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Abstract: Evaluating the point defect sink strength of grain boundaries is crucial for 

understanding the metal behavior of plasticity and damage under irradiation. In this 

paper, the point defect sink strength of low-angle symmetrical tilt grain boundaries is 

investigated by the phase field dislocation climb model under irradiation. The results 

indicate that sink strength of grain boundary is not only determined by the long-range 

point defect diffusion but also the short-range point defect absorption by the dynamic 

climbing of grain boundary dislocations. All of the study findings prove that the 

irradiation induced creep deformation of grain boundaries is essential for evaluating the 

radiation tolerance of materials. 
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1. Introduction 

The accumulation of point defects (PDs) in metals under an irradiated environment 
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could cause undesirable changes such as swelling, embrittlement, and creep (Misra et 

al., 2007; Odette et al., 2008; Bai et al., 2010, Bringa et al., 2011, Kenik and Busby, 

2012). Nanocrystalline materials are considered radiation tolerant materials, because 

the plentiful grain boundaries (GBs) in materials can act as potent sinks for PDs (Was, 

2007; Bai et al., 2010; Demkowicz et al., 2012; Wan et al., 2014; Beyerlein et al., 2015; 

Yu and Shen, 2016). Hence, evaluating the capability of a GB for absorbing PDs is 

primarily important for the design of radiation resistant materials and understanding the 

deformation behaviors of such materials. 

 The ability of a GB to absorb PDs can be characterized by the GB sink strength, 

and the factors that affect GB sink strength rely on the mechanisms of GBs interacting 

with PDs and PDs diffusion. Atomistic simulations are powerful tools for investigating 

the PD-GB interaction and for acquiring some basic thermodynamic and kinetic 

parameters (Bai et al., 2012; Millett et al., 2009; Tschopp et al., 2012; Zhang et al., 

2012). However, the fundamental understandings obtained from these atomistic 

modeling are difficult to use directly for radiation-resistant material design (Han et al., 

2012), due to the limited length scale. Thus, it is necessary to develop a continuum 

model combined with the atomistic information to predict the GB sink strength 

effectively (Beyerlein et al., 2015; Zhang et al., 2012). 

 Most of the existing studies about the continuum models of GB sink strength are 

theoretical investigations. Grain boundaries are regarded as perfect planar sinks in these 

studies (where the PD concentration is set to be the thermal equilibrium value) (Was, 

2007). However, many experiments have proven that sink properties of different kinds 

of GBs are significantly different. The experimental observations of the void-denuded 

zones formed near GBs reveal that the influencing factors of GB sink efficiencies are 

the overall GB characteristics and that both those of the GB plane orientation and 

misorientation should be considered (Han et al., 2012). Therefore, the GB-character 

dependence must be studied in the continuum model to investigate GB sink strength.  

The structures of low-angle GBs are well understood and can be fully described by 



 

 

lattice dislocations. The sink behavior of GB-character dependence could be 

investigated based on the dislocation models of low-angle GBs. The simplest boundary 

is the low-angle symmetric tilt GB, where the GB structure is only one set of edge 

dislocations, and the PDs are absorbed by the GB via climb of such edge dislocations. 

By using the dislocation models of GBs, the analytical expression of a low-angle 

symmetric tilt GB sink efficiency can be derived without considering the elastic 

interaction between PDs and dislocations (Gu et al., 2017). On the other hand, 

numerical simulations combined with elastic theory of dislocations have been 

employed to explore the effect of GB stresses on the sink strength, resulting in a 

surprising conclusion that the sink strengths of high-angle GBs could be lower than 

low-angle GBs (Jiang et al., 2014). The dislocation-based models offer useful insights 

into the relationship between the GB sink strength and GB structure. However, most of 

these models assumed that dislocations at GBs are ideal sinks for PDs in which the PD 

concentration is fixed at a value derived from the climb mechanism (Gu et al., 2017) or 

corresponding to the thermal equilibrium state (Jiang et al., 2014; Rouchette et al., 2014) 

within the dislocation cores, and the dislocations are immobile. This assumption ignores 

the short-range interaction and dynamic motion of the dislocations during PDs 

absorption, and therefore the sink strength is determined only by the PD long-range 

diffusion. 

The climb of GB dislocations has a significant impact on the mechanical behavior 

of nanomaterials (Bobylev et al., 2010; Wang et al., 2014). Temperature-dependent 

deformations of crystals studied by crystal plasticity models, including the climb 

mechanism, also emphasize the importance of the diffusion-assisted dislocation motion 

(Lebensohn et al., 2010; Fischer and Svoboda, 2011; Basirat et al., 2012; Babu and 

Lindgren, 2013; Geers et al., 2014). As an effective tool to simulate plasticity at the 

scale of individual dislocations, discrete dislocation dynamics have been used to 

combine dislocation-climb and vacancy-diffusion (Mordehai et al., 2008; Gao et al., 

2011; Davoudi et al., 2012; Keralavarma et al., 2012; Ayas et al., 2014; Huang et al., 



 

 

2014; Niu et al., 2017). However, the vacancy diffusion is controlled by the linear 

equation and the steady-state climb conditions in most of these methods. At the relevant 

scale, the phase field model (PFM) can be used as another simulation technique to study 

the dislocation dynamics (Levitas et al., 2010; Wang and Li, 2010; Beyerlein and Hunter, 

2016; Zeng et al., 2016; Zheng et al., 2015, 2018). Additionally, microstructure 

evolutions under irradiated conditions have been effectively predicted by PFM (Li et 

al., 2017). Recently, the PFM of dislocation climb that couples non-conservative 

dislocation motion with PD diffusion was developed to allow the removal of the ideal 

sink assumption for dislocations (Geslin et al., 2014; Ke et al., 2014). In addition, Shen 

et al. (2014) advanced the PFM of dislocation to describe a low-angle twist GB. In this 

study, we extended Shen’s dislocation model to describe the low-angle symmetrical tilt 

GBs and then applied it to evaluate the GB sink strength under the irradiation conditions 

through the PFM of dislocation climb. We will show that GB sink strength is not only 

determined by the PD diffusion but also the reaction rate of PDs absorption by the 

dislocations climb, and the transition from reaction-controlled to diffusion-controlled 

sink processes is also presented. By comparing with the results obtained from the ideal 

sink model, it is found that the dynamics of the dislocation motion during PD absorption 

has significant effects on the GB sink strength.      

The structure of this article is as follows. The PFM of dislocation is extended to 

describe the low-angle tilt GBs in section 2. In section 3, we apply this phase field 

description of GBs to compute the GB sink strength using the PFM of dislocation climb 

and compare the results to that obtained from the ideal sink model of dislocations. 

Finally, the main conclusions are summarized. 

 

2. PFM of dislocation for low-angle tilt GBs 

2.1 PFM of dislocation 

In the PFM of dislocation, the amount of relative slips at position r  is represented 



 

 

by the non-conserved phase field variables  , ,m  r  in units of Burgers vector 

 , mb  , where    represents the slip plane and m   is the glide direction. The 

slipped and unslipped parts correspond to regions with  , , 0m  r   and 

 , , =0m  r   in a crystal, respectively. Boundaries of the slipped and unslipped 

regions are regarded as dislocation lines. Dislocation assembly can be expressed 

through the evolution of  , ,  m r , and the process is controlled by decreasing the 

total free energy toward the minimum. Total free energy is composed of elastic energy, 

crystalline energy and gradient energy. Following the work regarding the PFM for 

twist grain boundaries (Shen et al., 2014), we also neglected the gradient energy and 

restrict the Burgers vector distribution within the glide planes by assuming that 

 , , 0m  r  at the point r r , where r  is the position vector on the slip plane 

 . Hence the total energy equals elastic energy plus crystalline energy: 

 .tot ela cryE E E    (1) 

Khachaturyan-Shatalov (KS) microelasticity theory was used to calculate the 

elastic energy based on the eigenstrain  0

ij r  and the external stress. The eigenstrain 

induced by inelastic slip can be expressed as 
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where  jn   is the component of the unit normal vector of the slip plane  , and 

d  is interplanar distance of these slip planes. Elastic energy yields 
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where 
ijklC  is the elastic moduli tensor, ξ  represents the Fourier space vector, and 

/e ξ ξ   indicates unit vector along ξ  .    0 0 3

ij ij e d r   
ξ r

ξ r   is the Fourier 

transformation of  0

ij r , and    0 0

ij ijkl klC ξ ξ .    
1

jk jlpk l pC e e


 e  is the elastic 

Green function, and the symbol    represents complex conjugation. 
0 ξ

  is an 

integral in Fourier space excluding the point of 0ξ , V  is the system volume, and 

ext

ij  is the external applied stress. After substituting Eq. (2) into Eq. (3), the elastic 

energy can be expressed by the field parameters in Fourier space. 

    The periodical potential cryf  was used to describe the misfit energy of the local 

disregistry within the core. Thus, the crystalline energy is given as follows: 

 3 .cry cryE f d r     (4) 

The expression of cryf   is always expanded to be a Fourier-series, but a simplified 

approximation is used here by following the periodic Peierls potential: 
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where A  represents the approximate stacking fault energy for the corresponding slip 

system.  

As both types of energies are expressed by the phase field variables, the dislocation 

dynamics is determined by the time-dependent Ginzburg-Landau (TDGL) equation: 
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where L   is the positive kinetic coefficient related to the dislocation mobility 

characterizing the relaxation rate of the phase fields. Based on the thermal activation 

theory of dislocations, we can estimate  0 exp / BL L E k T  , where E  is 



 

 

activation energy, Bk  is the Boltzmann constant, T  is the kelvin temperature, and 

0L  is a coefficient independent of temperature. The equilibrium state of a dislocation 

is achieved when  / , 0,tot mE   r . 

 

2.2 Low-angle symmetrical tilt GBs  

Shen et al. (2014) developed the PFM of dislocation to describe pure twist GBs. A 

similar method was adopted here to deal with the low-angle symmetrical tilt GBs. A 

symmetrical tilt grain boundary can be constructed by a perfect crystal with the 

following steps shown in Fig. 1: (1) the perfect crystal is cut into two half crystals along 

the y axis in the coordinate (Fig. 1a); (2) a rigid-body rotation of the left half crystal 

relative to the right one is introduced, the rotation angle is  , and the rotation axis is 

the z axis (Fig. 1b); (3) the crystal is completed by removing the overlap and filling up 

the vacant part so that the crystal lattice is perfect except in the region of 0x   (Fig. 

1c), and the displacement of the region of 0x   is induced by the rigid-body rotation 

and expressed as  0R x u  ; and (4) the non-perfect region of 0x    is locally 

relaxed to the minimum energy state and the relaxation displacement is v . After the 

four steps, a bi-crystal with an equilibrium symmetrical tilt GB located in the region 

0x   is generated. The total displacement of the boundary tot R u u v  should be 

calculated for describing the boundary’s structure.  



 

 

 

Fig. 1 Schematic diagram of the steps for constructing a symmetrical tilt grain boundary. 

The displacement of the rigid-body rotation in two-dimensional space is (Shen et 

al., 2014): 

      / 2 / 2 ,R      u r R R r   (7) 

where R   is the rotation matrix expressed as:  
cos      sin

= .
sin    cos

 


 

 
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 

R   It is given 

that  , ,0R y x  u  in three-dimensional space when GB is low-angle with 1 . 

For the region 0x  ,    0 ,0,0R x y u . Because the relaxation displacement is 

caused by the rigid-body rotation, the total displacement only contains the component 

along the x axis. Then the boundary can be considered an array of parallel pure-edge 

dislocations, and the Burgers vector is  ,0,0b b . The edge dislocations are strictly 

confined within the slip plane 0x  , and the unit normal vector is  1,0,0n . We 

use the field variables to represent the amount of relative displacements to the Burgers 

vector:  ttot otu r b  ,  RR u r b   and  v r b  . The field variables are non-

zero only within the boundary with   /R y x b    and tot R    , where  x  

is the Dirac function on the GB plane.  

It is reasonable to describe the tilt boundary energy by the dislocation model. 



 

 

Crystalline energy is the misfit energy induced by the total displacement:  

    .cry cry tot cry RE E E       (8) 

In this situation, the Burgers vector is vertical to the slip plane, and the edge dislocations 

are prismatic-type. Therefore, the crystalline energy density function cryf  should be 

different from the one for the glide-type dislocations. However, the crystals remain 

complete because of the assistance of the PD absorption during the dislocation motion; 

the completeness ensures that cryf  is still a periodical function. Thus, we used the 

simplified approximation expression from Eq. (5) to describe the misfit energy of the 

(100) boundary of the cubic crystal: 

  2 3sin .cry RE
A

d r
d

      (9) 

The elastic energy is given by Eq. (3) as a function of the eigenstrain. Since rigid-body 

rotation does not cause elastic strain, the eigenstrain is determined only by the field 

variable associated with the relaxation displacement: 
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Combining Eqs. (9) and (10) with Eqs. (1) and (3), the total energy is dependent 

on two field variables: R  and  . For a fixed rotation angle  ,   /R y x b   

and only    needs to be determined by the TDGL equation (Eq. (6)) during the 

relaxation: 
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 The initial state is 0   (or   /tot R y x b    ), and the equilibrium state 

is achieved when /totE    reaches zero. The crystal is assumed to be elastic 



 

 

isotropic, and we use the material parameters of metal aluminum (see Table 1). Eq. (11) 

can be solved numerically in reduced form with all physical lengths measured in units 

of b , all the stresses in units of   (the shear modulus) and the time in units of 0t . 

The simulations are performed using the periodic boundary conditions without external 

applied stress. 

The simulated structure of the 2.86   tilt boundary in the computational cell of 

80 80 2b b b   is shown in Fig. 2. The profiles of tot  with respect to /y b  along 

the boundary 0x   at the initial state and equilibrium state are plotted in Fig. 2a. At 

the initial state, the profile is a straight line corresponding to /tot R y b    . After 

relaxation, tot   is composed of segmented constants and sudden jumps at the 

equilibrium state, which is similar to the results calculated by Dai et al. for the twist 

boundaries (Dai et al., 2013). The regions of constant tot  are perfect lattices, and the 

jumps between them are dislocations. As shown in Fig. 2a, the distances between the 

neighboring jumps are the same, and the calculated value is 20h b , which is nearly 

equal to the theoretical value of / 20b b  . Fig. 2b plots the crystal energy density 

cryf  at the equilibrium; the figure clearly shows that the grain boundary consists of a 

series of parallel edge dislocations with a fixed separation distance of 20h b  

according to the periodical boundary condition. The simulated results show good 

agreement with the theoretical studies, indicating that the model adopted here is valid 

for describing the structures of low-angle symmetrical tilt GBs. 

It is worth noting that only the (100) symmetrical tilt GB is constructed here in the 

phase field dislocation model. This model can be extended easily to describe arbitrary 

planar low-angle pure twist or pure tilt GBs. When the cut plane (GB plane) is 

perpendicular to the rotation axis, the GB type is pure twist, and the general model has 

been carefully discussed by Shen et al. (2014). If the cut plane is parallel to the rotation 

axis, this plane will be a pure tilt GB. In particular, while the rotation axis is located in 



 

 

the cut plane, the GB is a symmetric tilt plane. Thus, the rigid rotation processes are all 

the same for the symmetric tilt GBs with different crystallographic orientations. 

However, the relaxation process is dependent on the crystallographic orientation of the 

GB plane. In this study, a (100) symmetric tilt GB in a cubic crystal is considered, and 

the simple sinusoidal function of Eq. (9) is employed to describe the crystalline energy. 

For the GBs with other crystallographic orientations, the ab initio generalized stacking 

fault energy (GSFE) function similar to the   surface of such a crystallographic slip 

plane must be used to replace Eq. (9) for calculating the crystalline energy. Different 

GSFE functions will lead to different dislocation patterns. For instance, dislocation 

dissociations and partial dislocations may appear in a (111) symmetric tilt GB in a face-

centered cubic crystal.             

 

Fig. 2 Simulated structure of the 2.86   tilt grain boundary in the computational cell of 

80 80 2b b b  . a. Plots of 
tot  with respect to /y b  along the boundary 0x   at the initial 

state and equilibrium state. b. Plots the crystal energy density 
cryf  at the equilibrium state. 

 

3. Sink strengths of low-angle tilt GBs 

In this section, the PFM of the dislocation climb was employed to calculate the sink 



 

 

strengths of the low-angle tilt GBs generated in section 2, and the results are compared 

to that of the ideal sink model of dislocations. The PFM of dislocation climb and the 

ideal sink model are introduced in section 3.1, and the results are shown in section 3.2. 

 

3.1 Model descriptions 

3.1.1 PFM of dislocation climb 

Geslin et al. (2014) and Ke et al. (2014) have developed the PFM to describe 

discrete climbing dislocations. Here, we applied this model to research the sink of PDs 

via the climb of the parallel edge dislocations in GBs. For simplicity, we assumed that 

only one type of PD, vacancy, exists to exclude the mutual recombination among 

different point defects. The conserved phase field variable  c r  was adopted to denote 

the vacancy concentration, and the parameters R  and   calculated in the former 

section are used to represent the GB dislocations. The total energy, totF , includes three 

terms: the chemical energy of vacancy chemF , the elastic strain energy elaF  and the 

crystalline energy of dislocations cryF . The chemical free energy employs the ideal 

solution model: 

        31
1 ln 1 ln 1 ,che

m

m f

BE c c k T c c c c rF d
V

          (12) 

where mV  is the atomic volume and fE  is the vacancy formation energy. The elastic 

energy elaF  is calculated using Eq. (3), and the eigenstrain here includes contributions 

from dislocations and vacancies: 
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where V   is the vacancy relaxation volume and 
ij   is the Kronecker delta. The 

crystalline energy of the dislocation cryF  is given in Eq. (9). Thus, the total energy 



 

 

consisting of these three energy terms is directly determined by three phase field 

variables. 

For a given tilt angle, the variable R   is invariable with respect to time 

(   /R y x b    ); therefore, only the parameters    and c   need to be evaluated 

during the sink process. Eq. (11) gives the controlling equation for the non-conserved 

variable   . However, an additional contribution should be considered: the osmotic 

force caused by the vacancy concentration deviating from the equilibrium value. 

Researchers have derived the osmotic force as /osm

V mf b V   , where 

/chem

V mV F c    is the vacancies chemical potential. Thus, the TDGL equation for 

the dislocation climb is (Ke et al., 2014) 

 .
tot osm tot chemF f F F

L L
t b c

  

  

    
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    
  (14) 

The long-range diffusion of vacancies is controlled by the Cahn-Hilliard equation, and 

the short-range vacancy absorption arises from the dislocation climb. Under irradiation, 

the evolution equation containing reaction-diffusion mechanism is given by: 

 0 ,
totc F

M K
t c t

 



 
    

 
   (15) 

where M   is the vacancy mobility coefficient, which can be expressed as 

   1 /m BM V Dc c k T   ,  0 exp /m

BD D E k T    is the vacancy diffusion 

coefficient, 0D  is the pre-exponential factor, mE  is the vacancy migration energy, 

and 0K  is the vacancy generation rate. The first term in this equation describes the 

vacancy diffusion, which is consistent with the Cahn-Hilliard equation. The second 

term represents the vacancy absorption, and the absorbing process is accompanied by a 

dislocation climb. The third term is the vacancy generation term due to the radiation. It 



 

 

should be noted that no other internal sinks are assumed to exist in the grain in order to 

isolate the effects of the GB.  

Additionally, it is necessary to point out that uniform fE  and mE  are adopted 

here in this 2D dislocation climb model for simplicity. However, f

cE   (vacancy 

formation energy in the dislocation core) is verified to be lower than f

bE  (such energy 

in the bulk), indicating that the thermal equilibrium vacancy concentration within the 

dislocation core is higher than that in the bulk. On the other hand, pipe diffusion of 

vacancies along the dislocation line is much faster than bulk diffusion, revealing that 

m

cE   (vacancy migration energy in the dislocation core) is much smaller than m

bE  

(such energy in the bulk). These phenomena would have significant effects on the 

diffusion processes and dislocation climb dynamics when this model is extended into 

the 3D framework. For this case, we could employ  = /f f f f cry

b c bE E E E f A   and 

 = /m m m m cry

b c bE E E E f A   to reflect the non-uniform vacancy formation energy and 

anisotropic diffusion energy barriers, respectively.           

3.1.2 Ideal sink model 

In the ideal sink model, the dislocations are immobile and the PD concentration of 

the dislocation core region is fixed at a constant value. Following the work of Rouchette 

et al. (2014), another order parameter  r  is incorporated into this model to express 

the capture zones of the sinks, which is set to be 1 within the dislocation cores and 0 

outside, as shown in Fig. 3. In contrast to the circular dislocation cores adopted by Misra 

et al. (2007), Jiang et al. (2014) and Rouchette et al. (2014), the shape of the dislocation 

cores here are assumed to be line segments, corresponding to the dislocation structures 

shown in Fig. 2b. The length of the line segments should be equal to the dislocation 

core width 2w , and it can be determined by: 
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,
Aw

w A
   (16) 

with the core width  02 / 1w d    and  2 2

0 / 2A b d   in the original Peierls-

Nabarro model. Since 0.01A b  is chosen here, then 3.62w b .  

 

Fig. 3 Schematic diagram of the ideal sink model. The orange line segments with 1   represent 

the regions within the dislocation cores.  

Since climb of the dislocations is ignored here, the parameters    and    are 

invariable with respect to time. The sink process is determined only by the vacancy 

diffusion: 

   0,
 




     

 

tot
thc F

M c c K
t c t

  (17) 

where t   is the calculation time step and  exp /th f

Bc E k T    is the thermal 

equilibrium vacancy concentration. Replacing the vacancy absorption term induced by 

the dislocation climb in Eq. (15), the second term of Eq. (17) in the right side was 

proposed by Jiang et al. (2014) and Rouchette et al. (2014). This absorption term was 

set to zero in the system except in the zones of the dislocation cores, ensuring that the 

vacancy concentration was fixed at thc  within the capture zone of the sinks.  



 

 

 

3.1.3 Parameters 

 

Table 1 Simulation parameters. 

Parameters Value References 

Burgers vector, 𝒃  0.285 nm Geslin et al. (2014) 

Interplanar distance, 𝒅 0.285 nm Geslin et al. (2014) 

Shear modulus, 𝝁 26 GPa Geslin et al. (2014) 

Poisson ratio, 𝝂 0.3 This work 

Stacking fault energy, 𝑨 74.1 mJ/m2 Beyerlein and Hunter (2016) 

Time, 𝒕𝟎 3.23×10-11 s Geslin et al. (2014) 

Kinetic coefficient, 𝑳 0.0064 m3/J s Geslin et al. (2014) 

Atomic volume, 𝑽𝒎 0.0164 nm3 Geslin et al. (2014) 

Vacancy formation energy, 𝑬𝒇 0.67 eV Geslin et al. (2014) 

Vacancy migration energy, 𝑬𝒎 0.61 eV Geslin et al. (2014) 

Temperature, 𝑻 812 K Geslin et al. (2014) 

Vacancy relaxation volume, ∆𝑽 -0.15× 𝑉𝑚 Ke et al. (2014) 

Pre-exponential factor, 𝑫𝟎 1.51×10-5 m2/s Geslin et al. (2014) 

Dose rate, 𝑲𝟎 3.1×103 /s Rouchette et al. (2014) 

 

The simulation parameters used here are listed in Table 1, if not specifically 

mentioned in the following simulations. The dimensionless equations can be obtained 



 

 

after normalization in the same way adopted in the former section. Periodic boundary 

conditions were employed here, and continuous climbing of the GB dislocations was 

driven solely by the vacancy absorption due to the absence of external applied stress. 

The initial values of the phase field parameters R  and   were obtained from the 

relaxation simulation in section 2.2. The initial vacancy concentration was chosen as its 

thermal equilibrium value,   4exp / 1.2341 10th f

Bc E k T     . 

External applied stresses would have a significant effect on the absorption process 

at the GBs, although it is not studied here. The externally applied stresses have the 

climb component of the Peach-Koehler force on the GB dislocations 11clf b  ; thus, 

the equilibrium vacancy concentration at the dislocation core should be 

 exp /th

d cl m Bc c f V bk T   . The tension (compression) stress along the x-axis will 

increase (decrease) dc , leading to a decrease (increase) of the sink strength. 

 

3.2 Results and discussion 

3.2.1 Sink behavior of tilt GBs in the PFM of dislocation climb 

First, 0 0K   was adopted to test the sink performances of the GBs under the 

non-irradiation condition in the PFM of dislocation climb. In this situation, the system 

is unchanged from its initial state, indicating that the GB dislocations and vacancies 

are at their thermodynamic equilibrium state. Then, the sink processes are 

investigated under irradiation (
0 0K  ). Fig. 4 reveals the evolution of the calculated 

average concentration 3 /c cdr V   in the bi-crystal system with a 2.86   tilt 

boundary, and the computational size is 80 80 2b b b  . The vacancies are generated 

as a constant rate 3

0 3.1 10 /sK    and absorbed by the GB dislocations. Initially the 

average vacancy concentration is at the thermal equilibrium value and then increases 



 

 

rapidly due to the absorption rate being lower than the generation rate. However, the 

absorption rate also increases along with the increase in the average vacancy 

concentration, and then a steady state will be achieved when the absorption rate 

equals the generation rate. The insets in Fig. 4 exhibit the vacancy concentration 

fields at four different times. As shown in these insets, the vacancy concentration is at 

a minimum within the dislocation core and gradually changed around the core, 

revealing that the vacancies are absorbed at the dislocation cores. For a direct view of 

the dynamic motion of the climbing dislocations, Fig. 5 presents the calculated 

profiles of crystalline energy along the y axis at three different times corresponding to 

Fig. 4, and the peaks of the profiles show the locations of the dislocation cores. Fig. 5 

clearly shows that the dislocations are moving in the negative direction of the y axis 

(see the green arrow line in the dashed red box). According to the climbing distance 

and the time step, the moving speed of the dislocations is 
31.32 10 /m s , which is 

comparable to that computed by Geslin et al. (2014). These findings reveal the 

physical process by which the GB absorbs vacancies through the dynamic climbing of 

the edge dislocation array.  

Benefiting from the periodical condition in this model, the tilt GB would be 

infinitely long and the climbing of the parallel GB dislocations is continuous; thus, a 

dynamic steady state is obtained, and the sink strength is able to be calculated 

effectively. The continuous vacancy absorption process results in an infinite capacity 

of the GB in attracting vacancies. However, a tilt GB in polycrystalline materials 

cannot be infinitely long, and the climbing motion of all dislocations along one 

direction would reduce the GB dislocation density in certain areas. The vacancy 

absorption capacity of the GB will decline with the decrease in the GB dislocation 

density. Finally, the GB will disappear and no longer absorb vacancies.   



 

 

 

Fig. 4 Plots of the calculated average vacancy concentration with respect to time in the PFM of 

dislocation climb. The four insets show the vacancy concentration fields at different times. The 

circles in the insets represent the same dislocation at different times. 

 

Fig. 5 The calculated profiles of crystalline energy /cryf b   with respect to /y b   at three 



 

 

different times corresponding to Fig. 4; the green arrow in the dashed red box shows the moving 

direction of the climbing dislocations. 

The elastic interaction between dislocations and vacancies can be verified using 

the proposed dislocation climb model. The comparison between the vacancy 

concentration distribution and the hydrostatic stress field of the 1   GB is given by 

Fig. 6. The result clearly exhibits that the minimum vacancy concentration areas are 

located at the tensile stress regions near dislocation cores, as expected from the 

theoretical analysis.  

 

Fig. 6 a. Vacancy concentration distribution and b. Hydrostatic stress distribution at 1.3t s . 

 

3.2.2 Sink strengths of tilt GBs 

In the rate theory models (Was, 2007), the sink strength is the central parameter 

for quantifying the ability of the sink to absorb PDs. The sink strength k   can be 

expressed by the average vacancy concentration c  at the steady state (Jiang et al., 

2014; Rouchette et al., 2014):   

 
 

0 .
th

K
k

D c c



  (18) 

Since the steady state can be easily achieved in our PFM of the dislocation climb, we 



 

 

may calculate the sink strengths of the GBs with different tilt angles. In this part of the 

simulations, the influence of the elastic vacancy-dislocation interaction was neglected 

by setting =0V   for simplicity. The computational cell was 80 4 2b h b    with 

periodic boundary conditions. The cell size along the y axis was chosen as an integral 

multiple of the distance between the neighboring dislocations to ensure the accuracy of 

the calculated sink strength. The cell size along the x axis can be viewed as the grain 

size, which has a significant influence on the sink strength. Here, we fixed it at a 

constant value, and the detailed studies of the grain size effects (Gu et al., 2017; Jiang 

et al., 2014) have suggested that the GB’s sink strength decreases with an increase in 

the grain size. 

   In the ideal sink model, compared to long-range vacancy diffusion, the short-range 

reactions between vacancies and dislocations are assumed to be very fast, such that the 

sink behavior is only controlled by the bulk diffusion of vacancies. However, the short-

range reaction is related to the mechanism of vacancy absorption at dislocation jogs 

(Geslin et al., 2014). The vacancy-dislocation reaction rate should be limited if the jog 

formation energy is high; thus, the vacancy absorption process may be controlled by 

the short-range reaction rather than the bulk diffusion. The parameter of dislocation 

climbing mobility *L  represents the exchange rate of vacancy from the bulk to the 

dislocation core, i.e., the short-range reaction rate. Following the previous studies 

(Geslin et al., 2014; Ke et al., 2014), a dimensionless parameter *L   is defined as 

* 2

0/L Lb M  to reflect the relative rate of the short-range reaction compared to the 

long-range vacancy bulk diffusion, where      0 1 /th th th

m BM M c V Dc c k T     is 

the mobility coefficient of the vacancy in the bulk. Thus, different values of *L  were 

applied to investigate the controlling mechanism of the vacancy absorption process.  

The value of L  can be obtained from atomistic simulations in principle and has 

been estimated by an asymptotic analysis of the vacancy diffusion profile at the level 

of dislocation jogs (Geslin et al., 2015): 
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where eff

cr  is the radius of the inner region of 
thc c , cr  is the dislocation core 

radius, while cl  and vl  are the typical diffusion lengths of a vacancy in the 

dislocation core and from the bulk to the dislocation core, respectively.   is a 

coefficient, and 
jd  is the separating distance between the regularly distributed 

dislocation jogs. With the assumption of high jog density, 
jd  is therefore small 

enough such that  / 2 1j cd l  and    / 2 coth / 2 1j c j cd l d l     . Substituting 

eff

c cr r w   and  0 /th

m BM V Dc k T  into equation (19) gives: 
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The characteristic length scale vl  is defined by    2 / exp /v c

v c Bl Dr a E k T  , where 

a  is the lattice parameter,   is the Debye frequency, and v cE   is the vacancy 

exchange energy barrier from the bulk to the dislocation core. Thus, *L  can be written 

as: 

  *

0

2
exp /

3

m v c

B

da
L E E k T

D

    
 

  (21) 

With a d  and 
139.3 10  /s    (Geslin et al., 2015), *L  is estimated by: 

  * exp /m v c

BL E E k T  
 

  (22) 

This clearly shows that *L  is associated with the difference between the energy 

barriers for the vacancy bulk diffusion mE  and the “short-range reaction” v cE  . From 

the atomistic calculations in Kabir et al. (2010) and the related discussions in Niu et al. 



 

 

(2017), the values are 0.35 eVm v cE E    and 0.04 eV  along two typical vacancy 

migration paths for the 〈111〉 (110) 71° edge-type dislocations in bcc iron, resulting in 

* 148.4L   and 0.56 at 812 KT   for the two corresponding cases, respectively. 

Although such results are obtained for metal iron, it is believed that these atomistic 

results also indicate a similar wide range of possible values of *L  for other materials. 

Because of the wide range of *L , Ke et al. (2014) chose * 1, 2, 4, 10L   and 

100 to study the climb velocity of a single edge dislocation. We also adopted the same 

values of *L  and applied them to the coupled reaction-diffusion dislocation climb 

model to investigate the sink strengths of GBs with tilt angles less than 10  , and the 

results are compared to that of the ideal sink model. The calculated sink strengths with 

respect to the tilt angles by the two models are shown in Fig. 7. The sink strength of a 

perfect planar sink is also presented in this figure, and its analytical solution is given 

by  
2perfect

012 / 2k R r   in the literature (Jiang et al., 2014), where R  is the grain 

size and 
0r  is the width of the sink. In this study, 80R b  and 

0 0r   (the perfect 

planar sink is strictly confined within the GB with zero thickness); thus, 

perfect -20.0231nmk  .  

 



 

 

Fig. 7 Plots of the calculated sink strengths with respect to the tilt angles by the dislocation climb 

model and the ideal sink model. The dashed line represents the sink strength of the perfect planar 

sink. 

All of the curves obtained by the two models demonstrate that sink strength 

increases with the increase in the tilt angle, as shown in Fig. 7, agreeing with the 

previous studies (Jiang et al., 2014). As observed in the results calculated by the 

dislocation climb model, it is easy to find that sink strength decreases with the decrease 

in *L  for an arbitrary angle. For the cases with small *L , the short-range vacancy-

dislocation reaction rate is limited, and the sink behavior is reaction-controlled, which 

results in lower sink strengths. As the values of *L   increase, the sink strengths 

calculated by the dislocation climb model increase and gradually converge, indicating 

that the influences of *L   on the sink processes are weakened. Larger *L   values 

reflect faster short-range reactions, and the sink strength is mainly determined by the 

long-range vacancy diffusion. By using the different kinetic coefficients to represent 

the mean absorbing rate of the dislocations to vacancies, the transformation from 

reaction-controlled to the diffusion-controlled sink behaviors is accessible. 

In Fig. 7, the results of the dislocation climb model with *=100L  show a good 

agreement with that of the ideal sink model at relatively high tilt angles because both 

cases are controlled by vacancy diffusion. The numerically calculated sink strengths of 

these GBs are consistent with the analytical solution of the perfect planar sink, 

indicating the validation of the two models at high tilt angles employed in this study. 

However, for relatively low tilt angles, significant differences exist between the two 

models even when diffusion control is the dominant mechanism. To better understand 

the reasons, detailed vacancy concentration fields at the steady states calculated by the 

two models for =2.86  and 7.16  are displayed in Fig. 8. For the case of =2.86 , 

the dynamic motion of the dislocation sinks in the dislocation climb model results in 

continuous regions of low vacancy concentration along the GB, while areas of low 

concentration in the ideal sink model are located at isolated dislocation cores. Thus, the 



 

 

average vacancy concentration in GB in the dislocation climb model is lower, and the 

calculated sink strength is higher. When the tilt angle is 7.16 , the dislocation density 

is high in the GB and the effect of dynamic motion of dislocations is not significant. 

Thus, sink strengths calculated by the two models are similar when diffusion control is 

dominant. This result reveals that the dynamic motion of dislocations is an important 

factor that influences the sink strength of GBs, especially for the ones with low 

misorientation angles and high PD absorption rates.  

This clearly shows that the calculated sink strength changes by approximately a 

factor of 2 for all the considered cases from Fig. 7. The effect of such a change on the 

widely used rate theory models will be evaluated in the following. The time-

dependent ‘‘mean field’’ rate-theory equation for the evolution of the average 

vacancy concentration is: 

  0 .thdc
K kD c c

dt
     (23) 

Since 
thc c  at 0t  , the solution to this equation is: 

  0 1 exp thK
c kDt c

kD
        (24) 

According to equation (24), Fig. 9 plots the average vacancy concentration as a function 

of time at 
20.01 nmk    and 

20.02 nm
 with 7

0 10  /sK    (high dose irradiation 

environments). The large difference between the two curves in Fig. 9 shows that the 

rate theory models are very sensitive to the change in sink strength in Fig. 7. Void 

nucleation is allowed when the vacancy concentration equals a critical value 
crc ，and 

Millett et al. (2009) have estimated the critical value to be within 0.3 0.35crc  . If 

0.3crc   is chosen here, as shown in Fig. 9, the phenomenon of void nucleation can 

happen at 0.056 μst   for 
20.01 nmk   but will never emerge for 

20.02 nmk  . 

These results indicate that it is necessary to consider the dislocation climb process for 



 

 

evaluating the radiation-resistant ability of a GB. 

 

Fig. 8 Detailed vacancy concentration fields at the steady states calculated by the two models for 

2.86    and 7.16   . The results of the dislocation climb model are obtained with 

100L  . 

  

 

Fig. 9 Plots the average vacancy concentration c   as a function of time at 

20.01 nmk   and 
20.02 nm
 with 7

0 10  /sK  . 



 

 

 

4. Summary 

The PFM of the dislocation climb for describing the structures of low-angle 

symmetrical tilt GBs was developed in this work and then applied to evaluate GB sink 

behaviors for PDs. A steady state was achieved so that the vacancy generation due to 

the irradiation can be balanced by vacancy absorption via the dynamic motion of the 

climbing GB dislocations. The average vacancy concentration at the steady state was 

used to calculate the sink strength corresponding to the rate theory. The ideal sink model 

that assumes a fixed vacancy concentration within the immobile dislocation cores is 

also presented here for comparison. The results simulated by the dislocation climb 

model show that the GB sink strengths are not only determined by the long-range 

vacancy diffusions but also the short-range reactions between vacancies and 

dislocations. A transition from reaction-controlled to diffusion-controlled sink 

behaviors is accessible in the dislocation climb model, in contrast to the merely 

diffusion-controlled sink processes in the ideal sink model. In addition, dynamic motion 

of the GB dislocations in the dislocation climb model exhibits significant effects on the 

GB sink strength, indicating that the creep deformation of the GB’s microstructure must 

be considered to predict the ability of GBs to absorb radiation defects.  
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