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A Phase-Congruency-Based Scene Abstraction
Approach for 2D-3D Registration of Aerial Optical

and LiDAR Images
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Abstract—Registration of aerial images to enrich 3-D light de-
tection and ranging (LiDAR) points with radiometric information
can enhance the capability of object detection, scene classification,
and semantic segmentation. However, airborne LiDAR data may
not always come with on-board optical images collected during
the same flight mission. Indirect georeferencing can be adopted, if
ancillary imagery data are found available. Nevertheless, automatic
recognition of control primitives in LiDAR and imagery datasets
becomes challenging, especially when they are collected on different
dates. This article proposes a generic registration mechanism based
on using the phase congruency (PC) model and scene abstraction
to overcome the stated challenges. The approach relies on the use of
a PC measure to compute the image moments that determine the
study scene’s edges. Potential candidate points can be identified
based on thresholding the image moments’ values. A shape context
descriptor is adopted to automatically pair symmetric candidate
points to produce a final set of control points. Coordinate transfor-
mation parameters between the two datasets were estimated using a
least squares adjustment for four registration models: first- (affine),
second-, third-order polynomials, and direct linear transform mod-
els. Datasets covering different urban landscapes were used to
examine the proposed workflow. The root-mean-square error of the
registration is between one and two pixels. The proposed workflow
is found to be computationally efficient especially with small-sized
datasets, and generic enough to be applied in registering various
imagery data and LiDAR point clouds.

Index Terms—Aerial imagery, airborne light detection and
ranging (LiDAR), Canny edge detector, image registration, phase
congruency (PC), scene abstraction, shape context.

I. INTRODUCTION

R ECENT studies indicate the fact that the world is under-
going the largest wave of urban growth in history [1].
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North America is one of the most urbanized regions with 82%
of its population living in urban areas as reported in 2018 [2].
This tangible urban sprawl consumes available resources and
leads to a shortage of public services. As a result, it requires
definitive administrative plans to precisely assess the quality
of current urban areas and to develop new strategies to cope
with the estimated urbanization in the future. Besides, this
urban expansion highlights the necessity of resource-efficient
and technology-driven cities known as smart cities [3]. From
a geomatics perspective, a digital city is the main component
of a smart city, and relies fundamentally on urban spatial data
integration from spaceborne, airborne, and terrestrial sensors,
along with GIS management [4]. The complementary properties
of LiDAR and optical data are vital for detecting and analyzing
urban settlements, since these techniques are capable of reveal-
ing the study scene with the underlying spatial, temporal, and
topological information and patterns [5], [6]. Therefore, accurate
registration of multisensor data becomes essential to fully max-
imize the potential of integrating different technologies. Ideally,
an on-board camera together within airborne LiDAR systems
can simultaneously collect both 2-D optical imagery and 3-D
point cloud data, where direct georeferencing can be applied to
register both datasets on a projected coordinate system. Indirect
georeferencing can be adopted if the optical images and the
LiDAR point clouds are, respectively, collected on different
dates or during different missions.

Remote sensing image registration relies on the use of com-
mon control points being identified between the target and
reference datasets to construct a coordinate transformation
model [7], [8]. If there exists a lack of sharp and permanent
control points due to the nature of the study scene, other regis-
tration primitives, including lines, curves, and polygons, can
also be utilized [9]– [11]. Researchers abandoned the direct
identification of common points when dealing with LiDAR
data since they represent laser footprints rather than identifiable
points in corresponding imagery data.

Scale-invariant feature transform (SIFT), line segment detec-
tor (LSD), attraction field map (AFM), and Canny operator are
common feature extraction algorithms that have been used for
the determination of control primitives. SIFT is a point extraction
method that is applied to match different views of a scene [12]. It
accommodates noise in data, and the extracted point features are
invariant to translation, rotation, scale, and partially invariant to
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change in illumination [13]. It detects points of interest and then
accumulates the calculated statistics of local intensity gradient
directions in a local neighborhood that surrounds each point
of interest [13]. Once extracted from reference images, point
features are stored in a database for the subsequent comparison
with the corresponding features of a new image. A probability
matching uses minimum Euclidean distance for a point on the
new image to locate its nearest neighbor in the database and
targets it as a counterpart [12]. Li et al. [14] used the SIFT-based
approach to register multispectral, multidate, and multisensor
satellite images. It caused significant mismatched points due
to pixels of the same area having different intensities. Hence,
the authors proposed scale-orientation joint restriction criteria
for robust point matching by excluding incorrect paired-up
points. They were able to obtain a registration root-mean-square
error (RMSE) less than two pixels. Nasir et al. [15] registered
real-world terrestrial images of low SR, as an essential step in
super resolution, where a high-SR image is generated from a
sequence of low-SR images. The author applied SIFT to extract
candidate point features; however, they used belief propagation
for point matching instead of the minimum Euclidean distance
method, which was previously found to ignore the descriptors’
geometric characteristics. Additionally, they used the random
sample consensus (RANSAC) to eliminate mismatched points.
No quantitative evaluation was performed for the registration
results; however, the authors reported satisfactory results based
on visual inspection.

The LSD method detects line segments defined as zones’
linear boundaries on an image, where the grey level sharply
changes from white to black, or vice versa. It constructs a
level-line field, where the level-line angle of each pixel is
calculated. Pixels with the same level-line angle are clustered
as a line-support region, whose direction is considered as its
minimum bounding rectangle. Pixels within the rectangle with a
level-line angle value close to that of the rectangle are considered
aligned points. For each rectangle, the total number of pixels
along with the number of aligned points determines whether it
is a potential line segment or not. The model can be applied to any
digital image without manipulating its parameters [16]. Akinlar
and Topal [17] introduced the edge lines (EDLines) algorithm,
where enhancements to the LSD method were developed to
overcome long execution times, discontinuous line segments,
and poor performance when processing images with white noise.
Lyu and Jiang [18] applied the EDLines approach to register
multitemporal remote sensing images, using line segments as
control parameters. The authors merged segment fragments that
belong to the same line segment, and a line descriptor with
gradually changing bands for segment matching. They reached
a registration accuracy of around one pixel.

The most recent development to the LSD method is introduced
by Xue et al. [19], namely the AFM method. It accommodates
for incorrect edge pixel identification, incomplete line segments
detection, excessive postdetection steps to isolate line edges
from edge pixels, and approximate representation of a line
segment by a set of connected pixels causing the zig-zag effect,
commonly known in digital image processing. The single-stage
algorithm relies on computer vision concepts and deep learning
techniques to include the entire image pixels in the production

of line segments and relates a line segment map to its spatial
regions. In this way, the AFM method deals with the LSD
approach’s drawbacks as region coloring problems, allowing
for the application of semantic segmentation technologies to
further enhance the LSD method. The AFM algorithm achieved
advances in accuracy and execution time; however, it has not
been tested in image registration yet.

Canny is a gradient-based edge detector. It applies Gaussian
low-pass filter to reduce noise prior to gradient estimation for
edge sharpening. The Sobel kernel computes the gradient of
image pixels in both directions. Gradient magnitude determines
the edge’s strength, whereas gradient direction determines the
direction of maximum intensity change for each pixel. Edges are
then sharpened by eliminating pixels except for those of large
strength. Finally, a double threshold is used to separate strong,
weak, and suppressed edges [20]. It is widely used in practice due
to its good signal-to-noise ratio, accurate edge extraction [21],
and ease of application by adjusting only the Gaussian filter
variance and the threshold parameters [22]. However, the deter-
mination of optimal thresholds is a key problem, and the results
of using multiple values cannot be quantitatively assessed [23].
This is problematic knowing that the algorithm fundamentally
relies on the thresholds’ values, and the double threshold method
itself has poor self-adaptability, resulting in incomplete edge
detection information [22], [24].

Habib et al. [25] used 3-D straight-line features as registration
primitives for the coregistration between photogrammetric and
LiDAR data. Linear features in the image space were represented
by a set of intermediate points, with an additional constraint pro-
vided. One endpoint of the photogrammetric line segment must
lie along the vector connecting the endpoints defining the LiDAR
line segment, whereas in the LiDAR space, the authors manually
identified planar patches, checked their planarity and removed
outliers, and determined endpoints by intersecting neighboring
planar patches with different orientations. The identified features
were matched manually, and the approach was tested on terres-
trial and aerial datasets for a limited number of features, all of
them have only linear characteristics. Kwak et al. [26] registered
an aerial image to LiDAR data for a study zone that is known
for its flat roof surfaces. Hence, the authors used plane roof
centroids as control primitives to register both data. In imagery
space, they extracted building boundaries, derived straight line
equations from their endpoints to detect corner points, identified
closed polygons, and finally calculated the 2-D coordinates of
each polygon’s centroid. In LiDAR space, they constructed a
triangulated irregular network (TIN) from nonground points,
eliminated TINs belonging to trees, and computed the planar co-
ordinates of roof centroids. The z-coordinate was considered as
the median value of LiDAR points inside each roof polygon. The
identified centroids in both datasets were paired up manually.

Mitishita et al. [27] registered photogrammetric and LiDAR
data using centroids of isolated and thin-wall-free rectangular
roof planes. For LiDAR data, the authors manually extracted
points located in the proximity of the building in question,
roughly calculated the coordinates of the rectangle, interpolated
roof points onto a grid, and selected on-roof interpolated Li-
DAR points. They considered x and y coordinates of a roof
centroid as the mean x and mean y coordinates, respectively,
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of the interpolated roof points, whereas z-coordinate was the
mean z of the interpolated points along with the profiles closest
to the roof borders. For image data, the authors determined
rectangular roof centroids by calculating the coordinates of the
intersection of the two diagonal straight lines defined by the four
roof corners, which were also identified manually. The bundle
adjustment of the centroids did not show better results than the
experiments, which used presignalized control points collected
using a GPS survey. Zhang et al. [28] constructed an approach
based on the fact that correct registration parameters result in
a back-projection of a LiDAR point cloud object being within
its boundary in the image. The authors used control objects as
registration primitives. They manually extracted objects from
LiDAR data and their corresponding boundaries from optical
data represented by polygons, back-projected the 3-D LiDAR
points’ coordinates to the 2-D optical image, and computed
the registration parameters to compare them to the provided
parameters to assess the registration quality. The study accom-
modates for man-made features and natural scenes; neverthe-
less, it highlighted concerns regarding the accuracy of object
extraction.

Yang and Chen [29] attempted to automate the registration
process. The authors registered sequent images and LiDAR data
captured by mini-UAVs, based on control points as primitives.
They extracted building outlines from LiDAR data, converted
them into rectangular polygons, and back-projected those ex-
tracted outlines on the images to locate their corresponding
features. Feature detection on images was not straightforward
though. A building area was determined, building patches were
separated, and contours were extracted, in addition to some
regularization processes. The authors matched extracted edges
and corners, then used endpoints in course registration. Despite
the automated approach, its scope is limited to urban buildings
with rectangular or L-shape roofs. Additionally, misalignment
problems were reported in areas of occlusion or inaccurate
outline extraction.

Zheng et al. [30] registered close-range photogrammetric and
terrestrial LiDAR data based on two photogrammetric princi-
ples: forward intersection and the closest point. The first states
that conjugate rays from multiple images’ points intersect at the
same 3-D point, which theoretically should be located on the Li-
DAR data surface, according to the second concept. The authors
matched corresponding image points using the SIFT operator
and solved the 3-D coordinates of points of intersection using
collinearity equations. Finally, they applied bundle adjustment to
calculate the error in these coordinates as well as the error in the
external orientation and lens distortion parameters, coordinates
of the principal points, and principal distances. Each of the
latter resembles the normal vector of the best fitting plane of
the closest LiDAR points to a 3-D point, determined by the K-D
tree algorithm. The methodology needs no feature extraction
from LiDAR data, decreases nonrigid deformations caused by
lens distortion, and increases the accuracy by eliminating image
points with large distances from the LiDAR data surface from
the registration process. However, it was tested on a small stone
carving and cave walls. In addition, it failed to function on flat
LiDAR data surfaces.

Huang et al. [31] extended the method to register large-scale
aerial optical photos and airborne LiDAR data. It was tested on
four datasets covering a mix of urban and rural areas. Three of
them had both data acquired at the same time while the aerial
photos and LiDAR data were collected on different dates in the
fourth dataset. To accommodate the large size of airborne LiDAR
data and maintain effective processing time, 3-D LiDAR points
were partitioned into tiles, and the search for the closest LiDAR
point was carried out tile by tile and in order. Additionally, the
authors used the principal component analysis algorithm to se-
lect the most significant gross points resulted from discontinuity
and different data ranges and targeted them for elimination.
Checkpoints’ coordinates on images were determined by the
DPGrid software, whereas their corresponding coordinates on
LiDAR data were calculated by intersecting two lines or three
planes. The study could reach a subpixel registration accuracy
within an efficient workflow; however, still performs poorly in
the case of flat LiDAR data.

Cui et al. [32] applied a linear-based transformation model to
register panoramic images and 3-D LiDAR points acquired from
a mobile mapping system. The authors used the EDISON edge
detector to extract edge pixels from the images, whereas they
extracted linear features from labeled LiDAR points out of build-
ings, pole-like, and curbs objects. A region growing segmenta-
tion was applied on building points to generate planar segments,
and the points were projected on the 3-D plane model of each
segment, whose boundary points were detected and fitted into 3-
D lines by conventional least squares (LS) with constraints: lines
must pass by outmost points, and only vertical and horizontal
lines with a sufficient number of points are considered. Pole-like
objects were extracted using a percentile-based pole recognition
algorithm. Each object was divided into subsegments, each
with an enclosing rectangle and a 2-D centroid. Neighboring
subsegments with maximum diagonal length were kept, and the
points were fitted into 3-D lines knowing the centroids and the
maximum and minimum Z-values. Vertical curbs and the ground
surface were considered to intersect at curb lines. A RANSAC
method fitted curb points into a plane parallel to the Z-axis, after
the removal of outliers. The points were fitted into 2-D lines, and
the ground heights were considered their Z-values. A RANSAC
paradigm removed the outliers in the interrelated lines extracted
from camera images and LiDAR points. The 3-D lines extracted
from LiDAR data were projected to the images to determine
their corresponding 2-D lines, given that a ray from a camera’s
perspective center to an image edge pixel intersects a line in the
world coordinate system at a point. Euclidean distance in the im-
age space was used as the similarity metric in the nonlinear LS,
was used to estimate the corresponding image coordinates of the
3-D lines’ endpoints. The authors reported a satisfactory visual
evaluation; however, disturbing elements, calibration errors in
laser scanners, and finding correlated features in both datasets
affected the RMSE value.

It is distinct that most of the research work related to regis-
tration of LiDAR and optical datasets for urban regions mainly
relies on the matching of linear features, such as flat rectangular
or L-shaped building roofs, in addition to other sharp-identified
elements, such as corners, road intersections, and landmarks. In



MEGAHED et al.: PC-BASED SCENE ABSTRACTION APPROACH FOR 2D-3D REGISTRATION OF AERIAL OPTICAL AND LIDAR IMAGES 967

this way, the registration process is not only limited to residential
urban areas, where these objects exist in abundance but also it is
constrained by acquiring both datasets at the same time to ensure
matching congruent features. Moreover, some of the presented
approaches demand the application of several subprocesses to
precisely pair the registration primitives. To illustrate, some of
the aforementioned studies implemented algorithms for feature
extraction, outlier removal, edge detection, and shape fitting, in
addition to other mathematical and statistical models to identify
the primitives. Beside how complex and time consuming these
methods are, the bundle adjustment of matched primitives does
not always guarantee satisfying registration results compared
to conventional registration using control points collected by
traditional means of GPS surveys, for example. The reason as
reported by many studies is usually related to the inaccuracies in
the extraction of building roofs, as the so-far applied registration
methodologies are sensitive to the position of the building rela-
tive to its neighboring blocks. They were found to yield proper
results when the entire building is isolated. Furthermore, some
studies extract and/or pair registration primitives manually.

This article proposes a more generic point-based registration
workflow to register 3-D airborne LiDAR point clouds and 2-D
aerial photos, acquired for different urban morphologies: indus-
trial, residential, and coastal shore, and at different dates. The ac-
commodation for a wider variety of urban land uses comes from
the abstraction of urban scenes to their main elements, which are
commonly found in both datasets. These elements could be any
complete or partial objects in the urban view being investigated
(e.g., streets, canals, corridors, walls, lakes, sidewalks, curbs,
tree crowns, vehicles, etc.). The adopted workflow is straightfor-
ward; first, 3-D LiDAR data are converted to 2-D imagery, then
the phase congruency (PC) model is implemented on both Li-
DAR and imagery datasets as cell points for feature perception.
Second, candidate control points (CCPs) can be determined by
adjusting a predefined threshold range. Depending on the nature
of investigated urban scenes and height and intensity values of
LiDAR data, this step may be subjected to a manual intrusion
that makes the workflow more interactive, where scenes are
abstracted to their primary elements. In this case, points located
on the border of these features are targeted as a set of CCPs. The
shape context descriptor (SCD) method is implemented to match
potential points. Finally, a bundle adjustment based on LS is
applied to the matched pairs of points to estimate the registration
parameters. This study reflects great contributions to 2D-3D
image registration due to multiple reasons: the wide spectrum of
imagery sources and urban layouts, which the presented work
can deal with, the simplicity of the proposed approach, finally
and most importantly, the noncompulsion for the data to be
acquired on the same date, and the primitives not have to be
derived using only traditional urban features, such as rectangular
building roofs.

II. METHODS

A. Overall Workflow

The methodology implemented in this study is illustrated in
Fig. 1. The airborne LiDAR dataset is first converted to a 2-
D image based on either intensity (I) or height (H) records,

Fig. 1. Proposed workflow for a 2D-3D registration.

whichever is more representative of the urban morphology being
investigated. The PC model runs on the LiDAR and aerial 2-D
images’ cell centroids to calculate a PC measure for each point,
as a feature significance indicator [7].

Moments of each point are calculated knowing the PC mea-
sure in different orientations. These moments determine the
inclination of a point to be an edge or a corner point. The visual-
ization of the output moment points shows patterns of different
elements located in the two images. After the conversion of
these moment points to raster, a high-pass filter is run to ease
the isolation of CCPs. A threshold tolerance is adjusted on the
filter output raster, where pixels within the range are assigned
a value of 1 (candidate control cells—CCCs), or 0 otherwise.
CCCs are then checked for representativeness. The results of this
visual inspection determine whether the rest of the registration
workflow continues automatically or semiautomatically.

If the CCCs are found to be consistently distributed around
congruent features within the LiDAR and aerial images, the
approach remains automatic and CCCs are targeted as CCPs
after being converted to points, whereas should CCCs be het-
erogeneous in both data, the segment of the registration approach
in regards to CCPs determination encounters some interactivity
to downgrade the scene’s details to basic polylines commonly
found in both images. In this case, clustering is implemented
on the moment raster to have it partitioned to its main ele-
ments. The predefined number of clusters is the key factor to
be manipulated until achieving satisfying segments that are
representative enough when visually comparing both images.
The clustered raster is then converted to polygons, which are
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further refined for a better representative scene abstraction by
merging, splitting, and deleting. Afterward, final polygons are
converted to polylines. Moment points within a buffer around
these detected edges are considered the CCPs. The buffer value
is the minimal that allows the detection of moment points solely
on the polylines. Later, CCPs are input to the SCD model to be
matched in pairs as final control points (FCPs). Subsequently, an
LS adjustment solves the transformation parameters of different
registration models. The difference between original and cal-
culated FCPs’ coordinates determines the model development
accuracy. Finally, registration models are validated by compar-
ing original and calculated coordinates of several checkpoints
obtained separately from the FCPs.

B. Conversion of 3-D LiDAR Point Clouds to 2-D Images

In this study, a binning interpolation is run on the LiDAR
data points’ intensity or height attribute to determine the cell
values of the output image. It has been addressed in different
research works, such as in [33]–[35]. A binning interpolation
identifies the 2-D geographic extent of LiDAR points and then
constructs a grid, where the cell size is the output image’s SR
identified by the analyst. This interpolation algorithm requires a
cell assignment method to determine the output cell value based
on the points that fall within its extent, in addition to a void
filling method to determine the value of cells that do not contain
any LiDAR points. The “Average” cell assignment and “Linear”
void fill approaches are applied. The first assigns the mean value
of all points that are located within the cell, whereas the second
calculates the value of empty cells by triangulating across void
areas and applying linear interpolation on the triangulated point
to determine the cell value. This process is particularly important
when laser dropouts are found in water bodies and river streams.

C. Features Detection Using the PC Model

The local energy model [36] was developed to detect image
features in 1-D based on the postulate that edges and corners
are located on points, where the Fourier components of a sig-
nal are maximized in phase. The PC function normalizes the
local energy function to provide a dimensionless measure of
PC [37]. The advantages of applying the PC model over other
gradient-based approaches in the detection of edges and corners
are summarized as follows [38].

(1) Simplicity of concept, as the model looks for points in
the image where a high degree of order in the frequency
domain occurs, with no assumptions about the waveform
shape.

(2) The model measures the significance of a point by a
dimensionless quantity that ranges from 0 to 1 indicating
out-of-phase and in-phase points, respectively. This abso-
lute measure eases the process of setting threshold values
for the selection of CCPs. In this way, the predefined
threshold range can be applied universally over various
classes of images.

(3) The PC measure is invariant to changes in image illumi-
nation and spatial magnification, unlike gradient-based

edge detectors that target points of maximal intensity gra-
dient as significant points. Consequently, gradient-based
algorithms determine threshold values empirically, which
makes these methods case subjective.

(4) The model abandons the Fourier transform in obtaining
local frequency information, as it does not consider the
spread of frequencies at points of congruency. For in-
stance, assuming analyzing a single-tone signal like a sine
wave, it always has a PC value of one everywhere, since it
will be in perfect congruence with itself. To overcome this
shortcoming, the model uses wavelets for local frequency
analysis, where a scalable window moves along the signal
being analyzed, and the spectrum for each position is
calculated. The process is repeated with a change in the
window size for every new cycle [39]. This multireso-
lution spatial-scale representation is achieved by using a
bank of filters, each filter results from rescaling a specific
wave shape, and aims to select particular frequencies
of the signal for analysis. The wavelet bank ensures a
controllable frequency range through the multiple scales,
at which PC is calculated effectively with high spatial
localization. Hence, features are not separated from their
surroundings, but rather, they are related. For example, a
feature is deemed to be more significant if it has a high
PC value over a wide range of spatial scales than a feature
with similar congruency that is obtained over a limited
scope of spatial scales. Optimal wavelet bank design is
the one that maintains a smooth sum of spectra with the
minimum number of filters, for efficient computations.

(5) The model accommodates filters (wavelet bank) in the
2-D by applying a spreading function(s) across the filter
in a perpendicular direction to its orientation. To depict,
a 1-D analysis is applied over several orientations, and
results are combined to obtain a PC measure for the entire
2-D image.

(6) Noise, as a major drawback of the PC model, is reduced
by introducing a compensation term that devalues the PC
of a feature based on its noise’s local energy magnitude,
independently in each orientation.

The PC model is constructed according to the following steps,
and equations are as described in [37] and [38]:

PC(x) =
∑
n

W (x)·

�An(x)(cos(φn(x)− φ̄(x))− | sin(φn(x)− φ̄(x)| − T )�
/
∑
n

An(x) + ε (1)

where PC(x) is the PC measure at point x, which varies between
0 and 1 indicating no and full congruency, respectively, at a
certain orientation θ. It is a matrix that has the same dimension
of the image being analyzed. The value between �� is considered
if positive, otherwise, it is replaced by 0. An(x) is the point
amplitude at scale n, given by

An(x) =
√

(I(x) ∗Me
n)

2 + (I(x) ∗Mo
n)

2 (2)
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Fig. 2. Sample of a Gabor wavelet.

where I(x) is the pixel value at the point x. Symmet-
ric/asymmetric wavelets are required to preserve local frequency
information at a particular point, which is obtained using loga-
rithmic Gabor filters over multiple scales and orientations. Gabor
wavelet consists of two filters in quadrature: sine and cosine
waves, each modulated by a Gaussian function (see Fig. 2).
Me

n and Mo
n are the even and odd wavelet values at scale

n, respectively. Each is the cosine and the sine component,
respectively, of a Gabor wavelet equation

Mn = exp(−π(t− JΔt)2/α2) cos(2πkΔf(t− JΔt))

+ exp(−π(t− JΔt)2/α2) sin(2πkΔf(t− JΔt)) (3)

where t is an element of a vector, which has an odd dimension
equal to 2n+ 1. The vector’s central value is 0, which increases
by Δt = 1 in +x direction and decreases by Δt = 1 in −x
direction. This plots the function from −n to +n. Since the
analysis is carried out in the spatial domain, it is worth to mention
that Δt is a distance interval. a2, k, and Δf are constants: 20, 1,
and 1, respectively. j is the wavelet displacement from the origin,
and it is equal to 0 in this case [40]. [Me

n] and [Mo
n] have the same

dimensions of [t]. Each element of both matrices is calculated by
substituting in the even and odd wavelet equation, respectively,
with its corresponding t value. Both [Me

n] and [Mo
n] represent

the filters by which images are convoluted to calculate An(x),
which is a matrix with the same dimensions of the examined
image. φn(x) is the phase of point x at scale n. It is a matrix
with the same dimensions of the input image, and is denoted by

φn(x) = arctan 2(I(x) ∗Me
n, I(x) ∗Mo

n) (4)

φ̄(x) is the mean phase at point x, given by

φ̄(x) =
1

N

N∑
n=1

φn(x) (5)

where n is a certain scale within the total number of applied
scales N . T is the noise compensation term, given by

T = KĀ
′′
0

1− ( 1
m )N

1− 1
m

(6)

where K is a scaling factor (∼ 2.5), m is a scale factor between
successive filters (∼1.5), and Ā′′

0 is the mean noise at the smallest

scale filter (n = 0). Ā′′
0 is calculated via

Ā
′′
0 = exp(log A0(x)). (7)

Since the PC is considered significant only over a wide range
of frequencies, W (x), as listed in (8), is a weighting function
is a weighting function that reduces the PC value at locations
where the spread of filters is limited, by implementing a measure
of the spread of filter response S(x). Both S(x) and W (x) are
matrices of dimensions equal to the analyzed image. W (x) is
thus given by

W (x) =
1

1 + exp(g(c− S(x)))
(8)

where c is the cutoff filter value that is equal to 0.4. Meaning that
a frequency zone in a filter is considered narrow if it is ≤ 0.4,
and thus, the PC values are penalized when they occur in this
slim range of frequencies. g is an amplitude gain factor, equals
10, that is used to accommodate for the sharpness of the filter at
the cutoff value. S(x) is calculated from

S(x) =
1

N

( ∑
n An(x)

ε+Amax(x)

)
(9)

where Amax(x) is the amplitude of filter pair having maximum
response at x. ε is a constant larger than 0 (∼ 0.01) to avoid the
division by 0.

D. Determination of CCPs

Maximum and minimum moments M and m account for
obtaining local frequency information in different orientations,
PC(θ). M indicates significant PC in one orientation, whereas
m implies significant PC in more than one direction. Therefore,
large values of M mark edge features, whereas large values of
m mark corner features. M and m are given by

M =
1

2

[
c+ a+

√
b2 + (a− c)2

]
(10)

m =
1

2

[
c+ a−

√
b2 − (a− c)2

]
(11)

where a, b, and c are calculated from

a =
∑

[PC(θ) cos θ]2 (12)

b = 2
∑

[PC(θ) cos θ] · [PC(θ) sin θ] (13)

c =
∑

[PC(θ) sin θ]2 . (14)

With proper threshold values for M and m, feature points of
edges and corners can be defined as CCPs.

E. Matching CCPs Using SCD

The SCD model [41] is applied to automatically match point
pairs out of CCPs as FCPs. It measures the geometric similarity
to find corresponding matches in two sets of points in a graph-
matching framework, which is invariant to changes in translation
and scale. These two point sets are the CCPs determined in
both aerial and LiDAR images. For each CCPs set, distance and
azimuth angle from each point to the rest of the points within the
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same set are calculated. Distances are normalized by dividing
by the median distance to account for different scales between
point sets if exist.

A log-polar coordinate system is established for each point to
the remaining ones in the same set. The horizontal axis ranges
from zero distance to the maximum normalized distance, and
the vertical axis starts from zero azimuth angle to the maximum
angel value (2π). Both axes are divided into bins to form a
grid/matrix, where each cell hosts the number of points that have
normalized distances and azimuth angles to the point under in-
vestigation, within the cell’s horizontal and vertical boundaries,
respectively.

Finally, the correlation between each matrix in the first set of
CCPs and the matrices in the other CCPs set is calculated after
flattening the matrices. The correlation value ranges from 0 to
1, indicating no and a full correlation between a pair of points,
respectively. Pairs of a correlation higher than a predetermined
threshold value (e.g., 0.95) are targeted as FCPs, which are
subsequently used for registration.

F. Registration of Aerial and LiDAR Data

Four common transformation models are examined to per-
form the data registration: first- (affine), second-, and third-order
polynomials, in addition to the direct linear transform (DLT)
model. These four empirical models were applied for two rea-
sons. First, the downloaded aerial photos lack metadata files;
hence, no information about the data acquisition is provided,
which eliminates the application of a physical model, such
as collinearity equations. Second, using empirical registration
models makes the proposed methodology generic enough to fit
different imagery data regardless of their acquisition technique.

Linear parametric LS method is applied, if a high correla-
tion cutoff value is found during the aforementioned matching
process. The coordinate transformation parameters using poly-
nomials are estimated from

X = (ATA)−1(AT b) (15)

whereX is the vector of the unknown coordinate transformation
parameters, b is the vector of observations constructed by the
FCPs’ coordinates on aerial data, and A is the design matrix
that contains the FCP on LiDAR data. To account for outliers,
iteratively reweighted LS can be adopted to provide a robust es-
timation of the transformation parameters [42]. The parameters
of the DLT model are determined by using nonlinear parametric
LS in

X = (JTJ)−1(JT k) (16)

where X is the vector of unknowns, J is the Jacobean matrix
constructed by the partial derivatives of the DLT equations with
respect to each unknown, and k is the misclosure vector that
represents the difference between the function when substituted
by initial and estimated parameter values.

G. Accuracy Assessment

The model development accuracy is determined based on
(17), where n is the number of FCP pairs, rx and ry are the

Fig. 3. Study areas (Google Earth, 2020).

residuals of x and y coordinates, respectively. They result from
the difference between adjusted and observed coordinates on
aerial datasets, respectively. Observed coordinates are those of
the FCPs, whereas the adjusted ones are the FCPs’ calculated
coordinates knowing their correspondents on the LiDAR dataset,
along with the transformation parameters. On the other hand, a
registration model is validated using a set of manually collected
and well-distributed checkpoints identified on both the aerial
and LiDAR datasets. The validation RMSE is calculated using
the same equation, where n, in this case, is the number of
checkpoints’ pairs, and rx and ry are the residuals in x and
y coordinates of the checkpoints, respectively

RMSE =

√√√√ 1

n

n∑
i=1

(
r2xi + r2yi

)
. (17)

III. EXPERIMENTAL WORK

A. Study Areas and Datasets

Four urban morphologies were tested to check the validity of
the proposed method: (a) industrial, (b) residential, (c) coastal
shore, and (d) industrial-residential, as illustrated in Fig. 3.
The first three regions are located in the Greater Toronto Area,
Ontario, Canada, whereas the fourth one is located in Springfield
city in Lane County, OR, USA.

Area (a) includes parts of the Humber wastewater treatment
plant, which is located in the south-west of Toronto. The selected
zone (43◦38′5.15′′N and 79◦28′44.70′′W) covers an approxi-
mate area of 3085 m2. It is bound by Lake Ontario from the south
and the Humber River from the east. Areas (b) and (c) are resi-
dential houses and coastal shore, respectively, which are located
in Scarborough. Area (b) is within Adam’s Creek neighborhood
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Fig. 4. Datasets. (a) Zone (a): Aerial image—RGB. (b) Zone (a): LiDAR
data—height values. (c) Zone (b): Aerial image—RGB. (d) Zone (b): LiDAR
data—height values. (e) Zone (c): Aerial image—RGB. (f) Zone (c): LiDAR
data—height values. (g) Zone (d): Aerial image—RGB. (h) Zone (d): LiDAR
data—height values.

(43◦47′2.75′′N and 79◦07′41.62′′W), and it covers an approxi-
mate area of 6501 m2. Area (c) covers parts of Adam’s Creek
provincial park, which is surrounded by Lake Ontario from the
east. This coastal-shore zone is located at 43◦47′3.31′′N and
79◦07′32.36′′W, and covers an approximate area of 23 299 m2.
Area (d) (44◦02′33.37′′N and 123◦02′30.17′′W) is mainly an
industrial area that contains lots of stores and corporates, beside
some residential settlements. It has an approximate area of
352 420 m2.

The aerial images and corresponding LiDAR point clouds of
the four study zones are displayed in Fig. 4. Orthophotographies
were downloaded from the Geospatial Map and Data Centre [43]
for zones (a)–(c). Zone (d)’s LiDAR and aerial datasets were

TABLE I
SUMMARY OF THE EXPERIMENTAL LIDAR DATASETS

downloaded from the State of Oregon Department of Geology
and Mineral Industries [44]. The SR of the tiles covering zone
(a) is 8 cm, 20 cm for zones (b) and (c), and 15 cm1 for zone
(d). Zone (a)’s image consists of RGB bands, whereas images of
zones (b)–(d) have RGB and NIR spectral bands. Characteristics
of LiDAR data are shown in Table I. All datasets are projected;
however, the georeference file of the aerial photos was deleted
to ruin the pixels’ geolocation, to test the model registration
capabilities.

All calculations in this study were developed using Python
programming language on the integrated development envi-
ronment (IDE) Enthought Canopy—version 2.1.9. Numpy and
GDAL libraries were used for matrices and raster data ma-
nipulation, respectively. In addition, some functions embedded
in ArcMap 10.5 and ArcScene 10.5 were implemented in the
analysis. LiDAR 3-D points were provided in LAS files and
were converted to text files via the “las2txt” tool in LAStools
software, to be analyzed by Python. Information about LAS files
was generated by the “lasinfo” tool in LAStools.

B. Image Generation From LiDAR Data

LiDAR LAS files were converted to 2-D images. The gener-
ated images were set to have the same pixel size as their cor-
responding aerial dataset. The choice between points’ intensity
and height to derive images was done visually based on the scene
nature. Whichever yields the most discriminative image against
its urban elements should be used.

Since the PC model runs on a single image layer, RGB bands
in the aerial image of zone (a) were combined according to (18)
to provide an individual greyscale layer [45], whereas NIR band
layers in aerial data of zones (b)–(d) were directly input to the
model, due to the nature of both scenes that makes NIR of better
discrimination

Grey-scale = 0.299R + 0.587˜G + 0.114B. (18)

C. PC Model for Edge Points Detection

In designing the bank of filters as moving windows, N was
set to 5, and t ranged from −n to +n with Δt = 1. These
values are as what was applied in [37]–[40], where they were
found optimal to give significant PC measures with the least
number of filters and computation time. PC in this study was

10.5 foot—units for this zone are converted from imperial to metric system
for consistency purposes.
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Fig. 5. Filters with multiple scales and orientations.

calculated over eight orientations, starting from 0◦ to 360◦ with
an increment of 45◦, to acquire more robust local frequency
information. Designed filters with t values over different scales
and orientations are given in Fig. 5. Odd and even filter values
in each scale were calculated from (3), by substituting in the
corresponding part with the aforementioned t values. Aerial
and LiDAR images when visualized based on moment values
should show a pattern that reflects a separation among the scene’s
elements, as a logical consequence of running an edge/corner
detection approach. However, there are two worthy points in
regards to running the PC model on the datasets of this study,
which are as follows.

(1) K in (6) was adjusted to a value lower than 2.5. The latter
was too large as it increased T to an extent that made the
subtraction result between �� in (1) a negative value, and
hence was replaced by zero, ending up with a zero PC
measure. The problem was highlighted when PC(θ)max,
the maximum calculated PC measure over an image at an
orientation θ, was also zero. This means that there was no
congruency at all, thus neither edges nor corners could be
detected.

(2) The high SR of the images was an obstacle for the model
to perform in some cases. It forced the model to search
for a change in frequency in a too narrow range, where
a point was considered significant with respect to its
surroundings in a slim range while it is not, in a general
sense. Consequently, the visualization of moments gave
no pattern; therefore, the input images to the model
were downsampled to larger cell size. This eliminated
the detection of unnecessary edge and corner points and
reduced the computational time as well. “Nearest” re-
sampling technique was applied, which uses the center
of the cell on the output raster to locate it on the input

raster, to assign it its value. It is a simple approach that
also preserves cells’ values in the resampled output [46].

D. Selection of CCPs

M results were found to have a higher potential to yield CCPs
than m, as the data are richer in edges than corner points. For
better threshold setting to select CCPs, M points were converted
to raster, then the resulted raster was subjected to a high-pass
filter for better edge detection. Multiple threshold ranges were
tried until visually reaching interrelated CCPs sets on both
high-pass filter raster datasets from aerial and LiDAR data. To
segregate CCPs, binary raster was generated by assigning a value
of 1 to pixels within the threshold range, whereas the remaining
pixels were assigned 0. These binary raster data were converted
to points, then a selection query was performed to isolate the
points with an attribute value of 1, to be matched in pairs.

This workflow failed to adjust threshold ranges that can
identify relevant sets of CCPs in the data of zones (b)–(d). To
overcome this drawback, the scenes were abstracted to their
primary features that are common in both data types. M points
on the perimeter of these features were targeted as CCPs. First,
M images of zones (b) and (c) were clustered using the Iso clus-
ter unsupervised classification. It is an iterative algorithm that
requires the number of clusters to be identified at the beginning.
Arbitrary means are assigned to each cluster in the first iteration,
and each pixel is assigned to the cluster of the closest mean.
New means are calculated and the process keeps running until
either a maximum number of iterations or a convergence value
(migration of cells from one cluster to another is minimal) is
achieved. After reaching representative clusters, raster data were
converted to polygons. Small polygons were merged with neigh-
boring larger polygons. Afterward, polygons were converted to
polylines that represent the polygons’ boundaries. Finally, M
points within a buffer around these polylines were targeted as
CCPs. The number of clusters was set to two, and the buffer
distances were 1 and 2 m for zones (b) and (c), respectively.
These values were decided based on the visual inspection of
both scenes in regards to the minimum common abstractions
and the resampling size.

Zone (d) was processed differently. To obtain mutual sets of
CCPs on both images, a binary map indicating edge and nonedge
cells was needed. It could have been generated by the direct
application of the Canny edge detector on the images. However,
the operator was applied to the M images instead, to eliminate the
noise effect usually reported when using the Canny algorithm.
Common edge features on Canny maps of aerial and LiDAR
images were manually isolated, and the points on these pixels
were targeted as CCPs.

E. SCD for Matching CCPs as FCPs

Fig. 6 explains the main elements of the model. Assuming
several m-CCPs on the aerial data, azimuth angles (Az) and
normalized distances (d) between the members of m-CCPs were
calculated and stored in d/Az-matrix, which has a length of m.
Each element of the d/Az-matrix is a matrix with a length of
m-1, since neither Az nor d are calculated between a point and
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Fig. 6. SCD model.

itself. On the other hand, the log-polar matrix has a length of m,
where each element represents the log-polar diagram of each of
m-CCPs. A single diagram has a horizontal bin on the distance
axis (d-bin) of five, and a vertical bin on the angle axis (Az-bin)
of eight.

To illustrate, the cell hatched in blue to the left includes the
number of points in m-CCPs that have a d and an Az from point
p1 in the ranges (2dmax/d-bin, 3dmax/d-bin) and (4*2π/Az-bin,
5*2π/Az-bin), respectively, where dmax is the maximum normal-
ized distance calculated from p1 in m-CCPs. The same logic
applies to n-CCPs on LiDAR data. The correlation between
the log-polar diagram of each m-CCPs and every log-polar
diagram of n-CCPs was calculated and stored in the (m × n)
correlation matrix. For example, the green hatched cell saves
the correlation value between the log-polar of the first point
in m-CCPs and the second point in n-CCPs. The correlation
relation is one-to-one, meaning that an individual point from
m-CCPs must be matched with only a single point from n-CCPs.
Therefore, a point in m-CCPs was paired up with the point of the
maximum correlation value in n-CCPs. Correlated pairs with a
value equal to or higher than a predefined correlation threshold
were targeted as FCPs. A minimum correlation of 0.95 was
applied for the three study areas.

IV. RESULTS AND DISCUSSION

A. Image Generation From LiDAR Data

Fig. 7 shows the generated aerial and LiDAR raster data. Zone
(a)’s LiDAR image was derived based on its height values. The
area represents a waste-water treatment tank with outer and inner
rings, in addition to a moving arm, a building at the upper right
corner, and a yard to the left. All these features share covers
that are similar in intensity, but different in elevation values
relative to each other. In contrast, zone (b) includes low-rising
houses with a slim range of height difference with respect to
their surroundings; asphalt roads, land markings, and grassy
landscape. On the other hand, these elements widely vary in
their intensity values. This is why the image was produced based
on C2 intensity records. Likewise, the image from zone (c)’s
LiDAR data was obtained out of C2 intensity records, because
the scene contains features of different materials; waterbodies,
sand shore, dense forest, concrete sidewalks, asphalt roads, and
steel railway rails. The same applies to zone (d)’s LiDAR image
as well.

The scene elements of zone (a) appear on both images, and
thus, a straightforward automatic registration was anticipated.
On the contrary, the roof details appear clearly in the aerial data
of zone (b), whereas they are not captured in the corresponding
LiDAR image. The same applies to zone (c), where the forestry
part in the middle is obviously planted in the aerial data, whereas
those tree canopies do not appear clearly in the corresponding
LiDAR image. Also, the tree coverage appears dissimilar in
zone (d)’s both images. These differences suggested that the
use of direct thresholding would capture unmutual edge points.
Hence, the isolation of CCPs would need interactivity via a
semiautomatic registration process.
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Fig. 7. Generated images—SRs: zone (a): 8 cm and zones (b) and (c): 20 cm.
(a) Zone (a): Aerial grey-scale image. (b) Zone (a): LiDAR elevation image. (c)
Zone (a): LiDAR intensity image. (d) Zone (b): Aerial NIR image. (e) Zone (b):
LiDAR elevation image. (f) Zone (b): LiDAR intensity image (C2). (g) Zone (c):
Aerial NIR image. (h) Zone (c): LiDAR elevation image. (i) Zone (c): LiDAR
intensity image (C2). (j) Zone (d): Aerial NIR image. (k) Zone (d): LiDAR
elevation image. (l) Zone (d): LiDAR intensity image.

TABLE II
OPTIMAL PARAMETER VALUES FOR REPRESENTATIVE M AND M—IMAGE (1):

AERIAL PHOTO, IMAGE (2): LIDAR IMAGE

B. Extraction of Edge Points From PC Model

Table II gives the resampled pixel size and K value at which the
visualization of the data based on M or m gave a representative
pattern. It also summarizes the rest of the constant values that
were substituted in the PC model equations. The downscaled
image size was determined by trial and error, after viewing the
pattern resulted from different pixel sizes, K was also determined
empirically by trial and error. It was found to result in a PC(θ)max

close to 1. As a best practice, K should be adjusted first and kept
constant in all orientations for the pixel size under investigation,
where the PC(θ)max values from all orientations are close to each
other and close to 1. Then, different pixel sizes are tried. K may
need to be readjusted when altering the pixel size, if it yields
PC(θ)max not close to 1.

Obviously, the M points resulting from aerial and LiDAR
images did not show identical patterns (see Fig. 8), and this is
justified by many reasons. First, both datasets were obtained
at different times, which causes some features to appear on
one image without showing up on the other. For example, the
vehicle at the lower right corner of the aerial photo covering
zone (a) did not exist at the acquisition time of the corresponding
LiDAR data [see Fig. 7(a) and (b)]. Likewise, the forestry extent
between the railway and the lakeshore fully appears on the aerial
image of zone (c), but was subjected to seasonal changes on the
corresponding LiDAR image, where it appears partially as a
consequence [see Fig. 7(e) and (f)]. Besides, aerial and LiDAR
data are originally different in nature; sensor type, acquisition
mechanism, and data dimension. For instance, since the LiDAR
data of zone (a) has significant water dropouts on the water
surface [see Fig. 4(b)], the interpolation worked poorly and
misrepresentation of this area occurred in the LiDAR image [see
Fig. 7(b)]. Furthermore, shadow plays a glaring role magnifying
this difference in patterns. As a common shortcoming when
processing aerial photos, shadows are misanalyzed as a scene
feature, and hence, its edges were displayed in the M pattern,
which is not the case in LiDAR data. As examples, the building
in the upper right corner on the aerial photo of zone (a) [see
Fig. 7(a)] as well as the building roofs in zone (b) [see Fig.
7(c)] have shadows that were detected as edges. Nevertheless,
the boundaries of common segments in both images were still
enough to identify CCPs.
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Fig. 8. M points derived from resampled aerial and LiDAR images. (a) Zone
(a): Aerial photo. (b) Zone (a): LiDAR image. (c) Zone (b): Aerial photo. (d)
Zone (b): LiDAR image. (e) Zone (c): Aerial photo. (f) Zone (c): LiDAR image.
(g) Zone (d): Aerial photo. (h) Zone (d): LiDAR image.

C. Identification of CCPs

M points were converted to raster, which was input to a
high-pass filter for the ease of adjusting a threshold range (see
Fig. 9). Thresholding resulted in 1679 and 1580 CCPs in aerial
and LiDAR data of zone (a), respectively. Thresholding did not
work properly with zones (b)–(d), as the tangible differences
in M patterns between aerial and LiDAR data, discussed in
Section IV-B, led to a failure in adjusting thresholds capable
of separating similar sets of CCPs in both images. Hence, raster
datasets from M points of zone (b) were partitioned into two
clusters, outlines were extracted and refined, M points within a
buffer of 1 m were targeted as CCPs (see Fig. 10). 1674 and 1947
CCPs were detected out of the M points of aerial and LiDAR
data, respectively.

Fig. 9. CCPs by threshold setting—Zone (a). (a) M raster: Aerial photo (SR
= 32 cm). (b)M raster: LiDAR image (SR= 40 cm). (c) High-pass filter: Aerial
photo. (d) High-pass filter: LiDAR image. (e) CCPs: Aerial photo.

Fig. 10. CCPs by scene abstraction (clustering)—Zone (b). (a) M raster:
Aerial photo (SR = 70 cm). (b) M raster: LiDAR image (SR = 70 cm). (c)
Clusters: Aerial photo. (d) Clusters: LiDAR image. (e) Outline extraction: Aerial
photo. (f) Outline extraction: LiDAR image.
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Fig. 11. CCPs by scene abstraction (clustering)—Zone (c). (a) Original aerial
photo: NIR, SR = 20 cm. (b) Original LiDAR image: C2, SR = 20 cm. (c)
Clusters: Aerial photo. (d) Clusters: LiDAR image. (e) Outline extraction: Aerial
photo. (f) Outline extraction: LiDAR image.

The same workflow was applied in processing zone (c); how-
ever, the clustering algorithm was run directly on the original
images, as it gave a better abstraction than running it on the
M raster, due to the heterogeneity of its both M patterns. CCPs
were those M points that were located in a buffer distance of
2 m around the refined cluster boundaries. In this case, the PC
model contributed to the identification of the optimal image
downscale for efficient processing. Moreover, it highlighted a
major drawback of the PC model; noise, as reported by [38],
which is highlighted in this study due to feature variation in both
datasets. Finally, a total of 1715 and 1564 CCPs were extracted
from aerial and LiDAR datasets, respectively (see Fig. 11) .

An alternative to clustering, zone (d)’s scenes were abstracted
by the inclusion of a Canny edge detector when applied to the M
images to extract CCPs. The Gaussian blur (sigma parameter)
was set to 5, and the double threshold values were adjusted to
0.1 and 0.3. Fig. 12(a) and (b) shows the output edge pixels
on aerial and LiDAR images, with the M in the background. A
zoom-in illustrates the reduction of noise (false detected edges)
in comparison to running the operator directly on the raw images;
NIR and C2. Due to the massive partially related sets of edge
pixels detected in both images, their sizes had to be reduced
prior to matching in pairs. Hence, common edge features in
both images were isolated manually, and resulted in initial CCPs
of 22 876 and 23 825 points on aerial and LiDAR images,
respectively, which is proportional to the zone’s large area being
processed at a fine SR. These sizes are still too large as inputs to

Fig. 12. CCPs by scene abstraction (Canny operator inclusion)—Zone (d). (a)
Canny on aerial photo. (b) Canny on LiDAR image. (c) CCPs: Aerial photo. (d)
CCPs: LiDAR image.

the SCD model, given that each point in a CCPs set is examined
against the entire points on the other CCPs set. The workstation
[Windows 10 Pro for Workstations OS 64-b, 3.2-GHz processor
(16 CPUs), 131 072-MB RAM] on which these analyses were
performed processes two sets of CCPs, each of 3000 points,
in almost 14 h. Hence, only endpoints of edge features were
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Fig. 13. FCPs determined in the four zones. (a) Zone (a): Aerial photo. (b)
Zone (a): LiDAR image. (c) Zone (b): Aerial photo. (d) Zone (b): LiDAR image.
(e) Zone (c): Aerial photo. (f) Zone (c): LiDAR image. (g) Zone (d): Aerial photo.
(h) Zone (d): LiDAR image.

considered as CCPs. They are 188 and 186 points on aerial and
LiDAR images, respectively [see Fig. 12(c) and (d)].

D. Determination of FCPs by Matching CCPs

The SCD successfully matched 43, 252, and 182 pairs of
points with a correlation of ≥ 0.95 in zones (a), (b), and (d),
respectively, whereas 515 points were paired up in zone (c) with
a correlation of ≥ 0.97 (see Fig. 13). Since the model in general
accommodates scale differences between input images, they
should share the same extent. Accurate registration requires sim-
ilar sets of CCPs to be obtained in both aerial and LiDAR images.
These similar sets are optimally achieved when having the same
edges detected in both images. This is hard to come by when
processing remote sensing data that are convoluted in nature,
especially when they are acquired on different dates/platforms.
However, the model could successfully result in consequential

FCPs in the three study zones. Finally, high correlation values
are not the sole factor to consider while pairing up the FCPs, their
even distribution over the study area is also critical in order to
avoid distortion at locations that lack control points. Therefore,
high correlation thresholds may be tolerated, if more points were
to be included for better FCPs dissemination.

E. Registration Results and Model Validation

Fig. 14 illustrates the model development accuracy and valida-
tion accuracy of the four coordinate transformation models when
applied in the registration of the four zones’ data. The develop-
ment accuracy represents the deviation of the CCPs’ coordinates
from their calculated ones after estimation of the parameters
on the aerial data. However, it cannot be the sole indicator
to describe the model precision, as higher order polynomials
gave lower RMSE when implemented, but yielded distorted
registration due to overfitting. Therefore, model validation was
required in order to ensure registration accuracy. A total of 7,
26, 15, and 96 checkpoints were manually collected on the four
study zones (a), (b), (c), and (d), respectively. They were chosen
on the original images at distinguishable locations, as shown in
Fig. 15.

The high similarity between the two images of zone (a)
enabled the PC model to detect interrelated CCPs sets on circular
edges, which are usually avoided in image registration studies
due to their tedious matching. However, thresholding was inca-
pable of fully detecting CCPs on both edges of the inner tank
as well as the grass boundary on the aerial photo, in contrary
to the CCPs’ coverage of the same elements on the correspond-
ing LiDAR image. As a consequence, the relative relationship
among one CCPs set was different from the other. Therefore, this
mismatch reduced the maximum correlation value on one hand,
and maintaining an even distribution of the FCPs was a driving
force to lower the correlation threshold in order to include more
FCPs, on the other hand, which eventually increased the RMSE
value. Zone (b) has likewise relatively high RMSE values (<
2 pixels), despite that its both images share the same boundary
polylines after the clustering was accomplished. Nevertheless,
these outlines are irregular and dissimilar in both images, and
yet the two CCPs sets buffered around them are not as congruent
as they should have been. This caused FCPs mismatch, lowered
the correlation threshold value, and increased the RMSE value
in consequence. Zone (c) yielded the best registration result (<
1 pixel) since the high level of congruency between the edges’
boundaries in the zone’s both images enhanced the quality of
the CCPs, which accordingly raised the correlation between
the FCPs. A third-order polynomial model was applied in the
registration of these three datasets, as it resulted in the most
consistent minimum development and validation accuracies.

On the other hand, the high values of development RMSE
(< 5 pixels) along with its significant drop when compared to
the validation RMSE values (< 1 pixel), for zone (d)’s results,
indicate the insufficiency of the CCPs sets in terms of quantity
and quality. Obviously, using the features’ endpoints instead of
the entire points located on them misses out on a noticeable
amount of high potential CCPs on both images. This points
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Fig. 14. Registration accuracy.

out to a drawback when applying the proposed algorithm on
large study areas with fine SR, which highlights the necessity of
investigating a proper downsampling algorithm that reduces the
size of CCPs while maintaining interrelated sets at the same
time. Alternatively, large images could be processed in tiles
and/or at lower SRs. The affine model was used to register

Fig. 15. Distribution of checkpoints in the four zones. (a) Zone (a): Aerial
photo. (b) Zone (a): LiDAR image. (c) Zone (b): Aerial photo. (d) Zone (b):
LiDAR image. (e) Zone (c): Aerial photo. (f) Zone (c): LiDAR image. (g) Zone
(d): Aerial photo. (h) Zone (d): LiDAR image.

zone (d)’s datasets. Since the registration models applied in
this study are empirical, qualitative evaluation of the results by
navigating through the points to ensure they properly inherit
their corresponding radiometric characteristics is a vital part of
assessing the results.

The PC model for edges and corners detection from images is
obviously sensitive to feature variation in a general sense. This
drawback is significantly addressed when processing remote
sensing data that are complicated by nature, and their sophistica-
tion is even highlighted in urban land-uses captured by high-SR
sensors. This deficiency hardens setting a proper threshold range
for CCPs selection in aerial and LiDAR raster data. Although
the moment points that the PC model results in can be further
processed by scene abstraction to output common boundaries as
edges, these edges are not always guaranteed to have an adequate
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Fig. 16. Colored 3-D LiDAR points after registration.

level of similarity in both datasets for registration purposes. This
is because of the core challenge that is encountered by default in
this study; registering two various types of remote sensing data
in terms of acquisition technique and date, beside the type of
ground objects’ properties recorded in each. Nevertheless, the
qualitative evaluation of the results (see Fig. 16) is satisfactory
considering the dissimilarities in sensor type, data acquisition
technique, and time, as major issues usually confronted in the
registration of two different remote sensing datasets, such as
aerial and LiDAR data. The proposed method is a good choice
in this case for many reasons. First, the PC model results in
edge points (moment points M) at a SR lower than that of the

original images, which eliminates feature variation existing by
nature, highlighted especially in remote sensing data of high SR,
and tangibly accelerates the processing time. In addition, the
scene abstraction by identifying the edges’ boundaries out of
the M points accommodates for the feature variation sensitivity
of the model, by targeting points on these shared polylines as
CCPs. Moreover, the systematic, ease of application, and pace of
processing when dealing with small study regions are all motives
to further enhance the results to better suit larger datasets.

V. CONCLUSION

This study was conducted to register airborne LiDAR point
clouds to aerial images. A semiautomatic 2D-3D point-based
registration was applied using the PC model as CCPs identifier,
in addition to the SCD model to pair up CCPs as FCPs. LiDAR
points and their corresponding aerial photos were used to test the
proposed methodology covering four different urban land-uses:
industrial, residential, coastal shore, and industrial-residential.
LiDAR data were converted to 2-D images, then the PC model
was run on the resampled raster of aerial and LiDAR datasets.
The PC measure of each raster point was used to calculate
two moments, which served as indicators to assess the points’
potentiality of being an edge or a corner. A threshold range was
identified to select CCPs based on the point’s moment values.
Thresholding worked well with the industrial data in isolating
CCPs relevant in both raster datasets. However, the dissimilarity
between the aerial image and its corresponding LiDAR raster
in the residential, coastal-shore areas, and industrial-residential
obstructed adjusting a proper threshold range. Alternatively, a
scene abstraction algorithm to select CCPs was proposed as a
semiautomatic registration approach, where moment raster data
were clustered to their main elements that are common in both
data. Moment points within a buffer around them were targeted
as CCPs. The SCD model was run to match CCPs as pairs
of FCPs that are at least 95% correlated. The transformation
registration parameters were solved by LS for three polynomial
models of the first-, second-, and third-order, respectively, in
addition to the DLT model. Checkpoints picked up manually
were used for validation. The accuracy of the registration re-
sulted in an RMSE of around two pixels for the industrial and
residential areas, around one pixel for the coastal-shore zone,
and around five pixels for the industrial-residential zone, which
has a large area. This suggests a future work that should focus
on the automatic elimination of features that do not exist in both
images, in addition to a decent mechanism that downsamples
sets of CCPs and keeps mutual points without being erased.

The proposed registration approach is advantageous for many
reasons. First, the systematic computations and pace of pro-
cessing (especially when processing small datasets at higher
SRs) are boosting factors toward imagery-LiDAR data integra-
tion, since the PC model runs on LiDAR and aerial images
resampled at lower SRs. Second, the semiautomatic approach
overcomes the obstacle of identifying interrelated CCPs by set-
ting a threshold range, due to the dissimilarities found between
LiDAR and its corresponding aerial image, by handling it from
a broader perspective. The scene abstraction algorithm clusters
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raster data based on their edge potentiality, which is a robust
detection of feature outlines. Moreover, the simplification of
these outlines, by abandoning minor boundaries in spots of
feature variation and keeping only generic ones as long as they
exist in both raster datasets in an even distribution, provides
a wider range for locating CCPs that are no longer limited to
points on conventional linear urban elements and intersections.
More inclusively, CCPs in this way could be found on nonlinear
shorelines, lake boundaries, sidewalks, or even on irregular tree
crowns. Furthermore, the proposed approach does not require
either LiDAR or aerial data to be georeferenced and applies
empirical registration models without the need of knowing the
physical model characteristics, which are unavailable in some
cases where metadata files do not exist. This generalization
encourages applying the proposed workflow on data covering
larger study regions with different urban morphologies, as well
as it increases the opportunities of registering LiDAR point
clouds to any imagery data. On the other hand, automating
both raster data to have the same extent in order for the SCD
to perform, and the manual intrusion that turns the proposed
registration into a semiautomatic approach, as well as enhancing
the registration accuracy especially when processing large study
regions are highlights to be investigated in the future along
with obtaining control points by shape matching of lines and
polygons.
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