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Abstract 

A phase field (PF) model was proposed to investigate corrosion in a stressed metal. 

The Allen–Cahn equation, associated with the Nernst–Planck, Poisson's, and 

mechanical equilibrium equations, was established to govern phase transformation, 

ion diffusion, electric potential field, and mechanical deformation. A corrosion rate 

equation was incorporated to describe the migration of the metal phase boundary, 

which is expressed based on a detailed balance in the electrochemical reaction and 

conforms to a generalized Butler–Volmer equation. The numerical results revealed 

that the stress concentration at the tip of a corrosion pit promotes a higher corrosion 

rate; this results in a sharpening of the tip that can cause accelerated failure of the 

metal structure. To consider a more complicated scenario, a metal matrix composite 

(MMC) reinforced with inert fibers/particles was investigated. If a fixed displacement 

boundary condition is applied, the corrosion resistance of the MMC would benefit 

from the decrease in the reinforcement stiffness; meanwhile, when the MMC is under 

a constant load, a stiffer reinforcement would result in an increase in the corrosion 

resistance. 
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Nomenclature 

c Concentration vector 

φ Electric potential vector 

d Displacement vector 

ε Total strain 

De Elastic stiffness matrix 

σ Stress tensor 

KI Stress intensity factor for type I crack 

F  Total Gibbs free energy 

f Free energy density 

μ Chemical potential 

∆E Electric potential difference 

∆Eeq Equilibrium electric potential difference 

η Overpotential 

 Phase order parameter 

λ Scale factor of the interfacial energy density 

S  Interfacial energy density 

ζ Interfacial thickness 

ρ Asymmetry factor 

r Reaction rate 

LS  Coefficient of the contribution of interfacial energy 

Lκ Coefficient of the contribution of reaction kinetics 

D Diffusion coefficient 

  Charge–density change per unit time 

div Divergence operator 

  Gradient operator 

∂ Partial differential symbol 

δ Variational symbol 
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1. Introduction 

 In general, in a complex service environment, corrosion of metallic materials 

occurs; this results in the degradation of the integrity and durability of mechanical 

components. Therefore, a few metallic materials are alloyed with active-passive metals 

such as aluminum or chromium to form a passive film on the surface; this resists further 

corrosion. However, the partial breakdown of the passive film may result in excessively 

localized corrosion pits [1, 2]. The local pitting may cause the initiation and extension 

of microcracks under mechanical loading, which accelerates failure. An understanding 

of the mechanism of pitting corrosion under mechanical loading would aid in 

predicting the failure of metallic structures and in improving the design of structure 

materials. 

 Numerous theoretical and numerical approaches have been proposed for studying 

pitting corrosion. In the 1970s, theoretical studies were conducted by Newman et al. [3, 

4], Yahalom et al. [5], and Mccafferty et al. [6] for one-dimensional (1D) corrosion; 

herein, the Laplace equation was employed to solve electric potential distribution, and 

Ohm's law was adopted to relate current density to potential gradient. To extend these 

theoretical studies to more general scenarios, numerical models based on the finite 

difference method (FDM) were proposed [7-13]; these involved the Nernst–Planck 

equation for describing elemental diffusion impelled by gradient of concentration and 

electric potential. However, the morphological evolution of a corroded pit was 

challenging to address using the FDM. Assuming sharp interfaces, the moving 

boundary problem was solved based on the finite volume method (FVM) [14], finite 

element method (FEM) [15], extended finite element method (XFEM) [17], and 

nonlocal peridynamic (PD) modeling [18]. However, the interfacial tracking requires 

ad hoc assumptions with regard to the interfacial geometry; this significantly affects the 
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accuracy and convergence of numerical simulations. 

 The phase field (PF) method, which developed rapidly in the last two decades, 

has been used for analyzing phase evolution in materials. The PF method employs a 

diffusive interface to address complex morphology variations without explicitly 

tracking the interface positions. By coupling with the effects of various physical, 

chemical, and mechanical fields, the PF method has been extended and utilized to 

predict numerous material processes. A few applications of the PF method for the 

corrosion process have also been proposed [20-24]. Based on the Kim–Kim–Suzuki 

(KKS) model [19], Mai et al. [20, 21] proposed a PF model to describe pitting and 

galvanic corrosion. In their model, interface migration was governed by the 

Allen–Cahn equation with a current–density-dependent interface kinetics parameter. 

The ion transport was regulated by the Cahn–Hilliard equation. However, they did not 

consider ion production (or consumption) during the electrochemical reaction, or the 

effect of electric potential gradients on ion diffusion. In Ansari et al.’s PF model for 

pitting corrosion [22], the interface kinetics parameter was related to the exchange 

current density based on the Butler–Volmer relationship; moreover, the overpotential 

was dependent on the metal ion concentration and on the transport and reactions of the 

ionic species in the electrolyte. Stress corrosion cracking (SCC) was also studied. Mai 

et al. [23] assumed a linear relation between the equivalent stress and the interface 

kinetics parameter; moreover, they employed the von Mises yield criterion to describe 

ductile cracking. Nguyen et al. [24] considered the contribution of chemical potential 

and elastic energy densities in Gibbs free energy. Their formula for interface migration 

involved the ion diffusion rate and the elastic energy release rate, which describes the 

SCC of a brittle material. In the SCC models of Mai et al. [23] and Nguyen et al. [24], 

the influence of the electrostatic field was not considered. In addition, in the above PF 
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models, the chemical (or electrochemical) reaction rate was assumed to be 

stress-independent. However, numerous experimental studies [25, 26] have 

demonstrated that chemical (or electrochemical) reaction kinetics could be affected by 

mechanical stresses. For example, Zhu et al. [25] experimentally observed that a 

metallic sample under both tensile and compressive stress states could be more 

straightforwardly corroded than one in a stress-free state. 

 In the present study, we proposed a PF model to investigate 

mechanico-electrochemical corrosion. The electrochemical reaction rate was 

expressed as a function of the electrochemical potentials of the reactants and products, 

based on a detailed balance of the reactions; moreover, it conforms to a generalized 

Butler–Volmer relationship. The Gibbs free energy was established, in which the 

contributions of the chemical potential, interface, electrostatic field, and mechanical 

deformation are considered. Thus, the electrochemical potentials, which are the 

variational derivatives of free energy density with respect to the elemental 

concentrations, were derived. Considering that the consumption of the metallic phase 

is a consequence of corrosion, the rate of corrosion and rate of phase transformation 

are equalized. Consequently, a generalized Allen–Cahn type equation that captures the 

corrosion kinetics and the effects of variations in elemental concentration, electric 

potential, and elastic energy was established to govern the evolution of the metallic 

phase. Coupled with the generalized Nernst–Planck equation, Poisson’s equation, and 

the mechanical equilibrium equation, the proposed PF model was applied to study the 

mechanico-electrochemical pitting corrosion in pure metal and in 

fiber/particle-reinforced metal matrix composite (MMC). 

2. Methodology 

 Figure 1 shows the local breakdown in a passive film that results in the growth of a 
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corrosion pit in salt water. With the applied anodic potential (+), φ, the metal (M) would 

corrode and release metal cations (Mn+) into the electrolyte:  

  n+M M ne  , (1) 

where the electrons (e-) flow in the metal to the cathode surface (-) and induce cathodic 

reactions. In the present model, we assumed that the cathode reactions are rapid 

enough so that they do not affect the reactions at the anode. Thus, only the anode 

reaction, expressed in Eq. (1), was considered. If the cathode becomes the 

rate-limiting electrode, the effect of the cathodic reaction must be involved; it can also 

be incorporated in the framework of the present model (see Appendix C). We also 

considered the scenario wherein the metallic component is under mechanical loading.  

Fig. 1 

2.1. Gibbs free energy for the mechanico-electrochemical system 

 Denoting the set of elemental concentrations as c, displacement field as d, and 

electrostatic field as φ, the Gibbs free energy of the system can be expressed as 

 F fd


  , (2a) 

  and        chem grad mech elec, ,f f f f f   c c c d c φ , (2b) 

where F  is the total Gibbs free energy of a closed system, Ω; f is the free energy 

density; and dω is the volume infinitesimal element for the system Ω. As expressed in 

Eq. (2b), the free energy density can be divided into the chemical potential energy 

density, fchem, gradient energy density, fgrad, mechanical energy density, fmech, and 

electric potential energy density, felec. Herein, the set of elemental concentrations can be 

expressed as c = (cM, 
n+Mc , ec ); here, the superscripts M, 

n+M , and e pertain to the 

metal (M), metal cation (Mn+), and electron (e-), respectively. The concentrations can be 

further expressed in the dimensionless form, c = c / cref; here, the subscript “ref” 
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indicates the reference concentration. Omitting the mutual interaction between 

different species and the effect of electrons (assuming that electrons flow to the cathode 

in zero time), the chemical potential energy density can be expressed as 

        
n+ n+ n+ n+M M M M M

chem 0lnf Wg c c RT c c RT   c , (3) 

where R is the ideal gas constant, T is the thermodynamic temperature, and μ0 is the 

standard chemical potential. The first term on the right-hand side is a double-well 

function,  Mg c =    
2 2

M M1c c , describing the energy barrier between the solid (i.e., 

the metal (M)) and liquid (i.e., the electrolyte) phases; it has minima at Mc = 1 (solid 

phase) and Mc = 0 (liquid phase) and is symmetric about Mc = 0.5. W is the height of 

the energy barrier for the phase transformation (corrosion); it is related to the interfacial 

energy (per unit area), S , and the interface thickness, ζ, as 18W  S [27].  

 With a diffuse interface between the solid and liquid phases, the gradient energy 

density, fgrad (c), can be expressed as 

  
2

M

grad
2

f c


 c , (4) 

where   is the gradient operator and λ is the scale factor of the interfacial energy 

density. It is established that if the interface is isotropic with energy density (per unit 

area) S  and thickness ζ,   S [27]. 

 The mechanical energy density, fmech, in Eq. (2b) is defined as 

    M M

mech mech,f p c fc d , (5) 

where  p x  is the interpolation function. Equation (5) satisfies the conditions that the 

elastic energy density is continuous at any value of displacement, d, and that fmech (x, d) 

has local minima with respect to x at x = 0 and x = 1. Following Wang et al. [28], an 

appropriate formula for p(x) can be specified:    3 2= 10 15 6p x x x x  . 
M

mechf  is the 
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mechanical energy density of the solid phase; it is expressed as 

     M e e e

mech

1

2

T

f  ε D ε , (6) 

where De is the stiffness matrix of the solid phase and εe is the elastic strain tensor, 

which is derived from the geometric relation under an assumption of marginal 

deformation: 

    e e 1
 1,2,3;  =1,2,3

2


   
          

ji
ij

j i

dd
i j

x x
ε . (7) 

In Eq. (7), di and dj are the components of the displacement field, d.  

 The electric potential energy density, felec, in Eq. (2), is expressed as [29] 

    
n+ -M e

elec S,f F nc c  c φ , (8) 

where F is the Faraday constant and φ and φS are the applied electrostatic potential and 

the electrostatic potential in the metal, respectively. The distribution of electrostatic 

potential in the metal is uniform, i.e., φS is a constant. 

2.2. Mechanico-electrochemical corrosion kinetics 

 Corrosion is a kinetic process involving both forward and backward reactions. If 

the forward reaction is more favorable, the metal becomes corroded. To describe the 

kinetics, the forward and backward reaction rates that satisfy a detailed balance of the 

electrochemical system [30] are expressed as 

  ex
TS 1

1 2 0=
  



RT
r k e , (9a) 

  ex
TS 2

2 1 0=
  



RT
r k e  (9b) 

and the net reaction rate is 

 
   ex ex

TS 1 TS 2

net 1 2 2 1 0

RT RT
r r r k e e

      

 

     
 

, (9c) 

where r1→2, r2→1, and rnet represent the forward, backward, and net reaction rates, 
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respectively; μ1 and μ2 are the electrochemical potential at the initial (metal) and final 

(metal ion) states, respectively; 
ex

TS  is the excess chemical potential at the transition 

state; and k0 is the rate constant. Based on Eq. (1), μ1 and μ2 are the variational 

derivatives of the total free energy, F , with respect to the corresponding concentration 

[31] and are expressed as 

 
   M M M

2 M mech
1 M M M M M

ref ref

1F g c p c f
W c

c c c c c


 



  
     
  
 

 (10a) 

 and 
n+ n+

n+

M M

2 0M e
ln

F F
n RT c nF E

c c

 
 

 


      , (10b) 

where δ is the variational symbol and ∆E = φS – φ is the electric potential difference at 

the interface between the metallic material and electrolyte. 

 Following Bazant et al. [30], the electrochemical potential can be further 

expressed as 

 
diff ex

1 (or 2) 1 (or 2) 1 (or 2)    , (11) 

where μdiff is the chemical potential driven by the concentration gradient and μex is the 

excess chemical potential that originates from mechanical deformation, applied 

electrostatic field, etc., i.e., 

 
ex elec

1 (or 2) 1 (or 2) 1 (or 2) 1 (or 2)       . (12) 

In Eq. (12), μг represents the non-ideal component of the electrochemical potential; in 

the present model, it is contributed by mechanical deformation. μΘ and μelec are the 

reference chemical potential and electric potential, respectively. It is apparent that 

without corrosion, 1 0  , 
elec

1 1 0    , and only the mechanical deformation 

contributes to the excess chemical potential. After the metal is corroded, the cations are 

dissolved in the electrolyte, which cannot withstand mechanical loading. Therefore, 

2 0  ; moreover, the excess chemical potential is owing to the additional cations and 
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electric field, expressed as 
n+M

2 0    and 
elec

2 nF E    , respectively. Thus, 

diff

1 (or 2)  and 
ex

1 (or 2)  are expressed as 

 
 M

diff 2 M

1 M M

ref

1 g c
W c

c c
 

 
   
 
 

,  (13a) 

 
 M M

ex mech
1 M M

ref

=
p c f

c c





,  (13b) 

 
n+diff M

2 lnRT c  ,  (13c) 

respectively, and 

 
n+ex M

2 0= nF E    .  (13d) 

 Following Bazant et al. [30], the excess chemical potential in the transition state, 

ex

TS , is defined as 

     ex elec elec

TS TS 1 1 2 21               , (14) 

where the parameter ρ is called the asymmetry factor; it is approximately constant 

between zero and one for numerous reactions [27, 28, 30]. TS
 is the non-ideal 

component of the electrochemical potential in the transition state. 

 In electrochemical equilibrium (μ1 = μ2), the equilibrium electric potential 

difference, ∆Eeq, is expressed as 

 

n+diff M diff

2 0 1 1
eqE

nF

     
  . (15) 

When not in equilibrium, corrosion occurs under the activation overpotential, η, 

defined as 

 eqE E    , (16) 

Substituting Eq. (15) into Eq. (16), the activation overpotential, η, can be expressed as 
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n+Mdiff diff

01 1 2E
nF nF nF

  


 
     . (17) 

It is observed that the activation overpotential, η, also depends on the elastic strain 

energy; here,   ex M M M M

1 1 mech refp c c f c      . This implies that the sample under 

stress corrodes more straightforwardly than the sample without stress. Figure 2 

illustrates the reaction kinetics that is likely to result from the above formula. Referring 

to Fig. 1, we consider the scenario in which corrosion occurs under an activation 

overpotential, η. If the sample is mechanically loaded, the electrochemical potential at 

the initial state is elevated. Therefore, the electric potential difference (the red arrow in 

Fig. 2) is smaller than that in the stress-free case (the blue arrow). 

Fig. 2 

 Substituting Eqs. (10)–(14) into Eq. (9c), the reaction rate can be expressed as 

 

   
n+

n+

n+

diff M

1 1 0

TS
net 0

M
M 0

1 1
exp

= exp

exp

nF E

RT
r k

RT nF E
c

RT

    



 





       
  

     
   

     
    
  

. (18) 

By introducing Eq. (17), Eq. (19) can be re-expressed in the form of a generalized 

Butler–Volmer equation: 

     
diff diff

TS 1 1 2

net 0

1 1
= exp exp exp

nF nF
r k

RT RT RT

         
          

              

 .  

   (19) 

Following Chen et al. [29], we also assume that the contribution of the elemental 

concentration gradient, 
diff

1 , is significantly smaller than the mechanical and electrical 

contributions. Thus, we adopt the approximation diff
1

net net 0
r r

 
   
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 
diff
1

diff diff

net 1 1
0

r


 


  
  

 to express the reaction rate as 

 

   
n+ n+

n+

M

2 M

net M

M M
1 0 M 0

=

1 1
      exp exp

g c
r L W c

c

nF E nF E
L c

RT RT




     


 
   
 
 

           
       

   

S

,  

   (20a) 

where LS  and Lκ are coefficients expressed as 

 
   

n+M

1 00 TS

M

ref

1 1
= exp exp

nF Ek
L

RTc RT RT

   
       

        
S  (20b) 

and  

 
TS

0= expL k
RT



 
 
 

. (20c) 

2.3. Governing equation for the mechanico-electrochemical PF model 

 In the PF model, the phase order parameter, ϕ, can be either an arbitrarily defined 

order parameter or a physical quantity that differentiates different phases. Herein, the 

dimensionless concentration of metal (M), being unity in metal and zero in the 

corrosion product, serves the purpose of differentiating phases. Thus, we set 
Mc  . It 

is apparent that the decrease in the metal phase is owing only to corrosion. Thus, the 

relation between the reaction rate and phase transformation rate is expressed as ∂ϕ / ∂t 

= –rnet. It is observed that the right-hand side of Eq. (20a) is divided into two parts: the 

interfacial energy (the first term) and the reaction kinetics (the second term). The 

interfacial energy is spatially continuous, whereas the reaction kinetics is spatially 

discontinuous, which is not implementable in a numerical scheme. Because corrosion 

occurs only at the interface (0 < ϕ < 1), we follow the general treatment in the PF 
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method [27] to use the function  p     to mollify the discontinuity. Consequently, 

the rate of phase transformation is expressed as 

 

     
n+ n+

n+

2

M M
1 0 M 0

=

1 1
 exp exp

g
L W

t

p nF E nF E
L c

RT RT



 



      





 
    

  

            
           

S

 . 

   (21) 

It is noted that Eq. (21) is consistent with a generalized Allen–Cahn type equation, 

which is convenient for capturing the influences of corrosion, mechanical deformation, 

and electrostatic potential. 

 The variation in the concentration of metal cations (Mn+) in an electrolyte is 

governed by the Nernst–Planck equation: 

 

n+ n+

n+
M M

M M

ref=
c DnFc

D c c
t RT t




  
        

. (22) 

In Eq. (22), the first term on the right-hand side describes the elemental diffusion 

impelled by the concentration and electric potential gradients. Here, D is the diffusion 

coefficient of metal cations (Mn+), expressed as D = (DS)p(ϕ)(DL)1 - p(ϕ); DS and DL are 

the diffusion coefficients of metal cations (Mn+) in the solid and liquid phases, 

respectively. The second term on the right-hand side represents the elemental 

production (per unit time and unit volume). It is apparent that the elemental production 

is related to the consumption of metal (M), i.e., the corrosion of a mole of metal (M) 

releases a mole of metal cations (Mn+).  

 The electrostatic field, φ, is governed by Poisson’s equation. We introduce a source 

term to represent the net change in charge density as a result of electrochemical 

reaction; this yields 
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         (23a) 

 and  M

refnFc t    , (23b) 

where ε is the electric conductivity of the medium (ε = (εS)p(ϕ)(εL)1 - p(ϕ)). εS and εL are 

the electric conductivities of the solid and liquid phases, respectively. The right-hand 

side of Eq. (23a),  M

refnFc t    , is the charge–density change per unit time (C 

m-3 s-1) owing to the flow of electrons (e-) in the metal. Note that we omit the change 

in charge–density owing to ion diffusion by assuming the electric neutrality of the 

electrolyte.  

 The stress tensor σ = Deεe satisfies the equilibrium equation: 

  div 0σ , (24) 

where div is the divergence operator and the body force is omitted. Substituting Eqs. 

(5)–(7) into Eq. (24) yields the governing equation of the displacement field d: 

   e 1
div 0

2

ji

j i

dd
p

x x


    
           

D . (25) 

 By defining the reference length, lref, reference time, tref, reference energy density, 

fref, and reference electric potential, φref, the non-dimensional evolution equations can 

be derived for numerical simulation. (See Appendix A.) 

2.4. 1D analytical solution for the rate of charge–density change  

 Before describing the numerical implementation of the above governing equations, 

let us discuss the analytical solution; it provides a preliminary understanding of the 

corrosion behavior and can also be used to validate the numerical scheme. The 

analytical solution of Eq. (21) can be obtained for the 1D case and under the steady 

state conditions, i.e., the elemental concentration, electric potential, and elastic energy 

no longer change with time. The solution is of a hyperbolic-tangent type [33], ϕ = 
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0.5tanh(3(x - vt) / ζ) + 0.5; here, v is the magnitude of the velocity of the phase 

boundary migration, along the positive direction of the x axis: 

 

     
n+

n+

n+

M e M M

mech ref 0

M
M 0

1 1
exp

= 

exp

f c nF E

RT
v L

nF E
c

RT



  



 

      
   

  
  

    
    

  

ε

. (26) 

The corresponding phase transformation rate can be obtained as 

 
 6 1

=
v

t

 







. (27) 

The negative sign in Eq. (27) represents the consumption of the solid phase during 

corrosion. Substituting Eqs. (26) and (27) into Eq. (23b), the charge–density change 

per unit time, ς, can be derived as 

  

     
n+

n+

n+

M e M M

mech ref 0

M

ref
M

M 0

1 1
exp

6 1

exp

f c nF E

RT
nFc L

nF E
c

RT



  

  

 

      
   

  
    

    
    

  

ε

. (28) 

3. Numerical analysis for mechanico-electrochemical pitting corrosion 

Fig. 3  

 The numerical simulation is intended to study a metal–liquid binary system, as 

shown in Fig. 3; here, l = 150 μm and h = 300 μm. The metal is covered with a 

passive film, which exhibits local breakdown, initiating a semi-ellipsoid corrosion pit. 

The semi-major and semi-minor axes of the semi-ellipse breakdown are set to be a = 

20 μm and b = 0–40 μm. Owing to symmetry, only half of the binary system is 

modeled, as shown in Fig. 3. The initial thicknesses of the metal, liquid phases, and 

passive film are set as 150 μm, 145 μm, and 5 μm, respectively. The initial phase 

order parameter, ϕ, and dimensionless metal cation concentration, 
n+Mc , are set as ϕ = 
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1 and 
n+M 0c   in the metal phase, and ϕ = 0 and 

n+M 0c   in the liquid phase.  

 For the boundary conditions, zero-flux conditions for the phase order parameter, 

ϕ, are applied to all the sides; moreover, zero-flux conditions for ion concentration are 

applied to the right, left, and bottom sides. The condition for the outlet boundary [34], 

wherein the ions should be transported out of the model domain under an electric field, 

is applied to the upper side to prevent unrealistic ion accumulation at the top. The 

electrical potentials are φS and φL at the bottom of the metal and top of the electrolyte, 

respectively. The metal is under uniaxial compression with displacement of the left 

boundary, ux = 0–3 μm. The top of the metal is unconstrained, and the bottom and 

right (symmetric axis) are constrained along their normal direction. The intact passive 

film is assumed to be a zero-flux interface for the phase order parameter, ϕ, ion 

concentration, 
n+Mc , and electrical potential, φ, as indicated in Fig. 3.  

 The parameters used in the simulation are listed in Table 1; it refers to the 

scenario in which an iron component is corroded in seawater. COMSOL 

Multiphysics® modeling software [34] is employed to solve the governing equations 

based on the FEM. To guarantee the convergence of the solution, the simulation box is 

discretized by uniform square mesh at a size of 2 μm, i.e., lref / 5, and the initial and 

maximum time-steps are both tref / 100 for the temporal integration. Note that the 

reference values listed in Table 1, such as tref, lref, fref, φref, 
n+M

refc , and 
M

refc , are only 

for the conversion from the unitless numerical simulations to the physical scenarios, 

and can be arbitrarily specified. The reference concentrations of metal and metallic 

cations, 
M

refc  and 
n+M

refc , are validated in Appendix A.  

Table 1 Parameters used in simulation 

 Parameter Value 
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Interfacial energy density S  1 J m-2 [19] 

Interface thickness ζ 10 μm [29] 

Young’s modulus for metal phase E 150 GPa 

Poisson’s ratio for oxide phase v 0.33 

Coefficients to scale the contributions 

of the interfacial energy 
LS  10-6 m3 J-1 s-1 

Coefficients to scale the contributions 

of the oxidation kinetics 
Lκ 1 s-1 

Reference chemical potential of metal 

cation (Mn+) 

n+M

0  RT J mol-1 

Asymmetry factor ρ 0.5 

Charge number of metal cation (Mn+) n 2 

Diffusion coefficients for metal 

cations in the liquid phase 
DL 5 × 10-11–10-8 m2 s-1 

Diffusion coefficients for metal 

cations in the solid phase 
DS 10-14 m2 s-1 

Electric conductivity of liquid 
L  1 S m-1 [29] 

Electric conductivity of metal (M) 
S  107 S m-1 [29] 

Reference length lref 10 μm 

Reference time tref 1 s 

Reference energy density fref 1 GJ m-3 

Reference concentration of metal (M)  
M

refc  
1.403 × 102 mol L-1 

(See Appendix A) 

Reference concentration of metal 

cation (Mn+) 
n+M

refc  
5.436 mol L-1 

(See Appendix A) 

Reference electrical potential φref 1 mV 

Electrical potential at the top side of 

the liquid electrolyte 
φL -300–-1000 mV 

Electrical potential at the bottom side 

of the metal (M) 
φS 0 mV 

Ideal gas constant R 8.314 J mol-1 K-1 

Faraday’s constant F 96485 C mol-1 



 

 19 

3.1. 1D numerical results for the rate of charge–density change – to verify the code 

 The numerical scheme was validated based on the 1D analytical solution. In Fig. 

3, if the passive layer and the initial corrosion pit are removed, the 2D simulation box 

is reduced to the 1D problem. To compare with the analytical solution, Poisson’s ratio, 

υ, was set to zero to prevent the Poisson phenomenon. Thus, the elastic energy density 

in the metal, fM mech, can be conveniently expressed as fM mech = (1 / 2)E(ux / l)
2. 

Setting 
n+M 1c   and ∆φ = 0–60 mV, the current I at ϕ = 0.5 can be numerically 

calculated and compared with the analytical result (Eq. (28)). Figure 4 shows the 

consistency between the analytical and numerical results; it validates the numerical 

code. In Fig. 4,  = - ς / ((3 / 2)nFcM refLκ) is the dimensionless charge–density 

change per unit time. With the increase in ∆E, the evolution of   exhibits two 

regimes. When the magnitude of ∆E is low, the linear relation between   and ∆E, 

known as the Tafel law, can be obtained by an approximation of the analytical 

solution (Eq. (28)); it is expressed as    
n+M M M

mech ref 0f c nF E RT     . With 

further increase in ∆E,   becomes exponentially dependent on ∆E. When   is 

zero, the equilibrium electric potential difference, ∆Eeq, is obtained. It is observed that 

the equilibrium electric potential difference, ∆Eeq, shifts to the left with an increase in 

ux. As expressed by Eq. (15), the elastic strain energy may reduce the equilibrium 

electric potential difference; i.e., a metallic component under mechanical loading 

(either tension or compression) would be more conveniently corroded than one in a 

stress-free state.  

Fig. 4 
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3.2. 2D simulation for mechanico-electrochemical pitting corrosion 

3.2.1. Pitting corrosion without stress 

 In this work, the corrosion rate is affected by the diffusion rate as well as the 

applied electric potential. Therefore, we can explore the transition of pitting corrosion 

from a diffusion-mediated to an activation-mediated process. Based on the 2D model 

shown in Fig. 3, we first examine how the corrosion pit evolves from a circular pit 

with a = 20 μm and b = 20 μm when the metal is stress-free (ux = 0). The effect of the 

initial geometry on the pitting corrosion is also discussed in the section below. 

 Figure 5 shows the contour plots of the concentration of metal cations, 
n+Mc , and 

electric potential, φ, at 50 s with an applied electric potential φL = - 700 mV, and 

diffusion coefficient DL = 5 × 10-11–10-9 m2 s-1. It is observed that the pit morphology 

is semi-circular owing to the approximately uniform distributions of metal cations 

(Fig. 5(a–c)) and electric potential (Fig. 5(d–f)); this is consistent with previous 

numerical studies [18-20]. If the diffusion is gradual, the locally released metal 

cations cannot be completely diluted; this results in a remarkable accumulation of 

cations near the pit surface and reduces the corrosion rate (Fig. 5(a)). Correspondingly, 

the larger diffusion rate promotes the corrosion of metal (Fig. 5(b, c)). In Fig. 6, the 

increase in the corrosion depth, dc, with time, t, for different diffusion coefficients, DL, 

is plotted. It is observed that the relationship between the corrosion time, t, and 

corrosion depth, dc, obeys different laws. When the diffusion rate is marginal (DL = 5 

× 10-11 m2 s-1 and 1 × 10-10 m2 s-1 in Fig. 6), the relation between the corrosion time, t, 

and corrosion depth, dc, is nonlinear after the initial linear relationship. This is 

because the metal cations cannot be completely diluted at a low diffusion rate. The 

corrosion rate slows down, and the pitting corrosion transitions from an 

activation-mediated to a diffusion-mediated process. If the diffusion rate is large (DL = 
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5 × 10-10 m2 s-1), the released metal cations can be completely diluted by the liquid 

electrolyte. Thus, the reaction kinetics rather than the elemental diffusion dominates 

the pitting corrosion; moreover, the corrosion depth, dc, exhibits a linear relationship 

with t. 

Fig. 5 

Fig. 6 

 The pitting rate is affected also by the applied electric potential because the latter 

increases the reaction rate (see Fig. 2), critical cation concentration, 
n+M

crc (see Fig. 

4(b)), and diffusion rate of metallic cations (see Eq. (28)). To investigate the 

combined effect of the diffusion rate and applied electric potential, we simulate cases 

with DL = 5 × 10-11–10-8 m2 s-1, φL = - 300–- 1000 mV, and φS = 0 mV.  

Fig. 7 

 Fig. 7(a) shows the variation in corrosion depth dc at 50 s against DL and φL, 

where D0 = 10-8 m2 s-1 and φ0 = -1000 mV are used to normalize DL and φL. It is 

observed that the relationship between log(dc) and φL / φ0 is approximately linear for 

large DL. This indicates that the growth of the pits is activation-mediated and obeys 

the exponential law with φL. With the decrease in the diffusion rate, the relationship 

between log(dc) and φL / φ0 becomes more nonlinear on a logarithmic scale. This 

implies that the pitting corrosion is dominated by the coupling effects of the 

electrochemical reaction and elemental diffusion. The relationship between log(dc) 

and log(DL / D0) is approximately logarithmic. This implies that the reduction in 

diffusion rate results in a significant inhibition of pitting corrosion. Because the 

increases in DL and φL promote the pitting rate, a quantitative analysis is necessary to 

distinguish the major and secondary influencing factors. The contour of Fig 7(a), in 

terms of the relation between DL and φL, is plotted in Fig. 7(b). It is observed that the 
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curves relating DL and φL level off at a marginal value of DL. The curves then 

gradually inflect and become almost vertical with the decrease in φL. Therefore, the 

line connecting the points of maximum curvature of these contours demarcates the 

regions where either DL (Region I) or φL (Region II) becomes dominant.  

3.2.2. Pitting corrosion under stress 

Fig. 8 

 To exemplify the effect of mechanical deformation, Fig. 8 shows the contour 

plots of the dimensionless elastic energy density, mech mech reff f f , at 30 s with DL = 

10-9 m2 s-1, φL = - 700 mV, and displacement ux= 1–3 μm. It is observed that the 

morphology of the corrosion pit gradually becomes cone-shaped when the 

deformation ux increases; this has been observed in previous experimental and 

numerical studies [35-37]. This is caused by the inhomogeneous distribution of the 

elastic energy density that is concentrated at the tip of the corrosion pit (see Fig. 

8(a–c)). That is, the stress concentration results in a significant increase in local 

corrosion rate. The evolution of pit morphology and of the dimensionless elastic 

energy density, mech mech reff f f , over time for an initially flat metallic surface (a = 

20 μm and b = 0 μm) is shown in Fig. 9. It is observed that the nearly flat pit first 

appears when the material is under an approximately uniform stress (see Fig. 9(a, b)). 

Then, it develops into a circular pit when the concentrated stress is marginal (see Fig. 

9(c)) and finally into a sharpened pit owing to the large stress concentration at the pit 

tip (see Fig. 9(d–f)).  

Fig. 9  

Fig. 10 

 The evolution of the corrosion depth, dc, with ux = 0–3 μm is plotted in Fig. 10(a). 

It is observed that the corrosion depth, dc, is approximately linearly dependent on t 
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when ux = 0–2 μm. The variation in the aspect ratio, b / a, of the pit with corrosion 

time under different displacement boundary conditions is also plotted in Fig. 10(a). It 

is observed that the aspect ratio increases from one to approximately 1.4 in 30 s when 

ux = 3 μm; this again demonstrates that the concentrated elastic energy results in the 

sharpening of the pit. Figure 10(b) shows the maximum elastic energy per mole, fmech / 

cM ref, electric potential energy per mole, nF∆φ, and maximum concentration near 

the pit peak with time; here, nF∆φ is almost unchanged during corrosion, and the 

concentration 
n+Mc  is significantly smaller than the critical value, 

n+M

crc . When the 

displacement is marginal (ux = 0–2 μm), the elastic energy is negligible. Thus, the 

growth of the pit is activation-mediated, manifesting itself with a constant velocity as 

expressed in Eq. (28). If the displacement is adequately large (ux = 3 μm), the effect of 

the elastic energy on the corrosion kinetics is non-negligible, and the corrosion rate 

tends to speed up. The morphology of the pit becomes increasingly sharp; this in turn 

results in an increase in the elastic energy density at the peak (see Fig. 10(b)). 

Because the magnitudes of the displacement and Young’s modulus are constant, the 

influence of the pit morphology on the elastic energy density should be finite. Finally, 

the increase in the elastic energy over time slows down (see Fig. 10(b)), and the 

corrosion rate approaches a constant value (see Fig. 10(a)). 

 As mentioned, we study only the compression scenario because it does not cause 

the propagation of Mode-I cracks. To discuss the crack propagation in a corrosive 

environment, we refer to a tension scenario. Figure 11(a–d) shows the evolution of the 

pit and the equivalent stress field, σeq, when the metallic component has an initially 

flat breach (a = 20 μm and b = 0 μm) under the displacement boundary condition ux = 

- 3 μm.  

Fig. 11 
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 It is observed that the maximum equivalent stress increases from an initial 320 

MPa to 650 MPa, which may be higher than the yield strength of certain high-strength 

steels. The tension in the metallic sample may result in the initiation and propagation 

of Mode-I cracks. Thus, the stress intensity factor, KI, is also calculated based on the 

strain energy release rate: 

 I mech c

s

E
K f d d

t




 
    

 
 . (29) 

where KI is the stress intensity factor for type I cracks, mechf d


  is the total elastic 

energy in the metallic sample, s reft l  is the thickness of the sample, and 

mech s cf d t d


 
  

 
  is the strain energy release rate with the increase in the corrosion 

depth, dc. Figure 11(e) plots the variation in the stress intensity factor with the depth of 

the pit. It is observed that the maximum KI is 65.7 MPa m1 / 2; this exceeds the critical 

stress intensity factor, KIC, of some high-strength steels (KIC of high-strength steel is in 

the range of 50–150 MPa m1 / 2 [38]) and may result in cracking initiation and 

progression. 

Fig. 12 

 In a complex service environment, pitting corrosion is generally affected by 

variations in both the applied electric potential and mechanical loading. To elaborate 

these effects further, numerical studies are carried out. The corrosion lifetime, tc, 

defines the time required for the corrosion pit to penetrate through the whole metallic 

sample. The variation in the corrosion lifetime, tc, with the variations in the applied 

electric potential, φL = - 300–- 1000 mV, and the applied displacement, ux = 0–3 μm is 

plotted in Fig. 12(a). When the elastic strain energy (in terms of ux
2 in Fig. 12(a)) and 

applied electric potential are both marginal, the decrease in the corrosion lifetime is 
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approximately linear with either of the factors (ux
2 and φL). When these two factors 

are further increased, the decrease in tc becomes nonlinear; this is consistent with the 

presumption of Eq. (26) that the corrosion rate is an exponential function of the elastic 

energy and applied electric potential. 

 The corrosion lifetime, tc, is also affected by the applied load and initial geometry 

of the pit, as shown in Fig. 12(b). For large ux, the corrosion lifetime is nonlinearly 

dependent on the initial geometric features (in terms of b in Fig. 12(b)). It is observed 

that with the increase in b, tc first decreases rapidly and then approaches a stable 

magnitude. The corresponding average tip advancement speed, 
tip

cv , is shown in Fig. 

12(c). It is observed that if the material is stress-free, 
tip

cv  is independent of b. When a 

large displacement (mechanical deformation) is applied to the material, the increase in 

b results in an elevation in the elastic energy density near the tip; this accelerates 

pitting and increases the tip advancement speed. Because the influence of the pit 

morphology on the elastic energy density is finite (as mentioned in the above section), 

the variation in the elastic energy density near the tip tends toward convergence (see 

Fig. 12 (d)). Therefore, when b is large, the tip advancement speed approaches a 

maximum value (see Fig. 12(c)), and the rate of decrease in the corrosion lifetime is 

reduced (see Fig. 12 (b)). 

3.2.3. Pitting corrosion in fiber/particle-reinforced MMCs 

 Compared with pure metals, fiber/particle-reinforced MMCs exhibit more 

desirable modulus, strength, thermal stability, and corrosion resistance; they have 

been widely used in aerospace, automotive, and numerous other applications. 

Therefore, to extend our simplified model to the scenario of a complicated stress field, 

an MMC could serve as an effective example. It is observed that the Young’s modulus 

of reinforcement, such as for SiC, varies over a range that could be either higher or 
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lower than that of steel [39]. Therefore, the effect of the relative stiffness on the 

corrosion behavior is studied here. In a numerical study, only the metal matrix can be 

corroded. The reinforcing phase is considered to be a ceramic such as SiC, Al2O3, or 

BN, which is uniformly distributed within the matrix. The surfaces of the 

fiber/particles are thus considered as zero-flux boundaries. The volume fraction of the 

ceramic fiber/particles was set at 12 vol%, whereas the radius of the fiber/particles 

varied from 5 to 10 μm. The Poisson’s ratio, c , and the Young’s modulus, Ec, of the 

reinforcing phases are 0.33 and 0.5E–3E, respectively. In a simulation, the initial 

passive film breakdown is flat; therefore, a and b are set to 20 μm and 0 μm, 

respectively. Figure 12 shows the contour plots of the concentration 
n+Mc  at 50 s with 

the fiber/particle radius r = 0–10 μm, diffusion coefficient DL = 10-9 m2 s-1, applied 

electric potential φL = - 700 mV, and displacement ux = 0. With the reduction in the 

fiber/particle size, the diffusion path away from the pit is lengthened. Thus, the 

smaller sized fiber/particles results in a higher local concentration, 
n+Mc , as shown in 

Fig. 13(a–c); this impedes the pitting corrosion.  

Fig. 13 

 When an MMC component is under mechanical loading, the effect of the ceramic 

reinforcement on the pitting corrosion is complex. Based on the 2D phase field model, 

let us examine the scenarios in which a fiber-reinforced MMC is transversely 

deformed either by constant displacement or by a constant load at the boundary. 

Figure 14(a–c) and (d–f) show the contour plots of the elastic energy density in a pure 

metal and MMC at 30 s under different conditions, as indicated. When the 

displacement boundary condition is applied, it is observed that a smaller Young’s 

modulus of the reinforcements results in a lower elastic energy density concentration 

in the matrix near the pit; this reduces the corrosion rate. Thus, the pit in the MMC 



 

 27 

with Ec = 0.5E (Fig. 14(b)) is shallower than that in the pure metal (Fig. 14(a)); 

moreover, the MMC with the stiffer fiber (Fig. 14(c)) has a deeper corrosion pit. 

Conversely, when the MMC is under a constant load, the stiffer reinforcement 

withstands a higher load; this results in reduced stresses in the matrix and reduced 

pitting corrosion, as shown in Fig. 14(d–f). Whereas these findings are obtained based 

on the scenario wherein the fiber-reinforced MMC is under transverse loading, they 

are valid for longitudinal loading also. In Appendix B, we illustrate the distribution of 

the elastic energy density in the longitudinally loaded MMC with a 3D pit. The results 

indicate a corrosion tendency similar to that revealed by the 2D simulation.  

Fig. 14 

 The above results are further summarized in Fig. 15(a) and (b) to provide a 

quantitative description of the variations in the fraction, ψc, and depth, dc, of the 

corroded area against the fiber/particle radius, r, and Young’s modulus, Ec, 

respectively. In a stress-free state, the reinforcement phase improves the corrosion 

resistance; this is manifested by the reduced area or depth, as shown in Fig. 15(a) and 

(b), respectively. Note that the fiber diameter or particle size also exerts influence. A 

smaller size results in a higher corrosion resistance. In the case of a fixed 

displacement, the corrosion resistance of MMC benefits from the decrease in the 

reinforcement stiffness; meanwhile, if a constant load is applied, the increase in the 

reinforcement stiffness enhances the corrosion resistance of MMC. In addition, it is 

observed that the area fraction, ψc, increases with the size of the reinforcement. For 

the pit depth, the larger radius of the reinforcement plays the reverse role; it reduces dc. 

Our modeling results provide a guideline for the selection of ceramics fibers/particles 

for enhancing the corrosion resistance of MMC. 

Fig. 15 
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4. Conclusions 

 A new PF model to investigate mechanico-electrochemical corrosion is proposed. 

The mechanico-electrochemical corrosion rate is derived based on a detailed balance 

of the electrochemical reaction and conforms to a generalized Butler–Volmer equation. 

The contributions of the chemical potential, metal–electrolyte interface, electrostatic 

field, and mechanical deformation are included in the Gibbs free energy of the system. 

Thus, the complete PF model is established by an Allen–Cahn type equation for 

governing the phase transformation from metallic solid to metal ions in liquid 

electrolyte, in association with Nernst–Planck equations for diffusion, Poisson’s 

equation for electrostatic field distribution, and the mechanical equilibrium equation 

for elastic energy density evaluation. The accuracy of the PF model was validated by 

comparing with the 1D analytical solutions. The equilibrium electric potential 

difference becomes elastic-energy dependent; this reduces the equilibrium electric 

potential difference and promotes corrosion. 

 The pitting corrosion of a pure metal is then simulated in 2D. By varying the 

diffusion coefficient of metal ions in electrolyte, the evolution of the pitting corrosion 

from diffusion-controlled to activation-controlled is observed. The corrosion rate’s 

dependence on the diffusion and applied potential also exhibits different laws. A map 

for distinguishing their dominant roles is established. If the sample is under stress, the 

inhomogeneous distribution of the elastic energy density, which is concentrated at the 

pit tip, results in a change in the pit morphology from a semi-circular to a conical 

shape. The sharper morphology in turn results in an increase in the local elastic energy; 

this speeds up the local corrosion rate at the pit tip.  

 Pitting corrosion in MMC is also investigated. Without stress, the decrease in the 

ceramic particle size lengthens the diffusion path and reduces the corrosion rate 
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compared with those of pure metal. If the MMC is under mechanical loading, the 

behavior of pitting corrosion becomes more complex depending on how the loading is 

applied at the boundary. In the case of fixed displacement, the softer reinforcement 

results in higher corrosion resistance in MMC. Conversely, in the case of a constant 

load, the stiffer reinforcement results in an increase in the corrosion resistance of 

MMC. 
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Appendix A 

 The dimensionless governing equation is 
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 


  
     

  
, (A.2) 
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

  
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and 



 

 30 

    
 e 1

div 0
2

p ji

j i

dd
p

x x




    
           

D , (A.4) 

respectively; here, the variables and parameters with the over-head bar are defined as 

ref refL L f tS S
, L = Lκtref,  ref reff lS S ,  = ζ / lref, W = W / fref, D = Dtref / l2 

ref, and e
D = De/fref. 

 The molar mass and density of the metal (Fe) are mFe = 56 g mol-1 and ρFe = 7.9 g 

cm-3, respectively. Thus, the reference molar concentration of the metal (Fe) cM ref = 

ρFe/mFe = 1.403 × 102 mol L-1.  

 In the present work, the reference concentration of the metallic cation is assumed 

to be the maximum concentration that is soluble in salt water. We assumed the stable 

ion cation to be Fe2+ in salt water. The solubility of FeCl2 is 
2FeClS  = 0.685 g cm-3 

(20 ℃). If we omit the volume change in solution during dissolution, the maximum 

concentration of FeCl2 should be 
2 2FeCl FeClS m = 5.436 mol L-1; here, 

2FeClm = 126 g 

mol-1 is the molar mass of FeCl2. Thus, the reference molar concentration of ion 

cation (Fe2+) is set to 
n+M

refc  = 5.436 mol L-1. 

Appendix B 

 The distribution of the elastic energy densities in the MMC component with a 3D 

pit is numerically calculated; herein, the longitudinal displacement, uz = 3 μm, and 

pressure, P = 200 MPa, are applied. The radius of the fiber reinforcements is set to r = 

7.5 μm. The Poisson’s ratio, c , and the Young’s modulus, Ec, of the reinforcing 

phases are 0.33 and 0.5E–2E, respectively. The results are shown in Fig. B1(a–f). It is 

apparent that when the displacement boundary condition is applied, the elastic energy 

density at the edge of the corrosion pit increases with the increase in Ec; this would 

promote the corrosion. When the MMC is under a constant load, the stiffer 
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reinforcements take more load; this reduces the stress in the matrix and retards 

corrosion. 

Fig. B1 

Appendix C 

 In the present model, we implicitly assume that the cathode reactions are rapid 

enough that they do not affect the reactions at the anode. Thus, the effect of the 

cathodic reaction is not considered. However, if the cathode becomes the rate-limiting 

electrode, the effect of the cathodic reaction must be considered; this can be 

incorporated into the framework of the present model. For an example, we consider the 

pitting corrosion of pure metal (Fe) in dilute sulfuric acid solution (H2SO4), as 

schematically shown in Fig. C1. 

Fig. C1 

 In this case, the corresponding cathodic reaction is 2H+ + 2e- → H2↑. Thus, the 

diffusion of sulfate (SO4
2-) and hydrogen (H+) ions in the electrolyte should be 

incorporated in the present model, in which it is governed by the Nernst–Planck 

equation in the following form: 

  

 
   

   2 + 2 2 +
4 4 4

2 2 +
4 4

SO or H SO or H SO or H
SO or H SO or H 2

=
c D Fc

D c
t RT



   

   
    
 
 

, (C.1) 

where the superscripts SO4
2- and H+ represent the sulfate and hydrogen ions, 

respectively. 

 Following Mai et al. [21], the cathodic surface movement is negligible. The 

potential applied at the anode and cathode are set to φa and φc (indicated in Fig. C1). 

The cathodic reaction consumes hydrogen ions and requires electron influx. Thus, 

a flux boundary condition can be established on the cathode surface to ensure that the 

flux of hydrogen ions diffusing to the cathode surface is equal to the rate of 
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consumption; this is expressed as 

  
+

cath
sol cathH 0 exp

Fi

F F RT

  
      

 

i
j n , (C.2) 

where 
+H

j  is the flux of hydrogen ions to the cathode surface; i is the current density of 

the galvanic reaction; and n is the direction normal to the cathode surface. 
cath

0i and 

sol cath
  are the reference current density and the overpotential between the electrolyte 

solution and cathode surface, respectively; both these can be measured during the 

experiment. Based on the above formulae, the cathodic reaction can be incorporated 

into the present model. 
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Figure Captions 

 

Fig. 1. Schematics of electrochemical corrosion of a pit. 

 

Fig. 2. Landscape of electrochemical potential during reaction. 
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Fig. 3. Geometric and boundary conditions.  

 

Fig. 4. Variation in dimensionless charge–density change per unit time,  , with 

electric potential difference, ∆E, and displacement, ux. 
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Fig. 5. Contour plots of (a–c) concentration of metal cations, 
n+Mc , and (d–f) 

electric potential, φ, at 50 s with applied electric potential φL = - 700 mV and 

diffusion coefficient DL = 5 × 10-10–10-9 m2 s-1. 

 

Fig. 6. Evolution of corrosion depth, dc, with different diffusion coefficient values, 

DL. 



 

 40 

 

Fig. 7. (a) Variation in corrosion depth, dc, at 50 s, with respect to the change in DL 

and φL, and (b) corrosion depth, dc, diagram with applied electric potential, 

φL, along the x axis and diffusion coefficient, DL, along the y axis. 

 

Fig. 8. Contour plots of (a–c) elastic energy density at 30 s with applied electric 

potential φL = - 700 mV and displacement ux = 1–3 μm. 

 

Fig. 9. Evolution of pit morphology and dimensionless elastic energy density, 

mech mech reff f f , over time for an initially flat metal surface (a = 20 μm and 
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b = 0 μm) when ux = 3 μm.  

 

Fig. 10. (a) Evolution of corrosion depth, dc, and aspect ratio, b / a, of pit with ux, and 

(b) evolution of elastic energy, electric potential energy, and concentration. 

 

Fig. 11. (a)–(d) Equivalent stress, σeq, evolution with displacement, ux = - 3 μm, in the 

metallic sample with an initially flat breach (a = 20 μm and b = 0 μm); (e) 

evolution of stress intensity factor for type I crack, KI, with corrosion depth, 

dc. 
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Fig. 12. Evolution of corrosion life, tc, with (a) the square of displacement, ux
2, and 

applied electrical potential, φL, (b) the square of displacement, ux
2, and 

semi-minor axes of initial pit, b, (c) the average tip velocity of the corrosion 

pit, 
tip

cv , in the y direction with ux = 0–3 μm and b = 0–40 μm, and (d) the 

evolution of elastic energy for ux = 3 μm and b = 0–40 μm. 

 

Fig. 13. Contour plots of concentration, 
n+Mc , at 50 s with particle radius (a) r = 0 

(pure metal), (b) r = 10 μm, and (c) r = 5 μm. 
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Fig. 14. Contour plot of elastic energy density in pure metal and MMC with Ec = 0.5E 

and 3E at 30 s under the loading of (a–c) displacement, ux = 3 μm, and (d–f) 

pressure, P = 200 MPa. 

 

Fig. 15. Evolution of (a) volume fraction of corrosion area, ψc, and (b) corrosion 

depth, dc, at 30 s with fiber/particle radius, r, and Young’s modulus, Ec. 
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Fig.B1. Contour plot of elastic energy density with (a–c) displacement, uz = 3 μm and 

(d–f) longitudinal pressure, P = 200 MPa. 

 

Fig.C1. Schematics of galvanic and pitting corrosion of pure metal (Fe) in dilute 

sulfuric acid solution. 

 

 




