2.2%, respectively. Prices of warrants are generally

higher than those of options. However, there is a large cross-sectional variation in the price

differences between warrants and options, and quite a number of warrants are traded at

lower prices than are options. The average price difference between warrants and options is

attributed to the liquidity premium of warrants over options, as Li and Zhang (2011) argue,

and the irrational lottery-buying behavior of retail investors. We focus on explaining the

cross-sectional variation in the price difference between warrant and option pairs rather than

their average price difference. The median of LIQ is 0.99, suggesting that liquidity providers

supply liquidity actively in general. Other liquidity variables indicate that warrants tend

to be more liquid than options.13 Warrants tend to have smaller proportional bid-ask

spreads than options. One contract of warrants corresponds to about one contract of HSI

on average, which makes warrants easy to trade by individual investors with limited capital,

whereas one contract of options always corresponds to 50 contracts of HSI. The 5th and

95th percentiles of the VIX of HSI are 14% and 42%, respectively. The annualized, fitted

CDS spread, CDSfit, has a median of about 0.29%, and the 5th and 95th percentiles are

0.016% and 1.7%, respectively. The unannualized CDS spread, CDSτfit has a median of

0.046%, and the 5th and 95th percentiles are 0.0017% and 0.42%, respectively. Both CDSfit

and CDSτfit are positively skewed. Panel A2 of Table 3 reports the summary statistics for

the put sample, which are quantitatively similar to the whole sample. The puts are slightly

more out of the money with shorter time to expiration and have lower, Ŵ , O, d̂, and LIQ

than the whole sample.

Panels B1 and B2 of Table 3 report the correlations among the explanatory variables

13The daily trading volume of warrants has a wide distribution. On about half of the warrants/days, the
trading volume of warrants is slightly smaller than that of options, but on the other half of the warants/days,
the trading volume of warrants is much greater than that of options.
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used in the analysis that follows. CDSτfit is correlated with other explanatory variables,

suggesting the importance of controlling for other variables in the empirical analysis and the

challenge of identifying the effect of counterparty credit risk in precise quantitative terms.

Not surprisingly, CDSfit and CDSτfit have the highest correlation among these variables.

The correlations for the whole sample and the put sample are essentially the same.

Fig. 5 shows the time-series plot of the 10th, 50th, and 90th percentiles of the log-

price differences between derivative warrants and options, d̂, for puts and calls separately.

As we can see, the median of the log-price difference is always positive. There are small

fluctuations over time in all of these percentiles, but there is no obvious trend or cycle

similar to that of CDS spreads, except for a brief episode at the beginning of 2008, for the

calls. This suggests that the variation in CDS spreads is not the only variable that affects

the log-price difference.

Figure 5 here

Fig. 6 shows the scatter plots of the log-price difference between derivative warrants

and options, d̂, against CDSτfit, where these variables are averaged by month and issuer.

The plots are shown separately for puts and calls. For the entire sample period of 2005-

2014, for both puts and calls, the negative relation between d̂ and CDS spread is clear, and

the relation is stronger for puts, especially at large CDS spreads. We divide the sample

period into the high CDS spread period of 2008-2012 and the low CDS spread period of

2005-2007 and 2013-2014. The scatter plots for the high CDS spread period are similar to

those for the full sample period, but for the low CDS spread period, the negative relation

between d̂ and CDS spread is much weaker, especially for the call sample. Note that the

cross-sectional variation in the CDS spread is much smaller for the low CDS spread period,

indicating that it can be difficult to identify the impact of counterparty credit risk during

the period. The initial evidence from the scatter plots suggests that counterparty credit

risk is important for warrant pricing during the high CDS spread period, especially for

the put warrants. A formal empirical analysis of the effect of counterparty credit risk on
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warrants pricing controlling for other factors will be conducted below.

Figure 6 here

4. Empirical analysis

4.1. Counterparty credit risk and the price difference between warrants and
options

In this subsection, we use linear regression analysis to examine the effects of the coun-

terparty credit risk of warrant issuers on the prices of warrants they issue. The panel

regression model is specified as

d̂ = β1CDSτfit + β2LIQ + β3MON + β4LTE + β51p · CDSτfit + time-fixed effects + ε, (33)

where d̂ is the log-price difference between a matched derivative warrant and option pair,

and CDSτfit is the unannualized CDS spread, which measures the counterparty credit risk of

the warrant issuer. If the counterparty credit risk is priced in warrants (i.e., warrants issued

by banks with greater credit risk are traded with larger discounts), the coefficient of CDSτfit

would be negative. LIQ is the proportion of the warrant trading attributed to liquidity

providers. Since there are no data on this figure for the options market, we set it to zero so

that LIQ measures the liquidity difference between warrants and options.14 The moneyness,

MON, controls for the behavioral biases of warrant investors. Li, Subrahmanyam, and Yang

(2018) find that investors prefer financial products with a highly skewed return distribution,

i.e., low MON. Another variable with which to control for the behavioral biases is log time

to expiration, LTE. 15 Short-term warrants appear to be cheap and are likely to be preferred

by warrant investors. The coefficient of LTE is expected to be negative. Proposition 1 (ii) in

14We also use the differences in trading volume, bid-ask spread, and contract size between warrants and
options to capture their liquidity differences. LIQ dominates other liquidity measures in explaining the
price differences between warrants and options. The results with all these liquidity measures are shown in
a robustness check in the next section.

15We use LTE instead of TTE because LTE has a greater statistical significance than TTE in most
regression specifications.
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Section 2 suggests that prices of put warrants are more sensitive to CDS spreads than those

of call warrants when CDS spreads on warrant issuers and HSI are negatively quadrant-

dependent. We empirically test this proposition by including 1p · CDSτfit in the regression

specification, where 1p indicates a put. The sign on the interaction term is expected to be

negative if prices of put warrants are more sensitive to counterparty credit risk than those

of call warrants. We use monthly dummy variables to control for the unobserved factors

that affect the time-series variation in d̂. The t-statistics are clustered by warrant to adjust

for the autocorrelation in errors.

Table 4 here

The results for the entire sample period are shown in Panel A of Table 4. CDSτfit

is negatively and significantly related to d̂, controlling for LIQ, MON, and LTE. LIQ is

positively and significantly related to d̂, consistent with the results reported in Li and

Zhang (2011) that the liquidity difference between warrants and options explain their price

difference to a certain extent. MON and LTE are negatively related to d̂, suggesting

that warrant investors exhibit behavioral biases. The regression explains a substantial

proportion of variation in d̂, indicated by R2 with time-fixed dummies of 38.4% and R2

without time-fixed dummies of 31.3%. The coefficient of CDSτfit is about -5.6, indicating

that, on average, a one percentage point increase in CDSτfit of a warrant issuer leads to a

5.6% decrease in the value of the warrant. Translating into annual terms, a one percentage

point increase in the annualized CDS spread of a warrant issuer leads to a 1.15% decrease

in the value of the warrant because the average maturity of warrants in our sample is

75 days. The effects of the counterparty credit risk of warrant issuers on warrant pricing

are economically significant. Our results can be compared with those reported by Arora,

Gandhi, and Longstaff (2012) for the CDS market. These authors find that a 645 basis

points increase in the credit spread of a CDS dealer translates into only a one basis point

decline in the dealer’s spread for selling credit protection. They argue that such a small

effect from counterparty credit risk is due to credit risk mitigation mechanisms, such as
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collateral and netting, in the OTC market. In our case, warrant issuers are not required to

put up any collateral against the warrants they issue, which enables identifying the strong

effects of counterparty credit risk on the pricing of warrants.

The coefficient of 1p · CDSτfit is negative and highly significant, indicating the stronger

impact of the counterparty credit risk of warrant issuers on the prices of put warrants

than on those of call warrants. The results support the prediction of Proposition 1 (ii).

The coefficient of CDSτfit becomes -2.2 and insignificant. The results suggest that the

explanatory power of CDSτfit on d̂ comes mostly from put warrants. All of LIQ, MON, and

LTE still have the expected signs and are statistically significant when the term 1p ·CDSτfit

is included in the model.16

Panel B of Table 4 reports the results for the subperiod of 2008-2012 when the CDS

spreads are high with large cross-sectional variation. The empirical results on the impact of

counterparty credit risk on warrant pricing seem to be slightly stronger for the entire period

than for the high CDS spread period because the difference between high and low CDS

spread periods helps to identify the impact of counterparty credit risk. We note that the

effect of counterparty credit risk on warrant pricing can be identified during the high CDS

spread period but not during the low CDS spread period because of the low cross-sectional

and time-series variations in CDS spreads in the low CDS spread period. The significance

levels of LIQ and MON are slightly reduced, and the significance level of LTE is slightly

increased. The coefficient of 1p · CDSτfit remains negative and highly significant.

Proposition 2 suggests that the difference between put warrants and call warrants is

even greater for issuers whose CDS spread is more negatively quadrant-dependent with the

HSI. For each issuer, we use the average correlation between payoffs and the CDS spread

changes, as Eq. (29) and Eq. (30), across MON as the measure of the quadrant dependence.

We divide the 21 warrant issuers into two groups. The 11 issuers with more negative average

16Under very mild conditions as stated in Section 2, the coefficient of CDSτfit should be less than one
for the call sample. The estimate appears to be greater than what the theory predicts; however, it is not
statistically significant. We do not regard this as evidence against the theory.
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correlations are grouped into the More-neg-corr group, while the remaining ten issuers form

the Less-neg-corr group. The results in Table 5 show that the magnitude of the coefficient

and statistical significance of 1p · CDSτfit are both greater for the sample of More-neg-corr

issuers than for the sample of Less-neg-corr issuers. The results for the high CDS spread

sample shown in Panel B are basically the same as those for the entire period.

Table 5 here

4.2. The effects of counterparty credit risk across moneyness

Proposition 3 (iii) suggests that the prices of out-of-the-money put (in-the-money call)

warrants are more sensitive to CDS spreads that those of in-the-money put (out-of-the-

money call) warrants when the CDS spreads on warrant issuers and the HSI are negatively

quadrant-dependent. To test this proposition, we focus on put warrants since the effect

of counterparty credit risk on put warrants is stronger, and this more delicate moneyness

effect is easier to identify empirically. We run the following panel regression:

d̂ = β1CDSτfit +β2LIQ+β3MON+β4LTE+β5MON ·CDSτfit +time-fixed effects+ε, (34)

The sign on the interaction term, MON · CDSτfit, is expected to be positive if prices of

out-of-the-money put warrants are more sensitive to counterparty credit risk than those of

their in-the-money counterparts.

Table 6 here

The results are reported in Table 6. For the regression without the interaction term,

MON · CDSτfit, the coefficient of CDSτfit is negative and significant for the put sample.

The interaction term, MON · CDSτfit, is positive and significant, indicating that out-of-

the-money put warrants are more sensitive to counterparty credit risk than in-the-money

put warrants. The additional term MON · CDSτfit improves the explanatory power of the

model, although not by a lot. LIQ, MON, and LTE have the expected signs and are highly
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significant, same as for the call and put sample. The results regarding the moneyness effect

for the high CDS spread period shown in Panel B are essentially the same as those for the

entire period.

5. Robustness checks

In general, the partial derivative of d̂ with respect to CDSτfit is a function of strike price,

time to expiration, and state variables as discussed in Section 2.2. In the first robustness

check, we examine how well the linear specification in Eq. (34) approximates the true

relation. To this end, we run the following panel regression for the put sample:

d̂ = β1CDSτfit + β2LIQ + β3MON + β4LTE + β5CDSfit · CDSτfit

+ β6LIQ · CDSτfit + β7MON · CDSτfit + β8LTE · CDSτfit

+ β9 log(VIX) · CDSτfit + time-fixed effects + ε. (35)

In this specification, we include the interaction terms of CDSτfit with MON, LTE, and the

state variables, including the annualized CDS spread, CDSfit, and the volatility index of

the HSI, VIX. To capture the potential interaction between the liquidity effect and credit

risk effect, we include the term LIQ · CDSτfit in the model as well.

Table 7 here

The results are reported in Table 7. MON · CDSτfit is the most statistically significant

interaction term, suggesting the robustness of the moneyness effect. The other interaction

terms are not significant, except for LTE·CDSτfit. TheR2s of the models with all interaction

terms are essentially the same as those of the models with the only interaction term of

MON · CDSτfit, which confirms that the linear model Eq. (34) approximates the true

model closely and captures the credit risk effect well.

To further address the issue of nonlinearity, we estimate the following semi-parametric
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regression model,

d̂ = h(Z) · CDSτfit + γ1LIQ + γ2MON + γ3LTE + time-fixed effects + ε, (36)

where h(·) is unspecified, and Z = (CDSfit,LIQ,MON,TTE,VIX). By doing so, we relax

the restriction that the coefficient of CDSτfit is a linear function of Z as in Eq. (35). This

is a varying-coefficient partially linear model, for which the estimation is standard in the

statistics literature, for example, Zhang, Lee, and Song (2002).17

The estimated h(Z) as a function of each variable of Z, evaluated at the mean value

of other variables of Z, and the 90% confidence bands from 1,000 bootstrap samples are

shown in Fig. 7 for the put sample. The figure shows that the estimated h(Z) is signifi-

cantly negative, as the confidence bands do not cover zero, suggesting the strong impact

of counterparty credit risk on warrant pricing. We are also interested in how h(Z) changes

with respect to each variable in Z. h(Z) increases monotonically with MON, consistent

with the results reported in Table 7, and significantly with narrow confidence bands. There

is no significant change in f(Z) as other variables change, except for TTE. All the esti-

mated functions are basically straight lines. The semi-parametric analysis further confirms

that the specification of Eq. (34) is a good approximation for the actual relation between

log-price differences and CDS spreads.

Figure 7 here

In the second robustness check, we use CDSτ 6m, which equals the annualized six-month

CDS spread multiplied by TTE/365, to measure the credit risk associated with warrant

issuers instead of the fitted CDS spreads in the main analysis. For brevity, we term it as the

unannualized six-month CDS spread with the understanding that the value is adjusted for

the tenor of the warrant. Among available CDSs, the six-month CDS spreads have a tenor

matched with those of warrants the best, as warrants have an average time to expiration

17Specifically, we use the second-order Gaussian kernel and local linear fitting for the nonparametric
estimation. We choose the optimal bandwidth by the cross-validation approach.
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of around three months, and most of them are less than a year. The magnitude of the

coefficient of CDSτ 6m is slightly smaller than that reported in the main analysis because

the term structure of CDS spreads slopes upward most of the time so that six-month CDS

spreads tend to be greater than the fitted CDS spreads. The results suggest that a one

percentage point increase in the annualized six-month CDS spread of a warrant issuer

leads to a 1% to 1.1% decrease in the value of the warrant, which is again economically

meaningful.

Table 8 here

In the last robustness check, we control for other liquidity variables in addition to LIQ.

These variables measure liquidity differences between warrant and option pairs, including

the difference in daily dollar trading volumes, DVL, the difference in proportional bid-ask

spreads, DSP, and the difference in the contract sizes, DCS. The contract size of options is

large and fixed at 50, while the contract size of warrants is much smaller but with variation.

As a result, the variation in DCS is the same as that of the warrants’ contract size. The

DCS effect is entirely caused by the variation in the warrants’ contract size. The signs

on the coefficients of these additional variables are as expected, i.e., a higher liquidity

difference is associated with a higher log-price difference. However, many of them are not

statistically significant. More importantly, adding new liquidity variables does not change

the main results. Overall, these additional tests suggest a robust finding of the negative

effects of counterparty credit risk on the prices of warrants, especially for put warrants.

Table 9 here

6. Conclusion

In this paper, we examine whether counterparty credit risk is priced in vulnerable

derivatives—a question that has attracted much theoretical development but few success-

ful empirical studies. We conduct our analysis using derivative warrants and options data
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from the Hong Kong market for the period from 2005 to 2014. The use of derivative war-

rants data in this study provides a fresh perspective on the effect of counterparty credit

risk on derivatives pricing. Derivative warrants are option-like structured products issued

by financial institutions, and they are subject to the counterparty credit risk of the is-

suers. Exchange-traded options are not affected by credit risk due to margin requirements.

Therefore, the price differences between derivative warrants and options reflect the credit

risk of warrant issuers, among others. In addition, derivative warrants are exchange traded

and are not subject to the credit mitigation mechanisms, such as collateral and netting,

required in the OTC market. Since issuers take short positions in derivative warrant trans-

actions, the counterparty credit risk associated with derivative warrants always comes from

the issuers’ side, as opposed to forward-type derivatives, for which the counterparty credit

risk comes from both sides of the transaction. Employing these features of the data in

this study enables identifying the credit risk associated with derivatives easily and allows

a straightforward test of the pricing impact of credit risk on derivatives.

We examine the cross-sectional relation between the log-price differences of matched

derivative warrant and option pairs written on the HSI, and the counterparty credit risk of

warrant issuers, measured by their CDS spreads. We find that CDS spreads are strongly

and negatively related to price differences, especially during the global financial crisis of

2008 and the European sovereign debt crisis of 2011-2012. During these periods, the level

and cross-sectional variation of CDS spreads of warrant issuers are much greater than those

before and after the corresponding crises. The pricing effect of credit risk is economically

significant. On average, a one percentage point increase in the CDS spread on an investment

bank leads to a 1%-1.1% decrease in the price of the derivative warrant issued by the bank.

Our results also indicate that the prices of put derivative warrants are more sensitive to the

counterparty credit risk of warrant issuers than those of call derivative warrants. This is

implied by our theoretical analyses given that the counterparty credit risk measured by the

CDS spreads on warrant issuers are negatively dependent with the HSI. The counterparty

credit risk of institutions whose CDS spreads are more negatively dependent with the HSI
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has a stronger effect on their put derivative warrants. Another implication derived from

our theoretical analyses is that the effect of CDS spread on the proportional prices of put

derivative warrants becomes stronger for OTM puts. These findings are robust to various

specifications of CDS spreads and sample selection.

The contribution of the paper can be summarized as follows. First, we show for the

first time in the literature that counterparty credit risk has a strong impact on derivatives

pricing. Second, we find evidence that the impact depends on the dependence nature of

the credit risk and the underlying of the derivatives, consistent with the theory. Third,

we verify a more delicate relation between the credit risk discount in derivative prices and

their moneyness. Overall, our results highlight the importance of counterparty credit risk

for the pricing of derivative securities.
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Table 1
Numbers of derivative warrants by issuer
This table reports the names of derivative warrant issuers and the numbers of derivative
warrants written on the Hang Seng Index issued by each one. The second to fifth columns
are, respectively, the numbers of calls, puts, all derivative warrants, and the proportion of
derivative warrants in the entire sample, from each issuer. The last column is the number
of daily observations. The sample period is from January 2005 to December 2014.

Issuer Call Put Total Prop (%) Obs

ABN AMRO 17 20 37 1.15 637
Barclays 42 34 76 2.37 1,074
Bank of China 30 29 59 1.84 1,563
BNP Paribas 120 137 257 8.00 6,065
Credit Suisse 81 76 157 4.89 3,763
Citigroup 16 17 33 1.03 993
Deutsche Bank 146 179 325 10.12 6,536
Daiwa 33 36 69 2.15 1,745
Goldman Sachs 103 132 235 7.31 5,254
HSBC 93 92 185 5.76 5,442
JP Morgan 74 60 134 4.17 3,949
KBC 175 202 377 11.73 10,089
Macquarie Bank 112 114 226 7.03 6,815
Merrill Lynch 58 69 127 3.95 3,271
Morgan Stanley 3 12 15 0.47 342
Nomura 18 12 30 0.93 567
Rabobank 27 30 57 1.77 1,297
Royal Bank of Scotland 27 26 53 1.65 1,240
Standard Chartered Bank 31 37 68 2.12 1,860
Societe Generale 254 265 519 16.15 13,059
UBS 96 78 174 5.42 3,232

All 1,556 1,657 3,213 100.00 78,793
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Table 2
CDS spreads on issuers
This table reports the mean and the standard deviation (std) of daily six-month CDS
spreads in percentage points of each derivative warrant issuer. Results are reported for the
entire sample period of January 2005 to December 2014, and for two subperiods, where
one is the high CDS spread period of January 2008 to December 2012, and the other is the
low CDS spread period of January 2005 to December 2007 and January 2013 to December
2014.

05–14 08–12 05–07 & 13-14

Issuer mean std mean std mean std
ABN AMRO 0.560 0.628 0.988 0.628 0.128 0.156
Barclays 0.496 0.574 0.879 0.590 0.109 0.114
Bank of China 0.517 0.599 0.825 0.707 0.206 0.156
BNP Paribas 0.393 0.511 0.696 0.571 0.087 0.097
Credit Suisse 0.392 0.468 0.685 0.510 0.097 0.076
Citigroup 0.892 1.486 1.673 1.780 0.104 0.082
Deutsche Bank 0.397 0.437 0.683 0.457 0.109 0.091
Daiwa 0.537 0.674 0.909 0.776 0.163 0.161
Goldman Sachs 0.910 1.168 1.635 1.278 0.179 0.172
HSBC 0.300 0.344 0.511 0.372 0.087 0.086
JP Morgan 0.326 0.378 0.552 0.420 0.098 0.071
KBC 0.852 1.072 1.593 1.083 0.104 0.098
Macquarie Bank 0.900 1.423 1.661 1.693 0.134 0.101
Merrill Lynch 1.158 1.560 2.129 1.694 0.178 0.291
Morgan Stanley 1.398 2.265 2.587 2.706 0.199 0.235
Nomura 0.598 0.781 1.020 0.910 0.172 0.175
Rabobank 0.288 0.355 0.492 0.397 0.082 0.097
Royal Bank of Scotland 0.679 0.751 1.228 0.705 0.126 0.151
Standard Chartered Bank 0.447 0.632 0.762 0.763 0.131 0.120
Societe Generale 0.570 0.737 1.025 0.808 0.112 0.127
UBS 0.476 0.643 0.874 0.708 0.074 0.072

Average 0.623 0.833 1.115 0.931 0.128 0.130
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Table 3
Summary statistics
Panels A1 and A2 of the table report the 5th, 25th, 50th, 75th, and 95th percentiles of the
distributions of

MON: moneyness;
TTE: time to expiration in days;
LTE: log(TTE);

Ŵ (O): closing bid-ask average of derivative warrant (option) prices, normalized by
the Hang Seng Index level and multiplied by 100;

d̂: log-price difference between derivative warrants and options, log(Ŵ ) − log(O);
LIQ: proportion the trading of derivative warrants attributed to liquidity providers;
WVL: daily dollar trading volume of derivative warrants, normalized by the Hang

Seng Index level and 1,000;
OVL: daily dollar trading volume of options, normalized by the Hang Seng Index

level and 1,000;
DVL: difference in dollar trading volumes, WVL - OVL;
WSP: proportion bid-ask spread of derivative warrants;
OSP: proportion bid-ask spread of options;
DSP: difference in proportion bid-ask spreads, WSP - OSP;
WCS: contract size of derivative warrants, number of underlying assets for one round

lot of derivative warrants;
DCS: difference in contract sizes between derivative warrants and options;
VIX: volatility index of the Hang Seng Index;
CDSfit: annualized, fitted CDS spread in percentage points;
CDSτfit: unannualized, fitted CDS spread in percentage points, CDSfit·TTE/365.

Panel A1 is for the whole sample, and Panel A2 is for the put sample. Panel B1 and
B2 report the correlations among MON, LTE, LIQ, log(VIX), CDSfit, and CDSτfit for the
whole sample and put sample, respectively. The sample period is from January 2005 to
December 2014.
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Table 3 (cont’d)

A1. All
P5 P25 P50 P75 P95

MON -0.1445 -0.0645 -0.0274 0.0025 0.0475
TTE 17 43 66 95 165
LTE 2.8332 3.7612 4.1897 4.5539 5.1059

Ŵ 0.5655 1.3953 2.6065 4.3497 7.9816
O 0.4405 1.1214 2.2037 3.8171 7.2871

d̂ -0.0132 0.0524 0.1348 0.2444 0.5098
LIQ 0.0000 0.6430 0.9892 1.0000 1.0000
WVL 0.0002 0.0026 0.0175 0.1945 3.9721
OVL 0.0013 0.0073 0.0339 0.1515 0.6908
DVL -0.5751 -0.0766 -0.0026 0.1129 3.8398
WSP 0.0065 0.0127 0.0263 0.0690 0.2609
OSP 0.0146 0.0273 0.0477 0.0854 0.1793
DSP -0.1531 -0.0517 -0.0162 0.0213 0.1962
WCS 0.6944 1.0000 1.2500 1.6129 2.5641
DCS -49.3056 -49.0000 -48.7500 -48.3871 -47.4359
VIX 0.1422 0.1692 0.1959 0.2452 0.4220
CDSfit 0.0160 0.0714 0.2871 0.6962 1.7034
CDSτfit 0.0017 0.0121 0.0456 0.1235 0.4153

A2. Puts
P5 P25 P50 P75 P95

MON -0.1583 -0.0736 -0.0367 -0.0054 0.0396
TTE 17 43 66 92 161
LTE 2.8332 3.7612 4.1897 4.5218 5.0814

Ŵ 0.5243 1.2360 2.4123 4.1546 8.0011
O 0.4182 1.0106 2.0366 3.6214 7.3130

d̂ -0.0183 0.0539 0.1336 0.2368 0.4755
LIQ 0.0000 0.4598 0.9811 1.0000 1.0000
WVL 0.0002 0.0025 0.0177 0.1884 3.3159
OVL 0.0012 0.0074 0.0350 0.1553 0.7040
DVL -0.5807 -0.0796 -0.0030 0.1024 3.1520
WSP 0.0067 0.0132 0.0282 0.0741 0.2667
OSP 0.0145 0.0272 0.0475 0.0837 0.1785
DSP -0.1459 -0.0487 -0.0145 0.0238 0.2067
WCS 0.6711 1.0000 1.2500 1.5385 2.5000
DCS -49.3289 -49.0000 -48.7500 -48.4615 -47.5000
VIX 0.1424 0.1686 0.1957 0.2452 0.4200
CDSfit 0.0139 0.0578 0.2583 0.6597 1.6556
CDSτfit 0.0016 0.0100 0.0400 0.1142 0.3872
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Table 3 (cont’d)

B1. Correlations: all
MON LTE LIQ log(VIX) CDSfit

LTE -0.2739
LIQ 0.1494 0.2839
log(VIX) -0.2490 0.0016 -0.1666
CDSfit -0.0746 0.0210 0.0241 0.4501
CDSτfit -0.1580 0.3345 0.1141 0.3688 0.8132

B2. Correlations: puts
MON LTE LIQ log(VIX) CDSfit

LTE -0.2414
LIQ 0.1677 0.3049
log(VIX) -0.1616 -0.0494 -0.2248
CDSfit -0.0074 -0.0106 0.0428 0.4270
CDSτfit -0.0854 0.3244 0.1391 0.3344 0.8001
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Table 4
Counterparty credit risk and the price difference between derivative warrants
and options
This table reports coefficient estimates of the following panel regression:

d̂ = β1CDSτfit + β2LIQ + β3MON + β4LTE + β51p · CDSτfit + time-fixed effects + ε,

where d̂ is the log-price difference between a matched derivative warrant and option pair;
CDSτfit is the unannualized, fitted CDS spread; LIQ is the proportion of the trading of
derivative warrants attributed to liquidity providers; MON is the moneyness; LTE is the
log time to expiration in days; 1p indicates a put; and time-fixed effects are captured by
monthly dummies. T -statistics are clustered by warrant and are reported in parentheses.
R2

1 and R2
2 are the R2s of the regression model with and without the time-fixed effects,

respectively. Panel A is for the entire sample period from January 2005 to December 2014,
and Panel B is for the high CDS spread period from January 2008 to December 2012.

A. Entire period
CDSτfit LIQ MON LTE 1p · CDSτfit R2

1 R2
2

-5.61 0.18 -1.44 -0.01 0.384 0.313
( -4.8) ( 35.7) (-29.6) ( -3.8)
-2.20 0.18 -1.44 -0.01 -7.61 0.386 0.315

( -1.8) ( 35.9) (-28.8) ( -3.8) ( -3.9)

B. High CDS spread period
CDSτfit LIQ MON LTE 1p · CDSτfit R2

1 R2
2

-5.00 0.19 -1.44 -0.02 0.374 0.314
( -4.0) ( 26.2) (-23.3) ( -5.0)
-1.94 0.19 -1.44 -0.02 -6.90 0.376 0.316

( -1.5) ( 26.4) (-22.7) ( -4.9) ( -3.6)
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Table 5
The effects of the correlation between counterparty credit risk and the under-
lying value
This table reports coefficient estimates of the following panel regression:

d̂ = β1CDSτfit + β2LIQ + β3MON + β4LTE + β51p · CDSτfit + time-fixed effects + ε,

where d̂ is the log-price difference between a matched derivative warrant and option pair;
CDSτfit is the unannualized, fitted CDS spread; LIQ is the proportion of derivative warrant
trading attributed to liquidity providers; MON is the moneyness; LTE is the log time to
expiration in days; 1p indicates a put; and time-fixed effects are captured by monthly
dummies. T -statistics are clustered by warrant and are reported in parentheses. R2

1 and
R2

2 are the R2s of the regression model with and without the time-fixed effects, respectively.
Panel A is for the entire sample period from January 2005 to December 2014, and Panel
B is for the high CDS spread period from January 2008 to December 2012. More-neg-corr
indicates the sample of warrants issued by the 11 banks with more negative average CDS
spread-payoffs correlations, and Less-neg-corr indicates the sample of warrants issued by
the 10 banks with less negative average CDS spread-payoffs correlations.

A. Entire period
CDSτfit LIQ MON LTE 1p · CDSτfit R2

1 R2
2

More-neg-corr -2.03 0.19 -1.52 -0.01 -10.04 0.413 0.342
( -1.2) ( 27.4) (-27.5) ( -2.5) ( -4.7)

Less-neg-corr -2.24 0.16 -1.30 -0.01 -3.18 0.368 0.263
( -1.2) ( 23.1) (-15.9) ( -3.1) ( -0.9)

B. High CDS spread period
CDSτfit LIQ MON LTE 1p · CDSτfit R2

1 R2
2

More-neg-corr -1.63 0.20 -1.50 -0.02 -9.23 0.403 0.339
( -1.0) ( 19.8) (-21.7) ( -3.4) ( -4.4)

Less-neg-corr -2.16 0.17 -1.33 -0.02 -2.56 0.352 0.271
( -1.1) ( 18.8) (-12.6) ( -3.6) ( -0.7)
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Table 6
The effects of counterparty credit risk across moneyness
This table reports coefficient estimates of the following panel regression:

d̂ = β1CDSτfit + β2LIQ + β3MON + β4LTE + β5MON · CDSτfit + time-fixed effects + ε,

for the sample of put derivative warrants, where d̂ is the log-price difference between a
matched derivative warrant and option pair; CDSτfit is the unannualized, fitted CDS spread;
LIQ is the proportion of derivative warrant trading attributed to liquidity providers; MON
is the moneyness; LTE is the log time to expiration in days; and time-fixed effects are
captured by monthly dummies. T -statistics are clustered by warrant and are reported in
parentheses. R2

1 and R2
2 are the R2s of the regression model with and without the time-

fixed effects, respectively. Panel A is for the entire sample period from January 2005 to
December 2014, and Panel B is for the high CDS spread period from January 2008 to
December 2012.

A. Entire period
CDSτfit LIQ MON LTE MON · CDSτfit R2

1 R2
2

-5.46 0.17 -1.24 -0.02 0.386 0.290
( -4.1) ( 28.3) (-24.6) ( -6.2)
-2.23 0.17 -1.33 -0.02 56.24 0.388 0.291

( -1.6) ( 28.4) (-22.3) ( -6.5) ( 3.1)

B. High CDS spread period
CDSτfit LIQ MON LTE MON · CDSτfit R2

1 R2
2

-4.73 0.16 -1.22 -0.03 0.397 0.304
( -3.3) ( 21.9) (-20.4) ( -5.8)
-1.35 0.17 -1.35 -0.03 57.98 0.399 0.304

( -0.9) ( 22.1) (-17.7) ( -6.2) ( 2.9)
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Table 7
Robustness check: nonlinearity
This table reports coefficient estimates of the following panel regression:

d̂ = β1CDSτfit + β2LIQ + β3MON + β4LTE + β5CDSfit · CDSτfit

+ β6LIQ · CDSτfit + β7MON · CDSτfit + β8LTE · CDSτfit

+ β9 log(VIX) · CDSτfit + time-fixed effects + ε,

for the sample of put derivative warrants, where d̂ is the log-price difference between a
matched derivative warrant and option pair; CDSfit (CDSτfit) is the annualized (unannu-
alized), fitted CDS spread; LIQ is the proportion of derivative warrant trading attributed
to liquidity providers; MON is the moneyness; LTE is the log time to expiration in days;
VIX is the volatility index of the Hang Seng Index; and time-fixed effects are captured by
monthly dummies. T -statistics are clustered by warrants and are reported in parentheses.
R2

1 and R2
2 are the R2s of the regression model with and without the time-fixed effects,

respectively. Panel A is for the entire sample period from January 2005 to December 2014,
and Panel B is for the high CDS spread period from January 2008 to December 2012.

A. Entire period
CDSτfit LIQ MON LTE
-25.90 0.18 -1.33 -0.02
( -1.6) ( 25.2) (-22.7) ( -5.7)

CDSfit · CDSτfit LIQ · CDSτfit MON · CDSτfit LTE · CDSτfit log(VIX) · CDSτfit R2
1 R2

2

126.66 -5.31 60.40 5.89 3.82 0.389 0.289
( 1.7) ( -1.6) ( 3.6) ( 2.2) ( 0.9)

B. High CDS spread period
CDSτfit LIQ MON LTE
-29.52 0.17 -1.35 -0.03
( -1.8) ( 18.8) (-18.2) ( -5.2)

CDSfit · CDSτfit LIQ · CDSτfit MON · CDSτfit LTE · CDSτfit log(VIX) · CDSτfit R2
1 R2

2

117.61 -2.69 62.60 6.59 4.88 0.401 0.300
( 1.5) ( -0.8) ( 3.5) ( 2.4) ( 1.1)
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Table 8
Robustness check: six-month CDS spreads
Panels A1 and A2 report coefficient estimates of the following panel regression:

d̂ = β1CDSτ 6m + β2LIQ + β3MON + β4LTE + β51p · CDSτ 6m + time-fixed effects + ε,

for the call and put sample, where d̂ is the log-price difference between a matched derivative
warrant and option pair; CDSτ 6m is the unannualized six-month CDS spread; LIQ is the
proportion of derivative warrant trading attributed to liquidity providers; MON is the
moneyness; LTE is the log time to expiration in days; 1p indicates a put; and time-fixed
effects are captured by monthly dummies. Panels B1 and B2 report coefficient estimates
of the following panel regression:

d̂ = β1CDSτ 6m + β2LIQ + β3MON + β4LTE + β5MON · CDSτ 6m + time-fixed effects + ε,

for the sample of put derivative warrants. T -statistics are clustered by warrant and are
reported in parentheses. R2

1 and R2
2 are the R2s of the regression model with and without

the time-fixed effects, respectively. Panels A1 and B1 are for the entire period from January
2005 to December 2014, and Panels A2 and B2 are for the high CDS spread period from
January 2008 to December 2012.

A1. Entire period
CDSτ 6m LIQ MON LTE 1p · CDSτ 6m R2

1 R2
2

-5.53 0.18 -1.44 -0.01 0.384 0.313
( -4.6) ( 35.7) (-29.6) ( -3.9)
-2.06 0.18 -1.44 -0.01 -7.76 0.386 0.315

( -1.6) ( 35.9) (-28.8) ( -3.8) ( -4.0)

A2. High CDS spread period
CDSτ 6m LIQ MON LTE 1p · CDSτ 6m R2

1 R2
2

-4.94 0.19 -1.44 -0.02 0.374 0.314
( -3.9) ( 26.2) (-23.3) ( -5.0)
-1.83 0.19 -1.44 -0.02 -7.04 0.376 0.316

( -1.4) ( 26.4) (-22.7) ( -4.9) ( -3.7)

B1. Entire period, put sample
CDSτ 6m LIQ MON LTE MON · CDSτ 6m R2

1 R2
2

-2.19 0.17 -1.34 -0.02 57.85 0.388 0.291
( -1.6) ( 28.4) (-22.4) ( -6.5) ( 3.2)

B2. High CDS spread period, put sample
CDSτ 6m LIQ MON LTE MON · CDSτ 6m R2

1 R2
2

-1.35 0.17 -1.36 -0.03 60.31 0.400 0.304
( -0.9) ( 22.1) (-17.7) ( -6.2) ( 3.0)
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Table 9
Robustness check: controlling for alternative liquidity measures
Panels A1 and A2 report coefficient estimates of the following panel regression:

d̂ = β1CDSτfit + β2LIQ + β3MON + β4LTE + β51p · CDSτfit

+β6DVL + β7DSP + β8DCS + time-fixed effects + ε,

for the call and put sample, where d̂ is the log-price difference between a matched deriva-
tive warrant and option pair; CDSτfit is the unannualized, fitted CDS spread; LIQ is the
proportion of derivative warrant trading attributed to liquidity providers; MON is the mon-
eyness; LTE is the log time to expiration in days; 1p indicates a put; DVL, DSP, and DCS
are differences between a matched derivative warrant and option pair in daily dollar trad-
ing volumes (divided by the Hang Seng Index level and 106), proportional bid-ask spreads,
and contract sizes, respectively; and time-fixed effects are captured by monthly dummies.
Panels B1 and B2 report coefficient estimates of the following panel regression:

d̂ = β1CDSτfit + β2LIQ + β3MON + β4LTE + β5MON · CDSτfit

+β6DVL + β7DSP + β8DCS + time-fixed effects + ε,

for the sample of put derivative warrants. T -statistics are clustered by warrant and are
reported in parentheses. R2

1 and R2
2 are the R2s of the regression model with and without

the time-fixed effects, respectively. Panels A1 and B1 are for the entire period from January
2005 to December 2014, and Panels A2 and B2 are for the high CDS spread period from
January 2008 to December 2012.
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Table 9 (cont’d)

A1. Entire period
CDSτfit LIQ MON LTE 1p · CDSτfit DVL DSP DCS R2

1 R2
2

-5.61 0.17 -1.46 -0.02 0.23 -0.10 -0.01 0.387 0.323
( -4.7) ( 36.0) (-29.4) ( -5.9) ( 0.7) ( -6.7) ( -1.9)
-2.14 0.17 -1.46 -0.02 -7.73 0.18 -0.10 -0.01 0.389 0.325

( -1.7) ( 36.1) (-28.6) ( -5.9) ( -3.9) ( 0.5) ( -6.7) ( -2.0)

A2. High CDS spread period
CDSτfit LIQ MON LTE 1p · CDSτfit DVL DSP DCS R2

1 R2
2

-4.94 0.18 -1.46 -0.02 0.15 -0.10 -0.03 0.377 0.319
( -4.0) ( 26.3) (-22.8) ( -6.3) ( 0.3) ( -4.8) ( -1.7)
-1.80 0.18 -1.46 -0.02 -7.07 0.07 -0.10 -0.03 0.379 0.321

( -1.4) ( 26.4) (-22.2) ( -6.2) ( -3.6) ( 0.1) ( -4.8) ( -1.8)

B1. Entire period, put sample
CDSτfit LIQ MON LTE MON · CDSτfit DVL DSP DCS R2

1 R2
2

-1.78 0.17 -1.42 -0.03 68.07 0.04 -0.06 -0.04 0.393 0.336
( -1.3) ( 29.6) (-22.5) ( -7.0) ( 3.5) ( 0.1) ( -4.1) ( -4.6)

B2. High CDS spread period, put sample
CDSτfit LIQ MON LTE MON · CDSτfit DVL DSP DCS R2

1 R2
2

-0.82 0.17 -1.45 -0.03 65.97 0.37 -0.03 -0.08 0.406 0.324
( -0.6) ( 22.6) (-17.8) ( -6.6) ( 3.1) ( 0.6) ( -1.6) ( -4.4)
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Fig. 1. Derivative warrants issued by Lehman Brothers and its CDS spread

The upper panel shows the daily average log-price difference between derivative warrants

issued by Lehman Brothers and the best matched options, d̂, for calls and puts separately.

The sample includes all warrants when put warrants are available during the period. The

first segment of the sample includes warrants on stocks of large companies, and the second

segment includes warrants on the Hang Seng Index. There are no put warrants issued by

Lehman Brothers between the two segments. The lower panel shows the five-year CDS

spread of Lehman Brothers in percentage points. The sample period is from January 2008

to September 2008.
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Fig. 2. CDS spreads

Panel A shows the monthly time-series plots of the 10th, 50th, and 90th percentiles of the

cross-sectional distribution of the annualized six-month CDS spreads in percentage points

of derivative warrant issuers. Panel B shows the monthly time-series plots of the average

annualized six-month, one- and two-year CDS spreads in percentage points. The sample

period is from January 2005 to December 2014.
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Fig. 3. CSP and CSC

This figure shows the scatter plots among CSP(MON) and CSC(MON) of warrant issuers

for various values of moneyness, MON. CSP(MON) is the correlation between negative

normalized payoffs of puts with CDS spread changes defined as Eq. (30), and CSC(MON)

is the correlation between normalized payoffs of calls with CDS spread changes defined as

Eq. (29). The sample period is from January 2005 to December 2014.
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Fig. 4. CSP− and CSC−

This figure shows the scatter plots among CSP−(MON) and CSC−(MON) of warrant is-

suers for various values of moneyness, MON. CSP−(MON) is the correlation between the

difference in in-the-money indicators and payoffs of puts with CDS spread changes defined

as Eq. (32), and CSC−(MON) is the correlation between the difference in payoffs and

in-the-money indicators of calls with CDS spread changes defined as Eq. (31). The sample

period is from January 2005 to December 2014.
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Fig. 5. Log differences in prices between derivative warrants and options

This figures shows the monthly time-series plots of the 10th, 50th, and 90th percentiles of

the cross-sectional distribution of the log-price difference between derivative warrants and

options, d̂. Panel A is for puts, and Panel B is for calls. The sample period is from January

2005 to December 2014.
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Fig. 6. CDS spreads and log differences in prices between derivative warrants and options

This figure shows the scatter plots of log-price difference between matched derivative war-

rant and option pairs, d̂, against the unannualized, fitted CDS spread in percentage points,

CDSτfit. The variables are averaged by month and issuer. The plots are shown separately

for puts and calls and for the entire sample period (2005-2014), the high CDS spread period

(2008-2012), and the low CDS spread period (consisting of 2005-2007 and 2013-2014).
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Fig. 7. Semi-parametric estimation of the coefficient of CDSτfit

This figure shows the mean and 90% confidence bands of the coefficient of CDSτfit, h(Z),

from the semi-parametric model

d̂ = h(Z) · CDSτfit + γ1LIQ + γ2MON + γ3LTE + time-fixed effects + ε,

for the sample of put derivative warrants, where d̂ is the log-price difference between a

matched derivative warrant and option pair; Z = (CDSfit,LIQ,MON,TTE,VIX); CDSfit

(CDSτfit) is the annualized (unannualized), fitted CDS spread; LIQ is the proportion of

derivative warrant trading attributed to liquidity providers; MON is the moneyness; TTE

is the time to expiration in days; LTE is the log of TTE; VIX is the volatility index of

the Hang Seng Index; and time-fixed effects are captured by monthly dummies. h(Z) is

plotted as a function of each variable of Z, evaluated at the mean value of other variables

of Z. The sample period is from January 2005 to December 2014.
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