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Abstract 11 

This study addresses the location problem of electric vehicle charging stations considering 12 

drivers’ range anxiety and path deviation. The problem is to determine the optimal locations of 13 

EV charging stations in a network under a limited budget that minimize the accumulated range 14 

anxiety of concerned travelers over the entire trips. A compact mixed-integer nonlinear 15 

programming model is first developed for the problem without resorting to the path and 16 

detailed charging pattern pre-generation. After examining the convexity of the model, we 17 

propose an efficient outer-approximation method to obtain the -optimal solution to the model. 18 

The model is then extended to incorporate the charging impedance, e.g., the charging time and 19 

cost. Numerical experiments in a 25-node benchmark network and a real-life Texas highway 20 

network demonstrate the efficacy of the proposed models and solution method and analyze the 21 

impact of the battery capacity, path deviation tolerance, budget and the subset of OD pairs on 22 

the optimal solution and the performance of the system. 23 
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1. Introduction 28 

Electric vehicles (EVs) are believed to be one of the most promising ways to reduce fossil-29 

fuel dependency and greenhouse gas emissions. The social and environmental benefits, 30 

together with the high energy-efficiency against its gasoline counterpart attribute to the 31 

increasing popularity of EV among travelers (Bunsen et al., 2018). Despite the sizable merits, 32 

the high upfront purchase price, limited driving range as well as the long charging time hinder 33 

the adoption of EVs on a large scale (Egbue and Long, 2012; Sierzchula et al., 2014; Xu et al., 34 

2017c). The fear of running out of electricity before reaching the destinations or EV charging 35 

stations, referred to as “range anxiety” in the literature, was found to be a major obstacle to 36 

customers’ purchasing intentions (Egbue and Long, 2012; Franke et al., 2012). A EV charging 37 

station network with sufficient coverage should be developed to alleviate the range anxiety of 38 

EV users, especially for long-distance trips, e.g., inter-city trips, and in turn, promote the 39 

adoption of EVs.  40 

The current EV charging technologies can be broadly classified into three modes based on 41 

their power levels: AC Level 1 with maximum power 1.92 kW, AC Level 2 with maximum 42 

power 19.2 kW, and DC Level 3 with minimum power larger than 19.2 kW (CCR, 2014; 43 

Morrow et al., 2008). Level 1 and 2 EV charging stations are known as normal/slow charging 44 

facilities due to the low charging powers delivered by them. Since an EV generally requires 45 

multiple hours to get replenished by a normal EV charging station, these stations are 46 

recommended for home and workplace charging activities. On the contrary, Level 3 charging 47 

facilities, known as DC fast EV charging stations, can deliver a high charging power, and thus 48 

are very suitable for the public usage along highways in the metro or inter-metro area (Smith 49 

and Castellano, 2015). Although it offers a high charging efficiency, a fast EV charging station 50 

generally incurs substantial cost associated with the procurement, installation, operation, and 51 

maintenance of the station. For example, the procurement and installation costs of a DC fast 52 

EV charging station are estimated to $10,000-$40,000 and $4,000-$51,000, respectively (CCR, 53 

2014; Smith and Castellano, 2015). The huge investment for charging infrastructure 54 

deployment, especially the fast EV charging stations along highway for inter-city trips, 55 

necessitates careful planning in an intelligent and optimized manner. 56 

1.1 Literature review 57 

Motivated by the above facts, many studies have been conducted for the optimal 58 

deployment of fast EV charging stations or refuelling infrastructures for EVs or other 59 
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alternative-fuel vehicles (Arslan and Karaşan, 2016; Chen et al., 2016; Ghamami et al., 2016; 60 

He et al., 2013; He et al., 2015; He et at., 2018; 2020; Kim and Kuby, 2012; Kuby and Lim, 61 

2005; Lee and Han, 2017; Li et al., 2016; Liu and Wang, 2017; Mak et al., 2013; Nie and 62 

Ghamami, 2013; Sathaye and Kelley, 2013; Wang et al., 2019; Wang and Wang, 2010; Yıldız 63 

et al., 2016; Yıldız et al., 2019; Zhang et al., 2020). Since EV charging stations are often visited 64 

en route, the charging demand should be modeled as path flows between origin-destination 65 

(OD) pairs on a network. For example, Hodgson (1990) proposed a flow-capturing location 66 

model (FCLM) to optimize the facility locations by capturing the traffic flows as much as 67 

possible. The FCLM was later extended by Kuby and Lim (2005) by considering multiple 68 

charging activities en route during a single trip in a flow refueling location model (FRLM). For 69 

the sake of model building, the concept of a feasible combination of refueling stations (also 70 

referred to as a charging pattern) that enables a successful journey was introduced. Kim and 71 

Kuby (2012) further extended the FRLM and developed a deviation-flow refueling location 72 

model (DFRLM) to take into account the travelers’ deviation behavior from their intended 73 

shortest paths for charging. Both an illustrative example and the numerical experiments have 74 

demonstrated the necessity of allowing deviations in modeling flow refueling. The competency 75 

to incorporate multiple charging activities during a trip attracted many follow-up studies based 76 

on FRLM and RFRLM (Capar et al., 2013; Chung and Kwon, 2015; Huang et al., 2015; Kuby 77 

and Lim, 2007). The cumbersome pre-generation of feasible combinations of EV charging 78 

stations and deviation paths between OD pairs, however, limits the application of FRLM and 79 

RFRLM in large-scale networks (MirHassani and Ebrazi, 2012; Yıldız et al., 2016). A compact 80 

optimization model without the pre-generation of charging combinations and deviation paths 81 

is therefore highly anticipated. 82 

In light of the frequent discussions of this psychological phenomenon, many studies sought 83 

an empirically based understanding of the range anxiety of EV drivers (Rauh et al., 2015). For 84 

example, Valentine-Urbschat and Bernhart (2009) found that range anxiety would negatively 85 

affect the drivers as soon as the battery charge falls below 50% of its capacity. Xu et al. (2017b) 86 

identified from probe EV data that the state of charge (SOC) of the battery affects the range 87 

anxiety in a nonlinear way. Graham-Rowe et al. (2012) found from a survey that the range 88 

anxiety of EV users was amplified when they observed the decreasing of battery charge while 89 

driving. Yang et al. (2016) and Xu et al. (2017a; 2017b) examined the effects of range anxiety 90 

on the charging and route choice behavior of EV users. Neubauer and Wood (2014) found that 91 

the effects of range anxiety on EVs’ utility can be significant, but can be reduced by charging 92 
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infrastructure. They employed the minimum range margin, also termed as the comfortable 93 

range threshold by Franke et al. (2012), as a proxy for range anxiety. Similarly, Yuan et al. 94 

(2018) found from a survey that recharge accessibility is a significant contributing factor for 95 

the range anxiety of EV drivers. Nilsson (2011) identified several approaches to mitigate range 96 

anxiety including an extensive deployment of fast EV charging stations that minimizes the 97 

occurrence of SOC falling below the comfortable range threshold of EV users. Dong et al. 98 

(2014) emphasized the significance of relieving travelers’ range anxiety by optimizing the EV 99 

charging station deployment.  100 

Though commonly acknowledged as a major obstacle for EV adoption, range anxiety was 101 

not adequately addressed in the context of EV charging station deployment (Guo et al., 2018; 102 

Yang et al., 2017). Most of the previous studies for station location problem, e.g., RFLM and 103 

DRFLM, merely maximized the covered or refueled flow demand without considering the 104 

experienced range anxiety of the travelers. The example of a simple path in Figure 1 intuitively 105 

illustrates the difference between the optimal EV charging station deployment suggested by 106 

the conventional FRLM or RFRLM and a model that minimizes the experienced range anxiety 107 

of the EV drivers. The value beside each link represents its electricity consumption expressed 108 

in percentage of battery capacity. We assume that the EV departs from the origin with a fully 109 

charged battery, and at most one station can be built due to a limited budget. The comfortable 110 

range threshold is 30%. It can be seen that either node B or node C will be selected by RFLM 111 

or DRFLM as the optimal EV charging station location, while only node C is deemed as an 112 

optimal location because by charging the EV at location C, the SOC of the EV during the entire 113 

trip will remain no less than 30%, and thus travelers are free from range anxiety. Since both 114 

location B and C can ensure a successful journey, the RFLM or DRFLM that merely maximizes 115 

the refueled flow cannot capture the differences between the two candidate locations. This 116 

example motivates us to pay special attention to the range anxiety of travelers when 117 

determining the deployment of EV charging stations.  118 

 119 

Figure 1. An illustrative example 120 

Among the most related studies, Yang et al. (2017) characterized the effect of range 121 

anxiety and loss anxiety, i.e., the willingness to not swap or charge a battery because the 122 

remaining energy is still fairly high, on the customers’ satisfaction in an EV service 123 
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infrastructure network design problem under deterministic and fuzzy scenarios. They 124 

maximized the total profit by covering the satisfaction-constrained path flow volume. A hybrid 125 

algorithm combining the tabu search and the greedy randomized adaptive search procedure 126 

was developed to solve the problem. Guo et al. (2018) incorporated a flow decaying function 127 

with respect to range anxiety into the DRFLM. They developed a hybrid heuristic combining 128 

a modified k-shortest path algorithm, an iterative greedy heuristic, and an adaptive large-129 

neighborhood search for the considered problem. Note that the above two studies interpreted 130 

the range anxiety as the maximal impendence incurred only at the point of charging, which 131 

actually corresponds to the worst-case scenario; whereas in reality, drivers will feel 132 

uncomfortable once the remaining electricity of their EVs falls below the comfortable range 133 

threshold. A station location model considering the entire profile of range anxiety experienced 134 

by EV drivers during the trip is expected. 135 

1.2 Objective and contributions 136 

To bridge the aforementioned gaps, this study investigates the deployment of fast EV 137 

charging stations problem to support inter-city travel considering drivers’ range anxiety and 138 

path deviation, referred to as DCSP thereafter. We assume that the EVs have a limited driving 139 

range, and drivers are associated with a nonlinear range anxiety profile determined by the 140 

remaining electricity of their EVs, and they may take a deviation path other than the shortest 141 

path between an origin-destination (OD) pair for refueling. Since we consider inter-city 142 

highway travel, there could be multiple charging activities en route during a single trip. The 143 

objective of this study is to determine the optimal locations of EV charging stations that 144 

minimize the accumulated range anxiety of concerned travelers over the entire trips under a 145 

limit budget. To achieve this objective, we will first formulate a compact mixed-integer 146 

programming model by explicitly describing the charging logic and detour behavior, which 147 

favorably circumvents the computationally extensive path and combination pre-generation 148 

suffered by traditional FRLM/DFRLM. Due to the nonlinearity of range anxiety profile, the 149 

resultant nonlinear model was not readily solvable by state-of-art solvers. We thus propose an 150 

efficient outer-approximation method to obtain the -optimal solution to the problem. Here 151 

the -optimal solution refers to the solution that the error of its objective function value to the 152 

optimal objective function value is within an exogenously pre-specified maximum 153 

tolerance . To the best of our knowledge, so far no studies have ever developed a compact 154 

model in consideration of path deviation, and more importantly, incorporated the profile of 155 
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range anxiety of EV drivers in the decision-making of EV charging station location. The 156 

aforementioned literature review validates the novelty of this study. 157 

The remainder of this study is organized as follows. Assumptions, notations and problem 158 

statement are elaborated in Section 2. A compact mixed-integer nonlinear programming model 159 

for DCSP is formulated in Section 3. Section 4 linearizes the range anxiety profile by means 160 

of outer-approximation method, and the resultant mixed-integer linear programming (MILP) 161 

model can be readily solved by available solvers to obtain the -optimal solution. The extended 162 

model that incorporates the charging impedance is presented in Section 5. The efficiency of 163 

the proposed model and algorithm is demonstrated by the numerical experiments in a 25-node 164 

network and the real-world Texas highway network in Section 6. Section 7 presents 165 

conclusions and future research. 166 

2. Assumptions, Notations and Problem Statement 167 

We define the DCSP over a high-way network ( , )G N A  where N  is the node set 168 

and A is the link set. Each link ( , )i j A , ,i jN  is associated with length 
ijl  and 169 

electricity consumption 
ijd . All OD pairs are grouped into a set denoted by W . The origin and 170 

destination node of a particular OD pair wW  is represented by ( )r w  and ( )s w , 171 

respectively. Let wf  denote the flow volume of an OD pair wW , which is assumed to be 172 

known a priori. Without loss of generality, we assume that EV charging stations have to be 173 

located in nodes of a transportation network among candidate locations in a set denoted by 174 

I N .  The construction of an EV charging station at location iI  will incur a cost 175 

denoted by ic . The total budget for EV charging station construction is represented by B . The 176 

battery capacity of EV measured by kWh is defined as the maximum electricity in battery per 177 

a full battery charge is denoted by E . The EVs are assumed to depart/arrive with 178 

initial/remaining electricity no larger/smaller than a known pre-specified threshold denoted by 179 

OE / DE . For simplicity, we assume that EVs can be fully replenished per charge at an EV 180 

charging station, and the EV charging stations to be established are uncapacitated. 181 

Regarding travelers’ route choice behavior, we assume that drivers would like to take a 182 

deviation path other than the shortest path for refueling, as long as the detour distance is within 183 

a pre-specified tolerance. Note that the value of deviation tolerance can be obtained by stated-184 

preference-survey. Given the layout of EV charging stations, drivers are free to travel on any 185 
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path (e.g., the path with the minimal detour distance) as long as the detour distance is within 186 

their tolerance. Let  wL  be the length of the shortest path for an OD pair w  , and 
w  is a pre-187 

specified tolerance for detour distance. The assumption means that the length of a feasible path 188 

for travelers of OD pair w  should not exceed 
w wL   . Note that depending on the travel 189 

distance of an OD pair, an EV may require multiple charges along a trip to ensure smooth 190 

traveling as assumed in the conventional FRLM and DFRLM. Drivers may experience range 191 

anxiety during the trips depending on the real-time SOC of their EVs. All the notations used 192 

throughout this study are provided in Appendix for readability. The objective of DCSP in this 193 

study is to deploy EV charging stations in the network so that (i) the traffic flow between each 194 

OD pair travels on a range-feasible path no longer than 
w wL    if any; (ii) the total 195 

construction cost is within the budget B ; and (iii) the experienced accumulated range anxiety 196 

of the drivers during the entire trips is minimized.  197 

2.1 Charging logic 198 

The key to compact model building without resorting to path and charging combination 199 

generation is to formulate the charging logic directly in the model. Wang and Lin (2009) have 200 

illustrated and formally established the charging logic along a single path in their formulation. 201 

We extended their study by formulating the charging logic in a general network. To this end, 202 

we define two kinds of binary decision variables: a location variable iy , i I denoting 203 

whether a station will be built at location i , and a link variable w

ijx , ( , )i j A , wW  204 

denoting whether the flow of OD pair w  will traverse link ( , )i j ; as well as an auxiliary 205 

continuous variable w

ie , i N , wW   denoting the remaining electricity in battery 206 

rightly after traversing node i  . The value of w

ie  for the traversed nodes along a path will follow 207 

a diminishing trend, indicating that the SOC of battery keeps decreasing along the trip. If, 208 

however, an EV charging station has been built in node i , the battery can be fully replenished 209 

at the EV charging station located in node , and w

ie  will accordingly be reset to E . 210 

 211 

Figure 2. An illustrative sub-network consisting of two links 212 

i
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 To illustrate the formulation of charging logic in a general network, we use a typical part 213 

of a network consisting of two links ( , )i j  and ( , )i k  that share the same head node i   as shown 214 

in Figure 2. It is straightforward that we shall have the following constraint to ensure the 215 

feasibility of a link, e.g., link : 216 

 w w

i ij ije d x   (1) 217 

For the EVs between OD pair w , given the value of [0, ]w

ie E  at node i , our next purpose is 218 

to express w

je  at its adjacent node j  such that ( , )i j A . Therefore we need to consider the 219 

following cases: 220 

If node j  is chosen as an EV charging station location and the flow traverses link ( , )i j , 221 

i.e., 1jy   and 1w

ijx  , we have 222 

 w

je E   (2)1 223 

If node j  is chosen as an EV charging station location and the flow does not traverse link ( , )i j , 224 

i.e., 1jy   and 0w

ijx   (e.g., the flow may traverse another link ( , )i k  originating from node 225 

i ), we have a null constraint: 226 

 0 w

je E    (3) 227 

If node j  is not chosen as an EV charging station location but the flow traverses link ( , )i j , 228 

i.e., 0jy   and 1w

ijx  , we have 229 

 w w

j i ije e d    (4) 230 

If node j  is not chosen as an EV charging station location and the flow does not traverse link 231 

( , )i j , i.e., 0jy   and 0w

ijx  , again we have a null constraint: 232 

 0 w

je E    (5) 233 

We proceed to consolidate the above constraints by linking the decision variables with Eqs. 234 

(2)-(5). Since Eqs. (3) and (5) are null constraints, our main objective is to express Eqs. (2) and 235 

                                                           
1 The implicit assumption herein is that the EV will always charge at traversed stations. This assumption is not 

restrictive because our objective is to minimize the accumulated range anxiety of the drivers during the entire trips 

and thus the optimality of a solution will by nature assure that 
w

je E  if 1jy   and 1w

ijx  . 

( , )i j
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(4). Specifically, to express Eq. (2) without violating Eqs. (3)-(5) by linking the location 236 

variable 
jy  with w

je , we have 237 

 w

j jEy e E    (6) 238 

We continue to express Eq. (4) without violating Eqs. (2), (3) and (5). To protect Eq. (2), a 239 

component 
jEy should be used to lift the bound on the right-hand side of Eq. (4), i.e., 240 

 w w

j i ij je e d Ey     (7) 241 

As for Eqs. (3) and (5), since under both cases it holds that 0w

ijx  , we cannot guarantee 242 

w

i ije d  from Constraint (1). Hence we need another component (1 )w

ij ijd x  to ensure the 243 

positiveness of 
w

i ije d  in the original Eq. (4). Besides, Eq. (5) entails an additional component 244 

(1 )w

ijE x . In summary, we have 245 

 (1 ) (1 )w w w w

j i ij j ij ij ije e d Ey d x E x         (8) 246 

which is consolidated to be 247 

 (1 )w w w w

j i ij ij ij je e d x E x y       (9) 248 

The above procedure has consolidated the original Eqs. (2)-(5) and the correspondent 249 

conditions into Constraints (6) and (9). 250 

2.2 Driving range anxiety 251 

Although it is widely acknowledged that the deployment of EV charging stations affects 252 

drivers’ range anxiety, no studies were dedicated to the analytical relationship specification or 253 

calibration between the EV charging station deployment and EV drivers’ range anxiety. 254 

Fortunately, the limited studies for range anxiety reviewed in Subsection 1.1 gave us the 255 

following insights: 256 

1. Range anxiety is largely affected by the remaining electricity of battery (Xu et al., 257 

2017b; Yang et al., 2016); 258 

2. There has been a comfortable range threshold that frees EV drivers from range anxiety 259 

(Franke et al., 2012; Guo et al., 2018; Yuan et al., 2018); 260 

3. Range anxiety would increase as the SOC approaches zero, and the rate of variation 261 

also increases with the decrease of SOC (Xu et al., 2017b). 262 
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Based on the above findings, we assume that the range anxiety of an EV driver will 263 

convexly decrease from a maximal value maxR  with the increase of remaining electricity in the 264 

battery until the amount of remaining electricity reaches a comfortable range threshold denoted 265 

by 
comfE , and after that the range anxiety will remain at 0 before the SOC achieves its maximal 266 

value E . This assumption is also consistent with the concave shape of customers’ satisfaction 267 

function (e.g., inverse range anxiety) against service quality (e.g., SOC) in the field of 268 

management and marketing (Anderson and Sullivan, 1993; Chen and Chen, 2014; Grigoroudis 269 

and Siskos, 2009). For ease of presentation, SOC in this study represents the absolute level of 270 

charge of an electric battery unless stated otherwise. Figure 3 illustrates the variation of drivers’ 271 

range anxiety against the SOC (i.e., the remaining electricity in the battery).  272 

 273 

Figure 3. The variation of drivers’ range anxiety against the SOC 274 

According to the studies for battery discharging behavior of EVs, the SOC of a battery will 275 

decrease almost linearly with the travel time under a constant driving speed (Pelletier et al., 276 

2017; Xu and Meng, 2019). After the SOC falls below 
comfE , e.g., at time t  , the range anxiety, 277 

accordingly, will start increasing convexly along the trip until the EV is fully replenished at an 278 

EV charging station and the range anxiety returns to 0. We assume for simplicity that the profile 279 

of SOC and the range anxiety of drivers follow a linear and a convex function denoted by ( )S t  280 

and ( )R t  respectively under a constant traveling speed. Figure 4 shows the profile of the 281 

remaining electricity and range anxiety over one cycle, whereas the iterative procedure over an 282 

entire trip is illustrated in Figure 5.  283 

For the sake of model building, we define the sub-path from the origin to the first charging 284 

station, the sub-paths between two adjacent EV charging stations, and the sub-path from the 285 

last EV charging station to the destination as path segments. Let r  denote the final SOC at the 286 

https://en.wikipedia.org/wiki/Electric_battery
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end node of a path segment. The accumulated range anxiety along a path segment, i.e., the 287 

shaded area in Figure 5, can thus be calculated by 288 

 
1 ( )

0
( ) ( )

S r

R r R t dt


    (10) 289 

where 
1( )S 

 is the inverse function of ( )S . Exactly speaking, the accumulated range anxiety 290 

of the first path segment is also dependent on the SOC at departure, and should be calculated 291 

by 
1

1

( )

( )
( )

o

S r

S E
R t dt



 . However, according to the range anxiety profile in Figure 4, the accumulated 292 

range anxiety expressed by 
1

1

( )

( )
( )

o

S r

S E
R t dt



  will reduce to 
1 ( )

0
( )

S r

R t dt


  if the initial SOC is no 293 

smaller than the comfortable range threshold, i.e.,
O comfE E . 294 

 295 

Figure 4. The profile of SOC and drivers’ range anxiety over one cycle 296 
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 297 

Figure 5. The profile of SOC and drivers’ range anxiety over a trip 298 

Since each path segment is uniquely characterized by its end node, which is either a 299 

traversed EV charging station or the destination, we can express the accumulated range anxiety 300 

over an entire trip as the sum of accumulated range anxiety function of each path segments 301 

with respect to the SOC upon arriving an EV charging station or a destination. Specifically, let 302 

w

jr , { ( )}j s w I  denote the SOC upon the EVs of OD pair w  arriving an EV charging 303 

station jI  or the destination ( )s w ; it follows that 304 

 (1 ), ( , ) , { ( )},w w w w

j i ij ij ijr e d x E x j wi j ws      A I W   (11) 305 

The total accumulated range anxiety of the EV drivers between all OD pairs can thus be 306 

calculated by 307 

 ( )( ) ( )w w

j j s w

w j

wTARA R r y R rf


 
  

 
 
W I

  (12) 308 

3. Optimization Model Building 309 

3.1 Model formulation 310 

To accommodate the case that the flows of an OD pair cannot be refueled due to the limited 311 

driving range or budget, we create a zero-distanced auxiliary link connecting the origin and 312 

destination of an OD pair w , i.e., link ( ( )r w , ( )s w ), upon the original network. To ensure range 313 
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feasibility of this auxiliary link, the electricity consumption 
( ) ( )r w s wd  is set to be zero if 314 

O DE E , and  ( )O DE E  otherwise. With above the notations, the DCSP can be formulated 315 

upon the network with an updated link set ( ), ({( ))}
w

w sr w


 WA A  by the following 316 

model: 317 

[DCSP] 318 

 
( ) ( )

, , ,
min ( , , , ) w w

r w s

w

wTARAObj M f x


  
x y e r

x y e r
W

  (13) 319 

subject to 320 

 
{ |( , ) { |( ,} })

1, ( )

1, ( )

0,

w w

ij ji

j i j j j i

i r w

x x i s w w

i
 




     
 

 
A A

W
I

  (14) 321 

 i i

i

c y B



I

  (15) 322 

 , ((1 ) ) ,,,w w w w

j i ij ij ij je e d x j iy wE x j     I A W   (16) 323 

 , ,w

j jE e wy E j    I W   (17) 324 

 , , ,( )w w

ij ij id e i j wx    A W   (18) 325 

 , \ ((1 , ,, ))w w w w

j i ij ij ije e d j iE wx x j      N I A W   (19) 326 

 , ,\0 w

j je E w   N I W   (20) 327 

 (1 ), ( ,,( )}, ){w w w w

j i ij ij ijr e d x E x irj w j w       I A W   (21) 328 

 0 { ( )} ,, ( , ),w

j ir wE w jr j    I A W   (22) 329 

 
( , )

,w

ij ij

i j

w wl x L w


  
A

W   (23) 330 

 ( ) ,w

r w oe E w  W   (24) 331 

 ( ) ,w

s w De E w  W   (25) 332 

 {0,1}, ( , ) ,w

ijx i j w   A W   (26) 333 
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 {0,1},iy i   I   (27) 334 

The objective function shown by Eq. (13) is the sum of the total range anxiety and a big-335 

M component. As our priority in determining the EV charging station deployment is to refuel 336 

as many flows as possible, the uncovered demand is penalized by the big-M component in the 337 

objective function. The value of M  should be sufficiently large in order to avoid the case that 338 

the EVs of an OD pair travel on the auxiliary link (i.e., not covered) at an optimal solution 339 

although they are actually able to be refueled by the constructed stations. A safe value should 340 

thus be no less than the maximal accumulated range anxiety of a trip, i.e.,  341 

max / min{ }i
i

M R B c


  
 I

 , where 
maxR  represents the maximal accumulated range anxiety 342 

experienced by an EV driver over a path segment with the final SOC being 0, and 343 

/ min{ }i
i

B c


 
 I

 is the upper bound of the station number. Constraint (14) is the flow 344 

conservation equation for each OD pair. Constraint (15) restricts the total budget for the EV 345 

charging station deployment. Eqs. (16)-(18) are the constraints for the feasible charging logic 346 

and have been justified in Subsection 2.1. Specifically, Constraints (16)-(17) update the SOC 347 

at the traversed nodes along a trip. If 1w

ijx  , Constraint (16) reduces to 
w w

j i ij je e d Ey   , 348 

which will become binding at an optimal solution when 0jy  , and redundant when 1jy  . 349 

If, on the contrary, 0w

ijx  , Constraint (16) will reduce to a redundant constraint 350 

(1 )w w

j i je e E y    whatever the value of 
jy  is. Constraint (17) requires that the SOC is reset 351 

to E  after traversing a built EV charging station. Constraint (18) ensures the range feasibility 352 

of traversed link along a trip. For a link terminating at an ordinary node of the network, i.e., 353 

\jN I , Constraints (16) and (17) reduce to Constraints (19) and (20). Constraints (21) 354 

and (22) jointly set the upper bound of the final SOC at the end node of each path segment over 355 

a trip, i.e., the SOC upon arriving an EV charging station or a destination, and will be binding 356 

at an optimal solution with 
w w

j i ijr e d   when 1w

ijx  , and 
w

j comfr E  otherwise. Eq. (23) 357 

imposes the distance constraint for a deviation path. Constraints (24) and (25) are the SOC 358 

requirements for the EVs before departure and after arrival, respectively. They are valid if the 359 

origins of the OD pairs are not candidate locations, i.e., { ( )}
w

r w


WI ; otherwise, an 360 

auxiliary copy of the underlying origin node connected to the correspondent original origin 361 

node by a link with zero length and electricity consumption should be added to the network. 362 

Constraints (26) and (27) define the decision variables as binary variables. 363 
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3.2 Model properties 364 

Unlike the existing path or combination based FRLM and RFRLM model, whose size is 365 

largely determined by the detour tolerance and driving range of EV, and can easily become 366 

overwhelming even for a small network, our model is compact in the sense that it has a 367 

polynomial number of constraints, and its size is fixed for a network. Since we have explicitly 368 

modeled the charging logic and range feasibility in the model, path or combination pre-369 

generation is not required for model formulation, and more importantly, when implemented in 370 

the numerical experiments the model is not likely to have the out-of-memory issue confronted 371 

by RFRLM (Kim and Kuby, 2012). Another merit of the proposed model is its flexibility to 372 

encompass special cases and incorporate other aspects such as station capacity and multiple 373 

types of EV drivers with different range anxiety profiles, etc. For example, the model can be 374 

easily modified to be a maximum flow model by replacing the objective function in Eq. (13) 375 

by 
( ) ( )

w w

r w s w

w

f x



W

. A set covering model can also be obtained by revising the objective 376 

function to be  
i i

i

c y



I

 and removing the budget constraint and the auxiliary links in the 377 

network. Moreover, the model can be modified to be a min-max regret model if minimizing 378 

the flow weighted maximal range anxiety of EV drivers (corresponding to the worst-case 379 

scenario) is the major concern of the EV charging station deployment. In this case, the objective 380 

function will become 
, , ,

)min max{ ( }ww

j
w

jf F r


 
  


x y e r

W

 where ( )F  denotes the function of range 381 

anxiety with respect to SOC. 382 

Despite the above merits, the bilinear term ( )w

j jR r y  and the nonlinearity of the integral in 383 

the expression of ( )R r  in Eq. (13), however, make the model not easily solvable by 384 

commercial solvers. Luckily, we find that the bilinear terms can be linearized by replacing each 385 

 in the objective function (13) with a new variable w

jQ  and imposing a new set of 386 

constraints that enforces ( )w w

j j jQ R r y at an optimal solution: 387 

 
max( ) ( 1)w w

j j jQ R r R y     (28) 388 

 0w

jQ    (29) 389 

where 
maxR  is the maximal accumulated range anxiety over a path segment and is bounded by 390 

(0)R . Moreover, the following proposition demonstrates that, after linearization, the resultant 391 

( )w

j jR r y
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model [DCSP] would be a mixed-integer convex programming model such that it can be 392 

approximated by a MILP model using the outer-approximation algorithm detailed in the next 393 

subsection. 394 

Proposition 1. Model [DCSP] is a mixed-integer convex programming model if the range 395 

anxiety profile ( )R t  is differentiable. 396 

Proof. By taking the second derivative of ( )R r , we obtain 397 

 
2

1 1 1 1( ) ( ( )) ( ) ( ( )) ( )R r R S r S r R S r S r         
 

  (30) 398 

Since ( )S  is a linearly decreasing function, its inverse function 
1( )S 

 will also be a linearly 399 

decreasing function. In other words, we have 1 ( ) 0S r    and 1 ( ) 0S r   . In addition, as ( )R  400 

is an increasing and differentiable function, we have ( ) 0R  . Hence it follows from Eq. (30) 401 

that ( ) 0R r  , implying that ( )R r  is a convex function. Because the nonnegative weighted 402 

sum in the objective function of the model [DCSP] is an operation that preserves convexity, 403 

we can conclude that the model [DCSP] is a mixed-integer convex programming model.       404 

4. Outer-approximation Algorithm 405 

The outer-approximation algorithm was initially proposed by Duran and Grossmann (1986) 406 

to obtain an ε-optimal solution to mixed-integer programming models with nonlinear 407 

inequalities such that the difference between the obtained objective function value and the 408 

optimal objective function value is within the exogenously given tolerance 0  . This method 409 

has been extended and applied in many research disciplines such as the chemical engineering 410 

and process design (Grossmann and Kravanja, 1995; Varvarezos et al., 1992), sailing speed 411 

optimization and revenue management in liner shipping studies (Wang and Meng, 2012; Wang 412 

et al., 2015), and a recent service pricing problem in an electric shared mobility system (Xu et 413 

al., 2018). The outer-approximation algorithm can handle general mixed-integer nonlinear 414 

programming problems with convex terms both in the objective function and constraints such 415 

as the model [DCSP]. In particular, the model [DCSP] will be transformed into a MILP model 416 

by approximating the convex terms in both the objective function and constraints with multiple 417 

linear functions. The resultant MILP problem can then be solved readily by state-of-the-art 418 

MILP solvers like CPLEX. 419 
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To apply the outer-approximation algorithm, the model [DCSP] should be first rewritten 420 

as follows by introducing an auxiliary continuous variable 
w

jB , { ( )},r wj w  I W  as a 421 

proxy variable for the nonlinear term ( )w

jR r  in the objective function (13) and Constraint (28):  422 

 
(( ) ) ( )

, , , , ,
min ( , , , , , ) w w wI w

r w

w

j s w

w j

s w

w

f Q M f xBObj
 


 

  
 

  
Q B x y e r

Q B x y e r
W I W

   (31) 423 

subject to Constraints (14)-(27), (29), and  424 

 
max ( 1) ,,j j

ww

jQ R yB j w    I W   (32) 425 

 ,( ) { ( )},w

j

w

jB j wR r s w   I W   (33) 426 

Constraint (33) can thereby be relaxed by replacing the function ( )w

jR r  with many linear 427 

functions being tangent to the convex curve ( )w

jR r  as illustrated in Figure 6. Those linear 428 

functions can be interpreted as the underestimated accumulated range anxiety and are grouped 429 

into a set represented by  1,2,..., 1,K K K . Let 
 w k

ja  and 
 w k

jb  denote the slope and 430 

intercept of the thk  tangent line of the curve ( )w

jR r  at a point  w k

jr , respectively. The original 431 

constraint (33) is relaxed to be 432 

                                  
   

, { ( )}, ,
w k w kw w

j j j jB a r b j ws w k     I W K   (34) 433 

where 
   

( )j

w k k

j

w
R ra   and 

       
( ) ( )

ww k k w

j j j

k kw

jb R r R r r . The resultant MILP model is thus 434 

formulated by 435 

[DCSP -II] 436 

 
, , , , ,
min ( , , , , , )IIObj

Q B x y e r
Q B x y e r    (35) 437 

subject to Eqs. (14)-(27), (29), (32), and (34). 438 
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 439 

Figure 6. Illustration of linear approximation for Constraint (33) 440 

It can be seen that model [DCSP-II] is a relaxation of model [DCSP] because the values 441 

of w

jQ  and 
( )( )w

s wR r  in the objective function are underestimated. Therefore its solution 442 

provides a lower bound for the optimal solution of the model [DCSP] as demonstrated in the 443 

following proposition: 444 

Proposition 2: Let ( , , , , , )     
Q B x y e r  denote an optimal solution to the MILP model [DCSP-445 

II] and Obj  denote the optimal objective value of mixed-integer convex programming model 446 

[DCSP]. Then we have 447 

 ( , , , , , ) ( , , , )IIObj Obj Obj           Q B x y e r x y e r   (36) 448 

Let     mˆ( ) ax
w k w kw

j j j
k

w

j a r bR r


 
K

 denote the piecewise linear approximation 449 

function for ( )w

jR r . The approximation error of the optimal solution can be controlled within 450 

a pre-specified tolerance 0   by properly generating a sufficient number of tangent lines such 451 

that the approximation error for Constraint (33), i.e., ˆ( ) ( )w w

j jR r R r , is no larger than 452 

ˆ
(| | 1) | |


 

 I W
. In other words, if ˆ( ) ( ) ( ) { ( ), ,ˆ }w w w

j j jR r R r R r s wj w      I W , we 453 

have the following inequality: 454 

 ( , , , ) ( , , , , , )IIObj Obj           x y e r Q B x y e r   (37) 455 

Eqs. (36) and (37) jointly imply that the proposed outer-approximation algorithm can obtain 456 

the ε-optimal solution to the model [DCSP], as summarized in the following proposition: 457 

Proposition 3: For any exogenously required tolerance 0  , the outer-approximation 458 

algorithm can obtain the ε-optimal solution to the model [DCSP], i.e., 459 
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 ( , , , ) ( , , , )Obj Obj Obj           x y e r x y e r   (38) 460 

if we choose an error bound ̂  for the tangent line generation such that ˆ
(| | 1) | |


 

 I W
. 461 

Given the tolerance ˆ 0   to approximate the convex function ( )w

jR r  in a domain 462 

( ) ( ),w w L w U

j j jr r r   , the set of tangent points for tangent line generation denoted by 463 

  ,
w k

jr k Ε K  can be obtained by the following pseudo-code: 464 

Pseudo-code 1: Finding the set of break points for tangent line generation. 

1     Initialize 
( ) ( ){ , }w L w U

j jr rΕ ; 

2     Function [Ε ]=FindTangentPoint 
( ) ( )( , , )w L w U

j jr r Ε  

3         1 1[ , ]a b =TangentLine (
( )w L

jr ); 

4         2 2[ , ]a b =TangentLine (
( )w U

jr ); 

5         [
w

jr , ˆ( )]w

jR r =Intersection ( 1 1 2 2, , ,a b a b ); Error= ˆ( ) ( )w w

j jR r R r ;   

6         If Error> ̂ , Then 

7               
w

jrΕ ; 

8               [Ε ]=FindTangentPoint 
( )( , , )w L w

j jr r Ε  

9               [Ε ]=FindTangentPoint 
( )( , , )w w U

j jr r Ε  

10        End if 

11   End function 

Note that FindTangentPoint in the above pseudo-code is the recursive function to find the 465 

set of tangent points of the tangent lines. In each recursion step, it returns the unique tangent 466 

point in the domain ( ) ( ),w L w U

j jr r    with the maximum error for approximating the convex 467 

function ( )w

jR r  using the outer-approximation envelope formulated by the two tangent lines at 468 

the two end points of the interval. Given a specific value of 
w

jr , TangentLine is a sub-function 469 

to return the slope and intercept of the tangent line for the convex curve ( )w

jR r  at a point 470 

 ( ),w w

j jr R r . Intersection is the sub-function that returns the coordinate value of the 471 

intersection of two lines given their slopes and intercepts. Since it holds that ( ) 0w

jR r   for any 472 

,com

w

j fr EE    in this study, we only need to generate the tangent points in the domain473 

0, comf

w

jr E   . 474 

javascript:void(0);
javascript:void(0);
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5. Model Extension 475 

The model presented in Section 3 is a direct extension to RFLM and DRFLM by 476 

incorporating the range anxiety of travellers in the determination of EV charging station 477 

deployment. The additional costs incurred by making a stop and/or waiting for recharge to 478 

complete are not considered. This section presents a more general model on top of model 479 

[DCSP] that incorporates the charging impedance, e.g., the cost and the time required for 480 

charging. As such, in addition to the parameters and variables introduced previously, we define 481 

another binary decision variable for each OD pair, i.e., w

iy , ,i w  I W , denoting whether 482 

the travelers of OD pair w  will charge at the station i . The problem of finding the optimal 483 

deployment of EV charging stations considering the charging impedance, referred to as 484 

DCSPCI, can thus be formulated by replacing 
iy  in Eqs. (13), (16), and (17) with w

iy , 485 

including an additional term representing the total incurred charging impedance along a path 486 

on the left hand of Eq. (23), and imposing a constraint linking w

iy  and iy  . We consider a 487 

general charging impedance consisting of two components that are charging-amount-488 

independent (e.g., the impedance of making a stop) and charging-amount-dependent (e.g., 489 

charging time and cost) respectively. Particularly, the additional term added to Eq. (23) is given 490 

by [ ( ) ]w w w

i i

i

i i iy E r y 


 
I

, where i  denotes the average charging impedance incurred at 491 

station i  that is independent of the charging amount, and i  denotes the charging-amount-492 

dependent impedance incurred at station i  per unit amount of charging. In summary, the 493 

considered problem can be formulated as follows: 494 

[DCSPCI] 495 

 
( ) ( )

,
(

,
)

,
( )min ( , , ( ), )CI w w w

r w

w w w

j j s w w

j

s

w w

ROb r y R Mrj f f x
 

 
  

 
   

x y e r
x y e r

W I W

  (39) 496 

subject to Eqs. (14), (15), (18)-(22), (24)-(27), and 497 

 , () , )(1 , ,w w w w w

j i ij ij ij je e d j ix E jy wx         I A W   (40) 498 

 ,,w w

j jEy e E j w    I W   (41) 499 

 
( , )

[ ( ) ,] ww w w

i i i i i ij ij

i

w

i j

wly E wr x Ly
 

      
I A

W   (42) 500 

 ,w

i iy y i  I   (43) 501 
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 {0,1},w

iy i  I   (44) 502 

It can be seen that the charging-amount-dependent charging impedance in Eq. (42) is a 503 

bilinear term. By a similar method in Section 3.2, we define a new continuous variable w

iP , 504 

,i w  I W  to replace ( )w w

i iE r y  in Eq. (42) and impose a new set of constraints that 505 

enforce ( )w w w

i i iP E r y   at an optimal solution: 506 

 , ,w w

i iP Ey i w   I W   (45) 507 

 , ,w w

i iP r wE i    I W   (46) 508 

 ,,w w w

i i i iP Ey r w    I W   (47) 509 

 ,0 ,w

i i wP    I W   (48) 510 

We can find that the incorporation of charging impedance does not affect the model 511 

property and Proposition 1 is still valid. Therefore, the proposed outer-approximation 512 

algorithm is applicable. The -optimal solution to the model [DCSPCI] can be found by solving 513 

the following MILP model: 514 

[DCSPCI-I] 515 

 
( ) ( )

, , , , , ,
( )min ( , , , , , , )CI I w w w

r w s w

w w

j s w

w j w

QObj f M f xB

  

 
  





  

Q B P x y e r
Q B P x y e r

W I W

  (49) 516 

subject to Eqs. (14), (15), (18)-(22), (24)-(27), (29), (34), (40), (41), (43), (44)-(48), and 517 

 
( , )

,[ ] w

ij ij

i i j

w

i

w ww

i i iy P l x L w
 

      
I A

W   (50) 518 

 
max ( 1), ,w w

j j

w

jQ R yB j w    I W   (51) 519 

6. Numerical Experiments 520 

This section presents the numerical experiments to evaluate the performance of the 521 

proposed model and outer-approximation algorithm. The algorithm is coded in C++ calling 522 

IBM ILOG CPLEX 12.6 on a personal computer with Intel Core i7 3.6 GHz CPU with 16 GB 523 

RAM. Two network topologies, i.e., a benchmark 25-node network and a real-life Texas 524 

highway network, will be used. We will first examine the computational performance of the 525 

proposed models, especially the effect of pre-specified tolerance ̂  on the performance of the 526 

proposed algorithm, in both networks. After that, the benefit of incorporating range anxiety in 527 
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the decision-making for EV charging station deployment will be demonstrated in comparison 528 

with the maximum flow model. We will also compare the solutions of the original model and 529 

the extended model that considers the charging impedance. Finally, sensitivity analysis of 530 

several parameters on the system performance and the impact analysis of considering only a 531 

subset of OD pairs will be conducted to derive practical insights. 532 

6.1 Networks and parameter setting 533 

The first network is a hypothetical network consisting of 25 nodes and 86 links (43 534 

undirected edges) in Figure 7. This network has been used by many scholars in the studies for 535 

refueling station location optimization (Kim and Kuby, 2012; MirHassani and Ebrazi, 2012; 536 

Yıldız et al., 2016). The link length shown beside each edge in Figure 7 is adopted from Kim 537 

and Kuby (2012). The electricity consumption of a link ( , )i j , measured in kWh, is chosen as 538 

a uniformly random integer from the set {3,4,5,...,9}. All nodes will be considered as origins, 539 

destinations, and candidate locations of EV charging stations, leading to a total of 300 OD pairs 540 

and 25 candidate locations, respectively. The traffic flow for each OD pair is estimated by the 541 

gravity model (Hodgson, 1990).  542 

 543 

Figure 7. A hypothetical 25-node network 544 
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The other network is a real-life Texas highway network created by Lee and Han (2017). 545 

As shown in Figure 8, this highway network consists of 124 nodes and 238 edges (476 links), 546 

and has been used for an EV charging station location problem in Lee and Han (2017) under 547 

probabilistic travel range. The link length shown beside each edge in Figure 8 is also adopted 548 

from Lee and Han (2017), with a nominal value of 10 representing 250 km in reality. EVs are 549 

assumed to be the second-generation Nissan Leaf 40 kWh with a range of 243 km (Nissan, 550 

2019). The electricity consumption measured in kWh, is chosen as a uniformly random integer 551 

with a maximum of 5 kWh deviation from the value estimated by the particulars of Nissan Leaf 552 

40 kWh. Considering the 30 largest cities of Texas (see the filled rectangular nodes in Figure 553 

8) as origins or destinations results in a total of 435 OD pairs. All nodes are considered as 554 

candidate EV charging station locations. The traffic flow between each OD pair is again 555 

obtained by the gravity model using the population of a city as weight. 556 

 557 

Figure 8. The Texas highway network (Yıldız et al., 2016) 558 
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For both networks, we assume for simplicity that the construction cost of each station is 1, 559 

i.e., 1,ic i   I . Following the convention in the literature, the initial and final SOC 560 

threshold of the EVs at their origins and destinations are assumed to be half of the 561 

correspondent usable battery capacity, i.e., 
1

2
O DE E E  . Regarding the profile of range 562 

anxiety, let a  denote the unit discharging rate of the battery, and :
comfE E

t
a




  be the critical 563 

time epon that a driver with a fully charged EV starts suffering from range anxiety. We assume 564 

that the range anxiety profile of EV drivers over a single path segment follows a convex piece-565 

wise polynomial function expressed by 566 

 
2max

2

0, 0

( )
( ) , /

( / )

if t t

R t R
t t if t t E a

E a t



 



  


 
   

  (52) 567 

By simple manipulation, we obtain the function of the accumulated range anxiety as follows: 568 

 3max

2

0,

( )
( ) , 0

3

comf

comf comf

comf

if E r E

R r R
E r if r E

aE

 


 
  



  (53) 569 

The maximal accumulated range anxiety achieved at 0r   would be 
max

max
3

comfR E
R

a
 . For 570 

simplicity, the discharging rate of the battery is assumed to be 1, and 
comfE  is assumed to be 571 

half of the usable battery capacity. Unless stated otherwise, maxR  is normalized to be 100% 572 

throughout the numerical experiments. The baseline values of these parameters are presented in 573 

Table 1. 574 

Table 1. Baseline values of parameters used in numerical experiments 575 

6.2 Algorithm performance 576 

To examine the effect of pre-specified tolerance ̂  on the performance of the proposed 577 

outer-approximation algorithm in terms of solution quality and computational efficiency, we 578 

will first solve the DCSP under different values of ̂  in the benchmark 25-node network. Given 579 

a particular ̂ , ten instances with different combinations of parameters regarding the budget, 580 

the battery capacity, and the path deviation tolerance, i.e., {1,2,..., 25}B , {6,7,8,9,10}E , 581 
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and {0,10% ,20% ,30% ,40% }w w w w wL L L L  , will be randomly generated, and the average 582 

results are reported. We also apply the parallel optimization mode of IBM ILOG CPLEX 12.6 583 

to improve computational efficiency. The ratio of elapsed time to CPU time is also reported. 584 

Table 1 shows the results of the outer-approximation algorithm under different values of 585 

̂  ranging from 0.01 to 0.5 in the 25-node network. Overall, it shows that for any scenario, the 586 

proposed method obtains the -optimal solutions within 63 seconds, and the elapsed time 587 

averaged over all scenarios is 35.57 seconds. This outcome reveals the efficiency of the 588 

proposed algorithm and its potential to be implemented in a real-world transportation network. 589 

In addition, the average relative gap is only 0.005, and the value of ˆ 0.01   is sufficient enough 590 

to achieve a near-optimal solution with a relative gap less than 0.001. We further visualize the 591 

variations of the gap and elapsed time with the increase of tolerance ̂  in Figure 9. It shows 592 

that instead of increasing steadily with a growing value of tolerance, the variation of gap 593 

somehow follows a step-wise pattern. For example, the gap has been increased by more than 594 

70 when the value of ̂  increases from 0.01 to 0.03, whereas the increment has dramatically 595 

decreased to be less than 35 when the value of ̂  increases from 0.03 to 0.1. On average the 596 

instances with ˆ 0.5   run the shortest computation time, while those with ˆ 0.01   take the 597 

longest time among all scenarios. The time difference is more than 40 seconds, almost double 598 

the time under ˆ 0.5  . The findings show in general terms that the computational efficiency 599 

of the outer-approximation method is positively and largely affected by the tolerance ̂ . This 600 

is consistent with our expectation that a smaller tolerance ̂  indicates more additional 601 

constraints, i.e., Eq. (34), to be generated, more time to solve the linear programming relaxation 602 

problem, and thereby more time to solve the model [OP-II] by B&B algorithm. The trade-off 603 

between solution quality and computational efficiency should thus be well balanced by fine-604 

toning the value of ̂  in real applications. The time ratio in the last column of Table 1 is 605 

averaged to be 4.49, demonstrating the competence of the parallel optimization in CPLEX to 606 

reduce the computational time of the proposed model. 607 

Table 1. Results of the proposed outer-approximation algorithm in 25-node network under 608 

different tolerance ̂  609 

̂  UB LB Gap 

Relative 

Gap 

=Gap/UB 

Elapsed 

Time (s) 

CPU Time 

(s) 

Time 

Ratio 

0.01 77,408 77,378 30 0.000 62.18 306.97 4.94 

0.03 77,428 77,320 108 0.001 44.27 199.11 4.50 
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0.05 77,442 77,319 123 0.002 44.04 223.50 5.07 

0.07 77,442 77,319 123 0.002 36.87 173.55 4.71 

0.09 77,451 77,315 136 0.002 36.82 171.10 4.65 

0.1 77,446 77,306 140 0.002 31.73 132.59 4.18 

0.2 77,617 77,177 440 0.006 28.19 123.79 4.39 

0.3 77,546 77,052 494 0.006 26.11 107.27 4.11 

0.4 77,726 76,847 878 0.011 23.74 96.72 4.07 

0.5 78,382 76,640 1,742 0.022 21.78 93.29 4.28 

Maximum      --             -- 1,742 0.022 62.18 306.97 5.07 

Average 77,589 77,167 422 0.005 35.57 162.79 4.49 

 610 

Figure 9. Variations of the gap and elapsed time with the increase of tolerance ̂  611 

To further examine its scalability to large networks, we apply the proposed outer-612 

approximation algorithm in the Texas highway network. A total of 30 problem instances are 613 

created by considering 3 levels of path deviation tolerance, i.e., {0,5% ,10% }w wL L , and 10 614 

values of budget, i.e., 5, 10, …, 50. We report in Table 2 the covered flow ratio (CFR) and the 615 

elapsed time for solving each instance. For problem instances that are not solved to optimality 616 

within 3 hours, we will present the absolute optimality gap (GAPabs), i.e., the difference of 617 

incumbent solution and the lower bound obtained within 3 hours. Kindly note that the default 618 

stopping criteria of the algorithm in CPLEX in terms of the absolute optimality gap is 10-6. The 619 

parameter ̂  in the proposed outer-approximation algorithm is set to 0.01. The parallel mode 620 

of CPLEX is turned on to reduce the computation time. 621 
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Table 2 shows that compared with the small network, the runtime of the solution approach 622 

has tremendously increased in a large network, and more than half of the instances cannot be 623 

solved to optimality within 3 hours. Since the model size is determined by the size of the 624 

network and OD pairs, it definitely takes a much longer time to solve the proposed model. In 625 

addition, it is worthwhile to note that although the proposed approach does not require path 626 

generation and the model size has nothing to do with the path deviation tolerance (note that the 627 

value of path deviation tolerance only affects Constraint (23)), the solution time also obviously 628 

increases with the path deviation tolerance. This phenomenon is quite similar to the solution 629 

approaches entailing path generation (Yıldız et al., 2016). It may be attributed to a larger 630 

feasible solution space allowed by a larger path deviation tolerance. The low computational 631 

efficiency of the model and solution approach in the Texas highway network demonstrates the 632 

necessity to develop more efficient methods for implementation in large-scale problems. 633 

Though computational intensive, it manages to solve 10 problem instances within 3 hours, and 634 

the memory issue confronted by the path and charging combination pre-generation in RFRLM 635 

(Kim and Kuby, 2012) is not a big problem. The average optimality gap is 0.0080. For the 636 

instances that are not solved to optimality, the optimality gap is no more than 0.0385, and the 637 

most computationally extensive instances seems always associated with the budget being 638 

around 20. Although some instances (see the instances in bold in Table 2), e.g., the instance 639 

with 40B   and 0   are not solved to optimality within the time limit, their solution can be 640 

deemed as the optimal because further increase of the budget does not result in the growth of 641 

covered flow (Note that the instance with 45B   and 0   are solved to optimality). More 642 

importantly, we find from supplementary numerical experiments that lengthening the solution 643 

time limit marginally contributes to the flow coverage and optimality gap closure. For example, 644 

the covered flow ratio for the problem instance with 25B   and 0   increases slightly from 645 

0.95 to 0.96 when the solution time threshold is extended from 3 hrs to 10 hrs. This, to some 646 

extent, suggests that we may as well accept the incumbent non-optimal solution since the 647 

additional computational cost to achieve a better solution, though only slight improvement in 648 

solution quality, can be prohibitively tremendous. Another more convincing reason is that these 649 

solutions are actually quite near to the optimal solution. 650 

Table 2. Performance of the proposed outer-approximation algorithm in Texas highway 651 

network 652 

B 0    5% wL    10% wL   
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CFR GAPabs 
Elapsed 

Time (s) 
 CFR GAPabs 

Elapsed 

Time (s) 
 CFR GAPabs 

Elapsed 

Time (s) 

5 0.74 0 1,536  0.74 0 1,539  0.76 0.0041 10,800 

10 0.87 0 1,518  0.87 0 2,702  0.87 0.0157 10,800 

15 0.91 0 7,615  0.91 0.0079 10,800  0.91 0.0313 10,800 

20 0.94 0.0055 10,800  0.93 0.0229 10,800  0.93 0.0385 10,800 

25 0.95 0.0157 10,800  0.95 0.0149 10,800  0.95 0.0272 10,800 

30 0.96 0.0129 10,800  0.96 0.0106 10,800  0.96 0.0178 10,800 

35 0.97 0.0011 10,800  0.97 0.0121 10,800  0.98 0.0012 10,800 

40 0.98 0.0002 10,800  0.98 0.0001 10,800  0.98 0.0001 10,800 

45 0.98 0 3,491  0.98 0 5,331  0.98 0.0014 10,800 

50 0.98 0 2,420  0.98 0 1,295  0.98 0 4,629 

Remark: instances in bold are actually solved to optimality although they have positive gaps. 653 

6.3 Results comparison to the maximum flow model 654 

To numerically justify the benefit of minimizing the range anxiety of EV drivers for EV 655 

charging station location optimization, we compare the optimal station location (Location No.) 656 

and covered flow ratios (CFR) obtained by solving the proposed model and the maximum flow 657 

model under the same parameter setting in 25-node network, i.e., {1,2,..., 25}B , 8E  , and 658 

0w  . We also report the number of different locations resulted from the two models. Since 659 

ˆ 0.01   appears small enough to offer a near-optimal solution within an acceptable elapsed 660 

time, the outer-approximation algorithm with ˆ 0.01   will be employed to carry out the 661 

following analyses. The results are tabulated in Table 3. We can see that both models cover the 662 

same traffic flow in all instances. Although the proposed model aims to minimize the range 663 

anxiety of EV drivers, the big-M coefficient for the uncovered flow component forces the 664 

model to cover as many flows as possible. As for the station deployment, the locations 665 

suggested by the two models are identical in many instances. There are, however, a few 666 

exceptions under budget 1, 9, 15, 21, and 23 with three different number of stations at 667 

maximum, where the proposed model does provide a more sensible station deployment that 668 

alleviates the range anxiety of travelers while covering the same amount of traffic flow. For 669 

instance, under 1B  , although both models cover the same traffic flow from origin node 19 670 

to the destination node 20, they suggest different station location at node 20 and 19 respectively. 671 

It can be checked that either node 20 or node 19 can ensure the successful travel of EV drivers 672 

from origin node 19 to the destination node 20 without getting stranded halfway, whereas the 673 

range anxiety can be wholly eliminated by establishing an EV charging station at node 19 in 674 

contrast to node 20. The numerical results, together with the previous example in Figure 1, 675 

validate the significance of this study. 676 
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6.4 Results comparison to the extended model 677 

To explore how the incorporation of charging impedance influence the EV charging station 678 

deployment and flow coverage, we compare the optimal station location (Location No.) and 679 

covered flow ratios (CFR) obtained by solving the original model [DCSP] and the extended 680 

model [DCSPCI] under the same parameter setting in the 25-node network, i.e., {1,2,..., 25}B ,681 

8E  , and 20%w wL  . Again we set ˆ 0.01   in the outer-approximation algorithm to 682 

obtain the near-optimal solution. The parameters in the charging impedance function, i.e., i  683 

and i , are set to be 0.05 and 0.1, respectively. The results are shown in Table 4. We can see 684 

that the charging impedance does greatly reduce the flow coverage because the detour distance 685 

together with the total charging impedance can easily exceed the drivers’ path deviation 686 

tolerance, thus making some range-feasible paths and charging patterns unfavourable. 687 

Moreover, it appears that the increase of budget amplifies the negative effect of charging 688 

impedance on flow coverage as the difference of covered flow ratios increases steadily from 0 689 

to 3.4 when the budget grows from 1 to 25. As for the station deployment, the optimal locations 690 

obtained from the two models are different in all instances except the first two and the last two 691 

instances. It seems that the effect of charging impedance on station deployment measured by 692 

number of different station locations will first increase with the budget and after reaching the 693 

maximal different number of stations, i.e., six, under the budget of 12, the difference gradually 694 

reduces to zero. The findings demonstrate the necessity to incorporate charging impendence in 695 

station deployment in light of its significant effects on flow coverage and station locations. 696 

However, we caution that the degree of the effect may largely depend on the parameters in the 697 

charging impendence function. The values of these parameters should be carefully chosen 698 

based on empirical studies in the future. 699 
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Table 3. Comparison of range anxiety minimization model against the maximum flow model 700 

B 
Maximum flow model  Range anxiety minimization model  Different 

Station No. CFR Location No.  CFR Location No.  

1 0.03 20  0.03 19  1 

2 0.06 17,19  0.06 17,19  0 

3 0.12 17,18,19  0.12 17,18,19  0 

4 0.14 10,14,20,21  0.14 10,14,20,21  0 

5 0.20 10,14,20,21,22  0.20 10,14,20,21,22  0 

6 0.25 14,20,21,22,23,24  0.25 14,20,21,22,23,24  0 

7 0.32 10,14,20,21,22,23,24  0.32 10,14,20,21,22,23,24  0 

8 0.36 8,10,14,20,21,22,23,24  0.36 8,10,14,20,21,22,23,24  0 

9 0.38 4,8,10,14,20,21,22,23,24  0.38 8,10,14,17,18,19,22,23,24  3 

10 0.43 10,14,17,18,19,20,21,22,23,24  0.43 10,14,17,18,19,20,21,22,23,24  0 

11 0.47 8,10,14,17,18,19,20,21,22,23,24  0.47 8,10,14,17,18,19,20,21,22,23,24  0 

12 0.50 4,8,10,14,17,18,19,20,21,22,23,24  0.50 4,8,10,14,17,18,19,20,21,22,23,24  0 

13 0.52 4,8,10,13,14,17,18,19,20,21,22,23,24  0.52 4,8,10,13,14,17,18,19,20,21,22,23,24  0 

14 0.55 8,10,11,12,13,14,17,18,19,20,21,22,23,24  0.55 8,10,11,12,13,14,17,18,19,20,21,22,23,24  0 

15 0.58 7,8,10,11,12,13,14,17,18,19,20,21,22,23,24  0.58 4,8,10,11,12,13,14,17,18,19,20,21,22,23,24  1 

16 0.60 4,7,8,10,11,12,13,14,17,18,19,20,21,22,23,24  0.60 4,7,8,10,11,12,13,14,17,18,19,20,21,22,23,24  0 

17 0.63 3,4,7,8,10,11,12,13,14,17,18,19,20,21,22,23,24  0.63 3,4,7,8,10,11,12,13,14,17,18,19,20,21,22,23,24  0 

18 0.65 1,2,4,5,8,10,11,12,13,14,17,18,19,20,21,22,23,24  0.65 1,2,4,5,8,10,11,12,13,14,17,18,19,20,21,22,23,24  0 

19 0.67 1,2,3,4,5,8,10,11,12,13,14,17,18,19,20,21,22,23,24  0.67 1,2,3,4,5,8,10,11,12,13,14,17,18,19,20,21,22,23,24  0 

20 0.69 1,2,3,4,5,7,8,10,11,12,13,14,17,18,19,20,21,22,23,2

4 

 0.69 1,2,3,4,5,7,8,10,11,12,13,14,17,18,19,20,21,22,23,2

4 

 0 

21 0.70 1,2,3,4,5,7,8,10,11,12,13,14,15,17,18,19,20,21,22,2

3,24 

 0.70 1,2,3,4,5,7,8,10,11,12,13,14,16,17,18,19,20,21,22,2

3,24 

 1 

22 0.72 1,2,3,4,5,7,8,10,11,12,13,14,15,16,17,18,19,20,21,2

2,23,24 

 0.72 1,2,3,4,5,7,8,10,11,12,13,14,15,16,17,18,19,20,21,2

2,23,24 

 0 
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23 0.72 1,2,3,4,5,6,7,8,10,11,12,13,14,15,16,17,18,19,20,21

,22,23,24 

 0.72 1,2,3,4,5,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21

,22,23,24 

 1 

24 0.72 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,

21,22,23,24 

 0.72 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,

21,22,23,24 

 0 

25 0.73 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,

21,22,23,24,25 

 0.73 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,

21,22,23,24,25 

 0 

Remark: instances with different station deployment are highlighted in bold. 701 

Table 4. Comparison of the original model [DCSP] against the extended model [DCSPCI] 702 

B 
Original model [DCSP]  Extended model [DCSPCI]  Different 

Station No. CFR Location No.  CFR Location No.  

1 0.03 19  0.03 19  0 

2 0.06 17,19  0.06 17,19  0 

3 0.12 17,18,19  0.08 14,17,19  1 

4 0.15 13,17,18,19  0.12 14,17,19,22  2 

5 0.2 10,14,20,21,22  0.14 13,14,17,19,22  3 

6 0.25 14,20,21,22,23,24  0.17 8,10,14,17,19,22  4 

7 0.32 10,14,20,21,22,23,24  0.19 8,10,13,14,17,19,22  4 

8 0.36 8,10,14,20,21,22,23,24  0.21 4,8,10,13,14,17,19,22  4 

9 0.4 8,9,10,14,20,21,22,23,24  0.23 3,4,8,10,13,14,17,19,22  5 

10 0.43 10,14,17,18,19,20,21,22,23,24  0.25 1,2,4,5,8,10,14,17,19,22  5 

11 0.47 8,10,14,17,18,19,20,21,22,23,24  0.28 1,2,4,5,8,10,13,14,17,19,22  5 

12 0.51 8,9,10,14,17,18,19,20,21,22,23,24  0.30 1,2,3,4,5,8,10,13,14,17,19,22  6 

13 0.53 8,9,10,13,14,17,18,19,20,21,22,23,24  0.31 1,2,4,5,8,10,13,14,17,19,22,23,24  4 

14 0.56 8,10,11,12,13,14,17,18,19,20,21,22,23,24  0.33 1,2,3,4,5,8,10,13,14,17,19,22,23,24  5 

15 0.6 8,9,10,11,12,13,14,17,18,19,20,21,22,23,24  0.34 1,2,3,4,5,8,10,11,13,14,17,19,22,23,24  5 

16 0.63 7,8,9,10,11,12,13,14,17,18,19,20,21,22,23,24  0.36 1,2,3,4,5,8,10,11,12,13,14,17,19,22,23,24  5 

17 0.65 1,4,5,8,10,11,12,13,14,17,18,19,20,21,22,23,24  0.37 1,2,3,4,5,7,8,10,11,12,13,14,17,19,22,23,24  3 

18 0.68 1,2,4,5,8,10,11,12,13,14,17,18,19,20,21,22,23,24  0.38 1,2,3,4,5,7,8,10,11,12,13,14,16,17,19,22,23,24  3 
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19 0.71 1,2,3,4,5,8,10,11,12,13,14,17,18,19,20,21,22,23,24  0.39 1,2,3,4,5,7,8,10,11,12,13,14,17,19,20,21,22,23,24  1 

20 0.73 1,2,3,4,5,7,8,10,11,12,13,14,17,18,19,20,21,22,23,2

4 

 0.40 1,2,3,4,5,7,8,10,11,12,13,14,16,17,19,20,21,22,23,2

4 

 1 

21 0.74 1,2,3,4,5,7,8,10,11,12,13,14,15,17,18,19,20,21,22,2

3,24 

 0.40 1,2,3,4,5,7,8,9,10,11,12,13,14,16,17,19,20,21,22,23

,24 

 2 

22 0.75 1,2,3,4,5,7,8,10,11,12,13,14,15,16,17,18,19,20,21,2

2,23,24 

 0.41 1,2,3,4,5,6,7,8,9,10,11,12,13,14,16,17,19,20,21,22,

23,24 

 2 

23 0.75 1,2,3,4,5,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21

,22,23,24 

 0.41 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,19,20,21,

22,23,24 

 1 

24 0.76 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,

21,22,23,24 

 0.41 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,

21,22,23,24 

 0 

25 0.76 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,

21,22,23,24,25 

 0.42 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,

21,22,23,24,25 

 0 

Remark: instances with different station deployment are highlighted in bold. 703 
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6.5 Sensitivity analyses  704 

We proceed to analyze the impact of the vehicle parameter (i.e., the battery capacity), the 705 

user parameter (i.e., path deviation tolerance), and the system parameter (i.e., the budget) on 706 

the system performance. We will vary the concerned parameters in its feasible range while 707 

keeping the other parameters being the middle value in its feasible range introduced in 708 

Subsection 6.2. For example, for the sensitivity analysis of battery capacity, we will examine 709 

the results of DCSP under {6,7,8,9,10}E , 13B  , 20%w wL   in the 25-node network. To 710 

facilitate the station deployment comparison under different parameter settings, the number of 711 

selected station locations in set {1,2,...,9}, {10,11,..., 21}, and {22,..., 25} , corresponding to 712 

the upper left corner (UL), the middle right hand (MR), and the lower bottom of the network 713 

(LB) respectively (see Figure 7), will be tabulated. We will also report the covered flow and 714 

uncovered flow volume and ratios (CF, UF, CFR, and UFR), the covered and uncovered OD 715 

pairs and ratios (CP, UP, CPR, and UPR), the accumulated range anxiety per covered EV driver 716 

(ARA), and the covered-flow-weighted average maximal driving range anxiety (MRA) 717 

calculated by ( }max ){ /ww w

j
w

j

w

F frf
 

      
 
W W

, where W  denotes the set of covered OD 718 

pairs. 719 

Table 5 tabulates the results of the proposed model under different values of budget. The 720 

variations of CF&CP, ARA&MRA, and station locations are visualized in Figures 10-12 721 

respectively. According to Figure 10, the covered flow volume rises steadily with the increase 722 

of budget, and the increment rate slows down when the budget exceeds 20. This can be 723 

explained by the fact that the proposed model covers as many flows as possible if budget 724 

permits. The covered number of OD pairs, by and large, follows a similar upward trend but 725 

with obvious fluctuation. For instance, the number of covered OD pairs declines from 70 to 60 726 

as the budget increases from 9 to 11. As a matter of fact, more budget will offer the flexibility 727 

to the local authority to cover a smaller number of OD pairs associated with the largest flow 728 

volume. Another notable result as shown in Figure 11 is that both the ARA and MRA is not 729 

decreasing with more budget available, or broadly speaking, they increase with the rise of 730 

budget. This may again be attributed to the big-M component in the objective function of the 731 

proposed model, which places the flow coverage as the priority. The variations of MRA and 732 

ARA are similar, implying that the proposed model could also mitigate the worst-case range 733 

anxiety, although the primary goal is to reduce the accumulated range anxiety over a trip. As 734 

for the station deployment, Figure 12 shows that all EV charging stations are suggested to be 735 
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established in the middle right hand of the network when the budget is quite limited (less than 736 

4). As long as the budget exceeds 6, at least three stations should be built in the lower bottom 737 

of the network because we find that node 24 is a large travel demand attractor/generator in 738 

terms of its weight in the gravity model. When the budget goes beyond 14, the additional budget 739 

is directed to the station deployment at the upper left corner of the network until the budget 740 

exceeds 20.  741 

Table 5. Effect of budget on the system performance in 25-node network 742 

B 

Station 

location 
 Flow coverage  OD pair coverage 

ARA MRA 

UL MR LB  CF UF CFR UFR  CP UP CPR UPR 

1 0 1 0  315 11,299 0.03 0.97  1 299 0.00 1.00 0.00 0.00 

2 0 2 0  722 10,892 0.06 0.94  3 297 0.01 0.99 0.00 0.01 

3 0 3 0  1,397 10,217 0.12 0.88  5 295 0.02 0.98 0.40 0.23 

4 0 4 0  1,725 9,889 0.15 0.85  15 285 0.05 0.95 0.47 0.28 

5 0 4 1  2,348 9,266 0.20 0.80  24 276 0.08 0.92 0.53 0.27 

6 0 3 3  2,907 8,707 0.25 0.75  26 274 0.09 0.91 0.69 0.32 

7 0 4 3  3,725 7,889 0.32 0.68  41 259 0.14 0.86 0.74 0.33 

8 1 4 3  4,217 7,397 0.36 0.64  49 251 0.16 0.84 0.75 0.32 

9 2 4 3  4,598 7,016 0.40 0.60  70 230 0.23 0.77 0.79 0.35 

10 0 7 3  5,023 6,591 0.43 0.57  52 248 0.17 0.83 0.68 0.30 

11 1 7 3  5,515 6,099 0.47 0.53  60 240 0.20 0.80 0.64 0.30 

12 2 7 3  5,903 5,711 0.51 0.49  82 218 0.27 0.73 0.69 0.32 

13 2 8 3  6,182 5,432 0.53 0.47  90 210 0.30 0.70 0.73 0.32 

14 1 10 3  6,533 5,081 0.56 0.44  99 201 0.33 0.67 0.80 0.36 

15 2 10 3  6,939 4,675 0.60 0.40  123 177 0.41 0.59 0.84 0.37 

16 3 10 3  7,278 4,336 0.63 0.37  155 145 0.52 0.48 0.86 0.39 

17 4 10 3  7,539 4,075 0.65 0.35  142 158 0.47 0.53 0.85 0.36 

18 5 10 3  7,906 3,708 0.68 0.32  143 157 0.48 0.52 0.81 0.34 

19 6 10 3  8,195 3,419 0.71 0.29  160 140 0.53 0.47 0.85 0.35 

20 7 10 3  8,447 3,167 0.73 0.27  186 114 0.62 0.38 0.87 0.35 

21 7 11 3  8,620 2,994 0.74 0.26  203 97 0.68 0.32 0.83 0.35 

22 7 12 3  8,717 2,897 0.75 0.25  205 95 0.68 0.32 0.83 0.35 

23 8 12 3  8,754 2,860 0.75 0.25  207 93 0.69 0.31 0.81 0.34 

24 9 12 3  8,811 2,803 0.76 0.24  230 70 0.77 0.23 0.82 0.34 

25 9 12 4  8,843 2,771 0.76 0.24  252 48 0.84 0.16 0.84 0.34 
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 743 

Figure 10. Variations of covered flow (CF) and covered OD pairs (CP) with the increase of 744 

budget 745 

 746 

Figure 11. Variations of accumulated range anxiety (ARA) and maximal driving range 747 

anxiety (MRA) with the increase of budget 748 
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 749 

Figure 12. Variations of number of selected station locations in the upper left corner (UL), 750 

middle right hand (MR) and lower bottom (LB) of the network with the increase of budget 751 

The results of the model under different values of battery capacity are summarized in Table 752 

6. Figures 13-15 show how the variation of battery capacity affects the flow coverage, range 753 

anxiety of EV drivers and the station location, respectively. As can be seen, both the covered 754 

flow volume and OD pairs display an upward trend with the increase of battery capacity. The 755 

range anxiety-related parameters, i.e., ARA and MRA, are also affected by the battery capacity. 756 

The direction of influence, however, is somehow arbitrary. It is worthwhile to note that the 757 

accumulated range anxiety per covered EV driver is almost doubled although the battery 758 

capacity only grows from 6 to 7, and it returns to around 0.34 when the battery capacity is 759 

increased to be 8 or larger. By comparing the values of ARA and MRA under battery capacity 760 

of 6, 8, and 10, we can find that the increase of battery capacity could eliminate the extreme 761 

case of range anxiety even if the accumulated range anxiety is not sensitive to it. Regarding the 762 

station location, there would be a station located in the lower bottom of the network in all 763 

instances, while some of the rest stations will be deployed in the upper left corner or the middle 764 

right hand of the network subject to fluctuation.  765 

Table 6. Effect of battery capacity on the system performance in 25-node network 766 
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UL MR LB  CF UF CFR UFR  CP UP CPR UPR 

6 4 8 1  3,276 8,338 0.28 0.72  28 272 0.09 0.91 0.34 0.33 

7 4 8 1  5,515 6,099 0.47 0.53  77 223 0.26 0.74 0.64 0.38 

8 2 10 1  6,182 5,432 0.53 0.47  90 210 0.30 0.70 0.34 0.25 

9 3 9 1  7,793 3,821 0.67 0.33  97 203 0.32 0.68 0.38 0.25 

10 4 8 1  8,489 3,125 0.73 0.27  116 184 0.39 0.61 0.34 0.22 

 767 

Figure 13. Variations of covered flow (CF) and covered OD pairs (CP) with the increase of 768 

battery capacity 769 
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 770 

Figure 14. Variations of accumulated range anxiety (ARA) and maximal driving range 771 

anxiety (MRA) with the increase of battery capacity 772 
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Figure 15. Variations of number of selected station locations in the upper left corner (UL), 774 

middle right hand (MR) and lower bottom (LB) of the network with the increase of battery 775 

capacity 776 

The impact of path deviation tolerance on system performance is illustrated in Figures 16-777 

18. The relevant data are tabulated in Table 7. It shows the positive influence of path deviation 778 

on the flow and OD pair coverage. The effect, however, exhibits a nonlinear and piece-wise 779 

pattern. For example, the covered flow remains steady around 6100 under a path deviation 780 

tolerance smaller than 0.3 but swiftly increases to about 6600 when the tolerance is 0.4. It 781 

seems that the station deployment is insensitive to the path deviation tolerance unless the path 782 

deviation tolerance exceeds 0.3. Analogous to the budget, the increase of path deviation 783 

tolerance results in more flows to be covered but both the accumulated and maximal range 784 

anxiety per covered EV driver negatively increase simultaneously. 785 

Table 7. Effect of path deviation tolerance on the system performance in 25-node network 786 

 
Station location  Flow coverage  OD pair coverage 

ARA MRA 
UL MR LB  CF UF CFR UFR  CP UP CPR UPR 

0 2 10 1  6025 5,589 0.52 0.48  80 220 0.27 0.73 0.59 0.29 

0.1 2 10 1  6,121 5,493 0.53 0.47  82 218 0.27 0.73 0.70 0.30 

0.2 2 10 1  6,182 5,432 0.53 0.47  90 210 0.30 0.70 0.69 0.32 

0.3 2 10 1  6,202 5,412 0.53 0.47  91 209 0.30 0.70 0.73 0.33 

0.4 0 12 1  6,610 5,004 0.57 0.43  102 198 0.34 0.66 0.90 0.41 

0.5 0 12 1  6,731 4,883 0.58 0.42  106 194 0.35 0.65 0.94 0.42 
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 787 

Figure 16. Variations of accumulated range anxiety (ARA) and maximal driving range 788 

anxiety (MRA) with the increase of path deviation tolerance 789 

 790 

Figure 17. Variations of accumulated range anxiety (ARA) and maximal driving range 791 

anxiety (MRA) with the increase of path deviation tolerance 792 
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 793 

Figure 18. Variations of number of selected station locations in the upper left corner (UL), 794 

middle right hand (MR) and lower bottom (LB) of the network with the increase of path 795 

deviation tolerance 796 

6.6 Location comparison under different subsets of OD pairs 797 

One important parameter that is believed to largely affect the computational performance 798 

of the proposed models is the number of OD pairs. In real networks, the sum of flows over a 799 

small number of OD pairs generally accounts for a larger portion of the total flows over all OD 800 

pairs. Therefore, it is insightful and practically significant to compare the optimal locations 801 

under different subsets of OD pairs to explore whether the optimal locations obtained by 802 

considering only a subset of OD pairs with the largest flow volume are also “good” locations 803 

for the charging stations that minimize the total range anxiety of travelers when all OD pairs 804 
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respectively. A total of 8 instances with an increasing number of OD pairs and accordingly an 807 
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{10,30,50}B , 40E  , and 5%w wL  . We report the flow ratio (FR) of each subset of OD 809 
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pairs as well as the correspondent ratio to the total number of locations to be chosen(SLR), i.e., 812 

the budget, are tabulated. It shows that in Texas highway network, the sum of flows of the top 813 

100 OD pairs accounts for over 90% of the total flow volume. Under the budget of 10, 8 out of 814 

10 locations are the same with the locations obtained by considering all OD pairs and the 815 

overlap ratio (i.e., SLN) is 80%, demonstrating the credibility of considering only a subset of 816 

OD pairs in the determination of station deployment. This, however, may not be true for 817 

instances under large budget values. The SLR drops down to 58% when the budget increases 818 

to 50. This phenomenon also occurs in instances with a larger subset of OD pairs. In fact, the 819 

average overlap ratio over the instances with different subsets OD pairs under budget 10 is 820 

obviously larger than that under the budget of 30 or 50. Despite the decreasing credibility of 821 

the suggested locations with the increase of budget, the average SLR is no less than 0.74, 822 

meaning that averagely 74% of the locations obtained by considering only a subset of OD pairs 823 

is still optimal for instances with all OD pairs considered. Under a specific budget, different 824 

subsets of OD pairs are often associated with different SLR. For example, under the budget of 825 

10, considering the top 200 OD pairs can produce exactly the same optimal locations to the 826 

results considering all OD pairs, whereas the SLR is only 70% if only the top 100 OD pairs are 827 

considered. On average, considering the top 250 OD pairs produces the highest overlap ratio 828 

and most reliable locations. 829 

Table 8. Location comparison under different subsets of OD pairs 830 

OD No. FR 
B=10 B=30 B=50 Average SLR 

over budget SLN SLR SLN SLR SLN SLR 

100 0.908 8 0.80 23 0.77 29 0.58 0.72 

150 0.942 7 0.70 22 0.73 36 0.72 0.72 

200 0.963 10 1.00 21 0.70 38 0.76 0.82 

250 0.977 10 1.00 23 0.77 39 0.78 0.85 

300 0.986 9 0.90 19 0.63 36 0.72 0.75 

350 0.993 9 0.90 23 0.77 37 0.74 0.80 

400 0.998 8 0.80 24 0.80 38 0.76 0.79 

Average SLR over OD pair 0.87  0.74  0.75  

7. Conclusions and Future Research 831 

This study investigates the optimal deployment of EV charging stations considering 832 

drivers’ range anxiety and path deviation. EV drivers feel uncomfortable when the SOC of 833 

battery declines below a threshold caused by the fear of being stranded in the middle of a trip. 834 

The range anxiety profile is assumed to be a nonlinear function based on the empirical studies 835 

in the literature. The drivers may also take a deviation path other than the shortest path between 836 
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the OD pair for refueling. In order to minimize the accumulated range anxiety of concerned 837 

travelers over the entire trips, we developed for the first time a compact model with a 838 

polynomial number of constraints by explicitly formulating the charging logic and path detour 839 

behavior in the model. The compact model favorably circumvents the computationally 840 

extensive path and combination pre-generation required by traditional FRLM/DFRLM. The 841 

consideration of nonlinear range anxiety function makes the model was not readily solvable by 842 

commercial solvers. After demonstrating the convexity of the model, an efficient outer-843 

approximation method was proposed to obtain an -optimal solution to the underlying problem. 844 

The model was further extended to incorporate the charging impedance, e.g., the charging time 845 

and cost. A 25-node benchmark network and a real-life Texas highway network were used in 846 

the numerical experiments to evaluate the efficiency of the proposed model and algorithm, and 847 

to examine the impact of the battery capacity, path deviation tolerance, budget and the subset 848 

of OD pairs on the optimal solution and the performance of the system. 849 

Further research work can be undertaken in several aspects. First, the proposed solution 850 

method is not computationally efficient for large networks. It is thus important to improve the 851 

efficiency of current algorithm or develop new and customized solution methods for 852 

implementation in large-scale problems in the future. Second, more studies are necessary to 853 

quantitatively analyze the range anxiety and travel behavior of EV drivers, and more 854 

importantly, analytically calibrate the range anxiety profile and the charging impedance 855 

function from reliable data. Third, the compact model can be used as a benchmark model to be 856 

extended from several aspects, such as the incorporation of parameter uncertainty in charging 857 

demand, driving range, electricity consumption, as well as the consideration of flow-dependent 858 

travel time or traffic congestion effect, the station capacity, the partial charging, and the 859 

queuing behavior at stations, etc. Last but not the least, the long period of station construction 860 

and the variation of optimal station location under different values of budget and battery 861 

capacity calls for the development of a dedicated approach for the multi-period planning for 862 

the station deployment. 863 
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Appendix. Notations 868 

Indices and sets 

N   Set of nodes 

A  Set of links 

W   Set of OD pairs 

S  Set of destinations 

I  Set of candidate locations for EV charging stations 

,i j  Indices for node 

( , )i j  Index for link 

( )r w  Index for origin node of an OD pair wW  

( )s w  Index for destination node of an OD pair wW  

  

Known parameters or functions 

ijl  Length of link ( , )i j  

ijd  Electricity consumption of link ( , )i j  
wf  Flow volume of an OD pair wW  

ic  Construction cost of an EV charging station at node iI  

B  Total budget for EV charging station construction 

E  Usable battery capacity of an EV per a full battery charge 

OE  SOC threshold at departure 

DE  SOC threshold at arrival 

wL  Length of the shortest path for an OD pair w  
w  Pre-specified tolerance for detour distance of OD pair  

maxR  Maximal range anxiety of an EV driver experienced at the minimal SOC 

comfE  Comfortable range threshold above which EV drivers are free from range anxiety 

( )S t  SOC profile during battery discharging as a function of travel time 

( )R t  Range anxiety profile during battery discharging/traveling as a function of travel 

time 

( )R r  Accumulated range anxiety along a path segment as a function of final SOC at 

the end node of the path segment 
1( )S 

 Inverse function of SOC profile ( )S  

i  Average charging impedance incurred at station i   that is independent of the 

charging amount 

i  Charging-amount-dependent impedance incurred at station i  per unit amount of 

charging 

  

Decision variables 

iy  Binary variable indicating if a station should be built at location i  

w

ijx  Binary variable indicating if the flow of OD pair w  will traverse link ( , )i j  

w

ie  The remaining electricity in battery rightly after traversing node i  

w
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w

jr  SOC upon the EVs of OD pair w   arriving an EV charging station j   or the 

destination ( )s w  
w

iy  Binary variable indicating if the travelers of OD pair w  will charge at the station 

i  

 869 
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