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1. Introduction  1 

Shared mobility is touted to be one of the most promising innovations that reshape future urban 2 

mobility. As a notable example of shared mobility, ridesharing allows riders to travel with a less expense 3 

by sharing a ride with peer passengers, and it has been found to mitigate traffic congestion and reduce air 4 

pollution (Chan and Shaheen, 2012; Furuhata et al., 2013; Morency, 2007). These benefits and the advance 5 

of new communication technologies have led the fast development of ridesharing systems operated by 6 

commercial companies around the world (Amey, 2010; Masoud et al., 2017; Masoud and Jayakrishnan, 7 

2017), which are referred to as transportation network companies (TNCs) hereafter. Examples include Uber 8 

in the United States, Didi in China, and Grab in Singapore.  9 

The ultimate purpose of a ridesharing system is to aggregate travelers who share the same origin, 10 

destination, or partial path into one vehicle to reduce car use with an improved in-vehicle occupancy. There 11 

are multiple players involved in the ridesharing services, namely, solo drivers, ridesharing drivers, riders, 12 

and TNCs. The ridesharing drivers provide ridesharing services to the riders, while the solo drivers drive 13 

themselves without carrying any riders. A TNC functions as a ride-matching agent that pairs riders with 14 

ridesharing drivers, and it charges ridesharing price from riders, gives compensation to ridesharing drivers, 15 

and earns a profit from the difference. A traveler may freely switch the role among solo driver, ridesharing 16 

driver, as well as rider based on her/his own travel cost and benefit assessment. Therefore, the magnitude 17 

of ridesharing price and compensation would have significant impact on both supply (i.e., the number of 18 

ridesharing drivers) and demand sides (i.e., the number of riders), and thus affecting the sustainability and 19 

profitability of ridesharing services. For example, a low compensation may make no one willing to be a 20 

ridesharing driver so that the supply of ridesharing services will be insufficient. In contrast, a high 21 

ridesharing price will suppress ridesharing demand. How to set an appropriate ridesharing price and 22 

compensation is the critical issue faced by TNCs to achieve a sustainable ridesharing market. 23 

Most TNCs set the surge or non-surge ridesharing price and compensation based on the travel time or 24 

distance of a path/trip (Campbell, 2018). Compared to the surge price, however, the non-surge price often 25 
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results in a great more unfulfilled ridesharing requests especially at the peak demand period due to its 1 

limited ability to adjust supply and demand (Hall et al., 2015). Moreover, a path-dependent pricing strategy 2 

may prompt the ridesharing drivers to deliberately detour and travel on longer paths between an origin and 3 

destination (OD) pair to earn more compensation (Catriona, 2016). This phenomenon has been frequently 4 

complained by customers and negatively affects the operations of TNCs (RideGuru, 2018). The OD-based 5 

surge pricing strategy, i.e., setting the path-independent price based on the supply and demand between an 6 

OD pair, seems an inevitable approach to address the above issues. In fact, Grab in Singapore has been 7 

using an OD-based surge pricing strategy to attract customers (Grab, 2018).  8 

The implementation of ridesharing services into an urban transportation network would affect the 9 

behaviors of travelers and in turn the user equilibrium (UE) traffic flow pattern. The interactions among the 10 

three key players, i.e., solo drivers, ridesharing drivers, as well as riders, create difficulty in solving the UE 11 

problem for an urban transportation network with ridesharing services, referred to as the ridesharing user 12 

equilibrium (RUE) problem, by those conventional models and solution methods. For example, in the 13 

traditional UE problem, a UE traffic flow pattern is restricted by traffic demand and transport infrastructure, 14 

while in the RUE the number of ridesharing drivers between an OD pair limits the number of riders. Besides, 15 

travel cost experienced by these three players in the RUE is heterogeneous and mutually affected. In other 16 

words, the solo drivers mainly consider their travel times, while the riders and ridesharing drivers incur 17 

additional ridesharing prices and compensations respectively plus the inconvenience cost of sharing a ride. 18 

The travel times between an OD pair depend on the number of solo drivers and ridesharing drivers, while 19 

the ridesharing price and the compensation are determined by the flow of ridesharing participants, i.e., 20 

ridesharing drivers and riders. Solving the RUE problem is essential for traffic flow forecast and traffic 21 

management policy assessment with ridesharing services. Therefore, this study focuses on model 22 

development and algorithm design for the RUE problem by considering the unique characteristics of 23 

ridesharing.  24 
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1.1 Literature review 1 

Over the past decades, many studies have investigated the ridesharing systems from different aspects. 2 

The relevant research topics include the morning commute problems (Liu and Li, 2017; Ma and Zhang, 3 

2017; Wang et al., 2019), travel reliability problems (Long et al., 2018), pricing strategy design (Liu and 4 

Li, 2017; Wang et al., 2018), ride-matching algorithm design (Masoud and Jayakrishnan, 2017), and user 5 

equilibrium problems (Di et al., 2018; Xu et al., 2015; Yan et al., 2019). For example, Liu and Li (2017) 6 

proposed a bottleneck model to examine the pricing scheme design of the ridesharing program in the 7 

morning commute. Ma and Zhang (2017) formulated a continuous-time dynamic ridesharing model for a 8 

single bottleneck corridor to study the morning commute problem with ridesharing services and dynamic 9 

parking charges. Long et al. (2018) proposed a stochastic ride-sharing model to investigate the effects of 10 

travel time uncertainty on travel reliability and travelers’ generalized travel cost. To assess the impacts of 11 

cost-sharing strategies on the ridesharing program, Wang et al. (2018) put up a variational inequality (VI) 12 

model for the mode choices of heterogeneous travelers with continuously distributed values of time in a 13 

single-corridor network. Masoud and Jayakrishnan (2017) discussed the features of a peer-to-peer (P2P) 14 

ridesharing system and proposed an interesting ride-matching algorithm. Xu et al. (2015) formulated a link-15 

based complementarity problem (CP) for the RUE problem. Di et al. (2018) further extended the work of 16 

Xu et al. (2015) by considering the network design problem (NDP) with ridesharing services to explore 17 

whether existing roads should be retrofitted into high-occupancy toll (HOT) lanes. Yan et al. (2019) 18 

considered the stochasticity of the travel cost and extended the RUE problem into the stochastic RUE 19 

problem.  20 

The RUE problem, though important, has received limited attention due to its challenge in model 21 

building and algorithm design. To the best of our knowledge, only Di et al. (2018; 2017) and Xu et al. 22 

(2015) have ever investigated the RUE problem. Xu et al. (2015) proposed a link-based CP for the RUE 23 

problem using a link flow based cost function. Di et al. (2017) considered a more realistic cost function by 24 

incorporating a path-based occupancy ratio. Di et al. (2018) extended their model to a link-node formulation 25 
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as the lower-level model of their NDP. Regrettably, the aforementioned studies assumed that ridesharing 1 

prices and compensations are path-dependent, which may not align with reality. On the one hand, most 2 

TNCs inform riders the ridesharing prices before the start of a trip such that riders can freely make their 3 

choice regarding whether they will take the ride by paying such price. Hence, from the aspect of TNCs, 4 

setting the ridesharing price and compensation based on link/path flow, which is unknown before the start 5 

of a trip, is hard to implement and control in practice. On the other hand, adopting a path-dependent pricing 6 

strategy would incur a high complaint rate for deliberate detours. Instead, the path-independent OD-based 7 

surge pricing strategy is more realistic and favorable. However, no study investigates the RUE problem 8 

with the practical OD-based ridesharing pricing strategy. Moreover, the proposed link-based models are 9 

inapplicable because of the non-additivity of ridesharing prices and compensations determined by the OD-10 

based surge pricing strategy.  11 

In another line of study, Daganzo (1981) developed the first equilibrium model for carpooling that 12 

can be regarded as an RUE prototype. As an extension, Xiao et al. (2016) investigate a morning commute 13 

problem with carpooling behavior under parking space constraint at destination. Nevertheless, the 14 

assumptions made by these two works are quite stringent and unsuitable for the ridesharing services (Di et 15 

al., 2018). The carpooling equilibrium does not explicitly formulate the flow and cost of riders; therefore, 16 

the riders’ switching behavior is not considered. Moreover, since the in-vehicle occupancy of carpooling 17 

vehicles is assumed to be constant (usually as one or infinite riders per carpooling vehicle), the capacity for 18 

carrying riders are not taken into account by these studies. To tackle the above issues, Xu et al. (2015) and 19 

Di et al. (2018; 2017) formulated the capacity constraint as side constraints: upper and lower bounds 20 

constrained the riders, and the flow, cost, as well as switching behavior of riders were incorporated. 21 

However, the formulation of the side constraints entails the following stringent assumptions: 22 

 All ridesharing vehicles must have the same capacity in carrying riders. In other words, the vehicles 23 

with different capacities are not allowed, which dramatically reduces the applicability of the existing 24 

RUE models.  25 
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 The integrity of seats and riders is not explicitly considered. Since the side constraints only constrain 1 

the upper and lower bounds for riders, the existing model may generate a solution with some 2 

ridesharing vehicles taking a fractional number of riders, which is unrealistic.  3 

 The existing RUE model can generate only the average number of the riders and the occupancy ratio 4 

over each link or path, e.g., each ridesharing vehicle carries 1.5 riders on average on a specific link. 5 

An explicit flow pattern should include the flows of the solo drivers, the ridesharing drivers carrying 6 

one rider, the ridesharing drivers carrying two riders, etc. 7 

 Only the very basic ridesharing service is considered. The existing RUE models are inapplicable to 8 

consider multiple types of ridesharing services. Specifically, the existing RUE models assume that the 9 

ridesharing drivers (riders) are homogeneous and provide (receive) only one type of ridesharing service. 10 

Thus, the ridesharing services that share a specific number of seats or with different prices and 11 

compensations are not described, e.g., the UberX service provided by Uber, the KuaiChe service 12 

provided by Didi, and the GrabCar service provided by Grab.  13 

Besides the model development for the RUE problem, designing an effective solution method is also 14 

challenging. There are a few solution methods for solving the VI problems, including the proximal point 15 

method (Han et al., 2015), the alternating direction method (Chen et al., 2011), the Newton’s method (Dial, 16 

1997), the interior point method (Ferris and Pang, 1997), and the projection method (He et al., 2009; Levitxn, 17 

and Polyak, 1966). The projection method is recognized as a very effective way to solve the large-scale 18 

problems because of its small amount of computation in each iteration. Only the projection to the feasible 19 

set and some functions are needed. Several projection-type methods were thus proposed to solve the VI 20 

problems. Among them, the basic projection method was proposed by Goldstein (1964) and Levitxn and 21 

Polyak (1966). To calculate the step size, however, the basic projection method depends on the coercive 22 

modulus in advance, which is unknown in practice. Many studies are thus devoted to tackling this issue. 23 

For example, He et al. (2009) proposed a self-adaptive projection method that provides a self-adaptive step 24 
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size search procedure by checking the Armijo’s rule (Armijo, 1966) without the aid of the coercive modulus. 1 

However, for the large-scale problems, the projection-type methods may still need a large number of 2 

computational resources such as large in-memory requirement and computing time when calculating the 3 

projection.  4 

1.2 Objective and contributions 5 

The objective of this study is to close the identified research gap by developing a path-based VI model 6 

and a parallel self-adaptive projection method (PSPM) for the RUE problem under the OD-based surge 7 

pricing strategy. The main contributions of this study are listed as follows: 8 

 We make the first attempt to incorporate the OD-based surge pricing strategy into the RUE problem. 9 

The ridesharing prices and compensations determined by the OD-based surge pricing strategy are easy 10 

to implement because once a rider puts a request from an origin to a destination, the TNCs can set a 11 

ridesharing price instantly based on the present supply and demand between that OD pair. In addition, 12 

since the ridesharing prices and compensations are the same on different paths between an OD pair, 13 

ridesharing drivers will be self-motivated to travel on shorter paths to save their cost, and riders will 14 

not be confronted by the detour issue. In this regards, the proposed OD-based surge pricing strategy is 15 

beneficial for the development of ridesharing and is expected to be favored by more and more TNCs.  16 

 We propose a novel VI model with the ride-matching constraints for the RUE problem. The ride-17 

matching constraints reflect the fact that the number of riders is subject to the numbers of ridesharing 18 

vehicles and seats. The necessary assumptions required by the side constraints used by the existing 19 

RUE models are relaxed, and multiple ridesharing services can be thus described by the proposed VI 20 

model. The multipliers associated with the ride-matching constraints are regarded as the subsidies and 21 

premiums besides the regular ridesharing prices and compensations. Moreover, the existence and 22 

uniqueness of the solution to the proposed VI model are demonstrated under mild assumptions. 23 
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 We propose a PSPM integrating column generation for solving the RUE problem. We use the 1 

techniques of column generation and parallel computing to improve the original self-adaptive 2 

projection method proposed by He et al. (2009) for large-scale problems. The proposed solution 3 

method can find a globally optimal solution and has satisfactory computational feasibility and 4 

efficiency. Both the computational time and the in-memory requirement are significantly reduced for 5 

large-scale RUE problems.   6 

 Three networks, i.e., Braess network, Sioux-Falls network, and Eastern-Massachusetts network, are 7 

used to carry out the numerical experiments. We first use the Braess network to analyze the impact of 8 

ridesharing and perform sensitivity analysis to acquire important insights. The Sioux-Falls network 9 

and the Eastern-Massachusetts network are adopted to evaluate the computational feasibility and 10 

efficiency of the proposed solution method. The results show that the ridesharing under the OD-based 11 

surge pricing strategy can reduce deliberate detours, mitigate traffic congestion, and reduce travel costs 12 

for travelers.  13 

The remainder of this study is organized as follows. In addtion to presenting the necessary notations 14 

and assumptions used for model building, the RUE problem with the OD-based surge pricing strategy is 15 

elaborated in Section 2. Section 3 formulates a VI model for the proposed RUE problem. We further 16 

demonstrate the existence and uniqueness of the RUE solution under some mild conditions. Section 4 17 

develops the PSPM incorporating column generation for solving the VI model. Numerical experiments are 18 

conducted in Section 5. Section 6 concludes this study and proposes future research directions.  19 

2. Notations, Assumptions, and Problem Statement 20 

This section will introduce the following fundamentals for the RUE problem: ridesharing network, 21 

ride-matching constraints, OD-based supply and demand constraints, and generalized travel cost functions. 22 

For the sake of better readability, the notations used throughout this study are listed in Appendix A.  23 



 

9 

 

Let 𝐺 = (𝑁, 𝐴) be an urban transportation network with the ridesharing services, i.e., a ridesharing 1 

network, where 𝑁 is the set of nodes and 𝐴 is the set of links. Let 𝑊 be a set of origin-destination (OD) 2 

pairs, 𝑃𝑤 be the set of all the acyclic paths connecting OD pair 𝑤 ∈ 𝑊, and 𝑞𝑤 > 0 be the travel demand 3 

between OD pair 𝑤 ∈ 𝑊. In the ridesharing network, the travelers are divided into three groups: solo drivers, 4 

ridesharing drivers, and riders denoted by the sets of 𝑆𝐷, 𝑅𝐷, and 𝑅, respectively. As mentioned before, 5 

ridesharing drivers and riders are the ridesharing participants who should travel together. However, the solo 6 

drivers do not share their rides. Moreover, each group may contain multiple roles that are denoted by 𝑖 ∈7 

𝐼 = 𝑆𝐷 ∪ 𝑅𝐷 ∪ 𝑅. Each role represents the participants for a specific type of ridesharing service. For 8 

instance, if we assume each ridesharing driver can take at most two riders, the three groups are divided into 9 

five roles: 𝑖 = 1 ∈ 𝑆𝐷 denotes the solo drivers; 𝑖 = 2,3 ∈ 𝑅𝐷 denote the ridesharing drivers providing 1-10 

rider and 2-rider ridesharing services, i.e., the ridesharing drivers with one rider and two riders, respectively; 11 

and 𝑖 = 4,5 ∈ 𝑅 denote the riders taken by the drivers 𝑖 = 2,3, respectively. We consider the fixed travel 12 

demand between an OD pair, and assume that these travelers in ridesharing networks can choose their roles 13 

at the beginning of their trips to minimize their travel costs. Particularly, if it is not beneficial for a traveler 14 

to share rides, she/he will still travel as a solo driver. Let 𝑓𝑝,𝑖
𝑤  denote the path flow of the role 𝑖 on path 𝑝 ∈15 

𝑃𝑤; the traffic flow conservation equations can be presented as follows:  16 

{
∑ ∑ 𝑓𝑝,𝑖

𝑤
𝑖𝑝 = 𝑞𝑤, ∀𝑤

𝑓𝑝,𝑖
𝑤 ≥ 0, ∀𝑤, ∀𝑝, ∀𝑖 

         (1) 17 

Without loss of generality, we assume that the link travel time function 𝑡𝑎(𝑥𝑎), 𝑎 ∈ 𝐴 is strictly 18 

monotone increasing with respect to link flow denoted by 𝑥𝑎. Among the three ridesharing players, the 19 

flows of solo drivers and the ridesharing drivers constitute the link flow, while riders cannot contribute to 20 

link flows because stay in vehicles share with ridesharing drivers. Let 𝑥𝑎,𝑖 denote the flow of role 𝑖 on link 21 

𝑎, we thus have: 22 

𝑥𝑎 = ∑ 𝑥𝑎,𝑖𝑖∈𝑆𝐷∪𝑅𝐷 , ∀𝑎 ∈ 𝐴                      (2) 23 
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𝑥𝑎,𝑖 = ∑ ∑ 𝛿𝑎,𝑝
𝑤 𝑓𝑝,𝑖

𝑤
𝑝𝑤 , ∀𝑖 ∈ 𝑆𝐷 ∪ 𝑅𝐷 ∪ 𝑅          (3) 1 

where 𝛿𝑎,𝑝
𝑤 = 1 if link 𝑎 belongs to path 𝑝, otherwise 𝛿𝑎,𝑝

𝑤 = 0. We let the vector 𝐟 = (𝑓𝑝,𝑖
𝑤 , 𝑝 ∈ 𝑃𝑤 , 𝑤 ∈2 

𝑊, 𝑖 ∈ 𝐼)T denote the path flows of all roles and 𝐱 = (𝑥𝑎 , 𝑎 ∈ 𝐴)
T denote the link flow hereafter.  3 

2.1 Ride-matching constraints 4 

In the ridesharing network, the number of shared seats restricts the number of riders. This constraint 5 

has been formulated by Di et al. (2017) and Xu et al. (2015) as the side constraints:  6 

𝑓𝑝,𝑟𝑑
𝑤 ≤ 𝑓𝑝,𝑟

𝑤 ≤ 𝐶𝑓𝑝,𝑟𝑑
𝑤      (4) 7 

where 𝑓𝑝,𝑟
𝑤  and 𝑓𝑝,𝑟𝑑

𝑤  denote the path flows of riders and ridesharing drivers on path 𝑝, respectively; and 𝐶 8 

denotes the capacity of a ridesharing vehicle, i.e., the number of seats.  9 

However, the side constraints require stringent assumptions. Instead of using the side constraints, we 10 

can define a series of ride-matching constraints below for each class of ridesharing participants to describe 11 

the restriction of shared seats: 12 

𝑓𝑝,𝒯𝑟(𝑖)
𝑤 = 𝑁𝑖 ∙ 𝑓𝑝,𝑖

𝑤 , ∀𝑤, ∀𝑝, ∀𝑖 ∈ 𝑅𝐷                (5) 13 

where 𝒯𝑟(𝑖) maps the ridesharing driver 𝑖 ∈ 𝑅𝐷 to his/her riders 𝑖′ ∈ 𝑅, i.e., 𝒯𝑟: 𝑅𝐷 → 𝑅; and the integer 14 

𝑁𝑖 is the number of seats shared by the ridesharing driver 𝑖. For instance, if 𝑖 = 2,3 ∈ 𝑅𝐷, which denote 15 

the 1-rider and 2-rider ridesharing drivers, respectively, we have 𝒯𝑟(2) = 4, 𝒯𝑟(3) = 5 representing the 16 

riders taken by the drivers 𝑖 = 2,3, and accordingly 𝑁2 = 1 and 𝑁3 = 2 denoting the numbers of seats 17 

shared by the drivers 𝑖 = 2,3, respectively. Therefore, each type of ridesharing driver is matched with a 18 

corresponding integer number of riders. The above constraints actually help us classify the ridesharing 19 

drivers and riders into more detailed categories. Thus, each type of ridesharing driver can have the different 20 

capacity in carrying riders; the integrity of riders and seats is considered; multiple ridesharing services that 21 

share a specific number of seats can be described; and a more explicit flow pattern is thus possible. 22 

Moreover, the matching constraints expressed by Eq. (5) can be easily modified for the multi-hop behavior 23 



 

11 

 

that allows the drivers to pick up riders en route. Specifically, incorporating the technique of existing RUE 1 

models (Di et al., 2018; Xu et al., 2015), the ride-matching constraints in the context of multi-hop behavior 2 

is given by 3 

𝑥𝑎,𝒯𝑟(𝑖) = 𝑁𝑖𝑥𝑎,𝑖, ∀𝑎, ∀𝑖 ∈ 𝑅𝐷              (6) 4 

The riders can thus transfer from one ridesharing vehicle to another, and the riders in the same ridesharing5 

 vehicle do not necessarily have the same OD pair. 6 

2.2 OD-based supply and demand constraints 7 

In practice, the supply and demand of ridesharing services are inherently based on OD flows. For the 8 

sake of presentation, we define the OD-based ridesharing supply (i.e., the number of ridesharing drivers) 9 

and demand (i.e., the number of riders) as follows: 10 

{
𝑠𝑖
𝑤 = ∑ 𝑓𝑝,𝑖

𝑤
𝑝

𝑑𝒯𝑟(𝑖)
𝑤 = ∑ 𝑓𝑝,𝒯𝑟(𝑖)

𝑤
𝑝

, ∀𝑤, ∀𝑖 ∈ 𝑅𝐷                      (7) 11 

The OD-based supply and demand are more reasonable than current measurements in literature, e.g., 12 

the link or path flows. This is because (i) the ridesharing requests proposed by the participants are often 13 

OD-oriented; (ii) the OD flows are much easier to collect compared with link or path flows; and (iii) the 14 

TNCs always use OD flows to measure the supply and demand in practice (Hall et al., 2015). Besides, since 15 

the OD flow is a summation of path flows, combining Eqs. (5) and (7) yields that: 16 

𝑑𝒯𝑟(𝑖)
𝑤 = 𝑁𝑖𝑠𝑖

𝑤 , ∀𝑤, ∀𝑖 ∈ 𝑅𝐷             (8) 17 

2.3 Generalized travel cost functions for solo drivers, ridesharing drivers and riders 18 

As mentioned before, the three players’ travel costs are heterogeneous and dependent. We classify 19 

their costs as follows: travel time cost, inconvenience cost, ridesharing price and compensation, and 20 

miscellaneous cost. The solo drivers only suffer travel time cost, while ridesharing participants experience 21 

inconvenience cost, ridesharing price and compensation in addition to travel time cost. The travelers’ travel 22 



 

12 

 

time cost depends on the flows of drivers, while the inconvenience cost, the price and the compensation are 1 

related to the flows of ridesharing participants.  2 

Travel time cost 3 

As we have discussed in the introduction, riders do not contribute to travel time cost: links become 4 

congested only because there are too many vehicles on roads. However, all the travelers experience travel 5 

time cost. Since the riders take ridesharing vehicles, they suffer the same travel time as the drivers do. 6 

Moreover, the values of time (VOTs) of the roles may be different. For instance, if the VOT of riders is 7 

lower than that of drivers, riders may lose less than the drivers do. Hence, we define the travel time cost for 8 

different roles as follows: 9 

𝐶𝑝,𝑖
𝑇,𝑤 ≜ 𝜌𝑖𝑡𝑝

𝑤 = 𝜌𝑖 ∑ 𝛿𝑎,𝑝
𝑤 𝑡𝑎(𝑥𝑎)𝑎 , ∀𝑤, 𝑝, 𝑖                (9) 10 

where 𝜌𝑖 denotes the VOT of each role 𝑖; 𝑡𝑝
𝑤 denotes the travel time on path 𝑝; and 𝑡𝑎 denotes the travel 11 

time on link 𝑎. Note that the VOTs of roles are a little different from the VOTs of travelers in TAPs with 12 

public transit which usually indicate low incomes. Specifically, since the travelers in ridesharing are peers, 13 

there are no evidence that riders’ income is lower. The VOT of riders is lower than that of drivers in RUE 14 

problems only because riders need not drive or pay attention to the traffic during their trips. They can do 15 

their own business, such as reading or listening to music, which create extra value for themselves and reduce 16 

their cost during the travel time.   17 

Inconvenience cost 18 

Only ridesharing drivers and riders may suffer inconvenience cost. The inconvenience cost derives 19 

from the discomfort of sharing rides with strangers. Different numbers of in-vehicle strangers may lead to 20 

different amounts of inconvenience cost. Hence, we define the inconvenience cost for each role 𝑖 ∈ 𝑅𝐷 ∪21 

𝑅. Moreover, the longer the participants travel with strangers, the more inconvenience cost they experience. 22 

It is thus reasonable to assume that the inconvenience cost is related to the travel time, namely: 23 

𝐶𝑝,𝑖
𝐼,𝑤 ≜ 𝐼𝑖(𝑡𝑝

𝑤), ∀𝑤, 𝑝, ∀𝑖 ∈ 𝑅𝐷 ∪ 𝑅            (10) 24 
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where 𝐶𝑝,𝑖
𝐼,𝑤

represents the inconvenience cost for role 𝑖  on path 𝑝  and 𝐼𝑖(∙)  is a monotone increasing 1 

function with respect to travel time 𝑡𝑝
𝑤. The inconvenience costs unrelated to travel time in other RUE 2 

studies can be regarded as a special case where the travel time is considered as a constant.  3 

Ridesharing price and compensation  4 

Many TNCs use surge prices and compensations to cater for the imbalance between ridesharing supply 5 

and demand. For instance, when there are more riders, they charge a high price and give ridesharing drivers 6 

a high compensation to incent the supply. Besides, a base price (compensation) should be set up to avoid 7 

the extremely low price (compensation). Thus, the ridesharing price (compensation) consists of two parts: 8 

base price and surge price. Moreover, some TNCs notice that the path-dependent prices motivate the 9 

ridesharing drivers to deliberately detour for more compensations (Catriona, 2016; RideGuru, 2018). To 10 

reduce the complaints caused by the detours, more and more TNCs are adopting path-independent OD-11 

based surge pricing strategies (Grab, 2018). This study considers the OD-based surge pricing strategy 12 

defined by:  13 

𝐶𝑖
𝑀,𝑤 ≜ {

−(𝐵𝑖
𝑤 − 𝐶𝑖(𝑠𝑖

𝑤) + 𝑅𝑖(𝑑𝒯𝑟(𝑖)
𝑤 )) , ∀𝑤, ∀𝑖 ∈ 𝑅𝐷

𝐵𝑖
𝑤 − 𝐶𝑖(𝑠𝒯𝑟𝑑(𝑖)

𝑤 ) + 𝑅𝑖(𝑑𝑖
𝑤), ∀𝑤, ∀𝑖 ∈ 𝑅

                             (11) 14 

where 𝒯𝑟𝑑(𝑖) maps the rider 𝑖 ∈ 𝑅 to his/her ridesharing driver 𝑖′ ∈ 𝑅𝐷, i.e., 𝒯𝑟: 𝑅 → 𝑅𝐷; When 𝑖 ∈ 𝑅𝐷, 15 

𝐶𝑖
𝑀,𝑤

 denotes the ridesharing compensations; when 𝑖 ∈ 𝑅, 𝐶𝑖
𝑀,𝑤

 denotes the ridesharing prices; 𝐵𝑖
𝑤 denotes 16 

the benchmark price (compensation) which is a base price (compensation) for each rider (ridesharing driver); 17 

𝐶𝑖(∙) and 𝑅𝑖(∙) are monotone increasing functions with respect to the ridesharing supply and demand, 18 

respectively. 𝐶𝑖(∙) and 𝑅𝑖(∙) calculate the surge price or compensation for role 𝑖. Because of Eq. (8), the 19 

supply and demand have a closed-form relationship. The supply is a function with respect to the demand, 20 

and vice versa. We hence combine the functions 𝐶𝑖(∙) and 𝑅𝑖(∙), then Eq. (11) is equivalent to  21 

𝐶𝑖
𝑀,𝑤 ≜ {

−(𝐵𝑖
𝑤 −𝑀𝑖(𝑠𝑖

𝑤)), ∀𝑤, ∀𝑖 ∈ 𝑅𝐷

𝐵𝑖
𝑤 +𝑀𝑖(𝑑𝑖

𝑤), ∀𝑤, ∀𝑖 ∈ 𝑅
                         (12) 22 
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where 𝑀𝑖(∙) is a monotone increasing function and calculates the surge prices or compensations for role 𝑖. 1 

Note that since 𝑀𝑖(∙)  is a function, the sign before 𝑀𝑖(∙)  actually does not matter, and 𝑀𝑖(∙)  is not 2 

necessarily positive or negative for any role 𝑖. We use these signs only to guarantee that the price 𝐵𝑖∈𝑅
𝑤 +3 

𝑀𝑖∈𝑅(𝑑𝑖∈𝑅
𝑤 ) is an increasing function with respect to 𝑑𝑖∈𝑅

𝑤  and the absolute value of the compensation 4 

𝐵𝑖∈𝑅𝐷
𝑤 −𝑀𝑖∈𝑅𝐷(𝑠𝑖∈𝑅𝐷

𝑤 ) is a decreasing function with respect to 𝑠𝑖∈𝑅𝐷
𝑤 , which is the requirement of surge 5 

pricing strategies. Since the profit of TNCs comes from the difference between the ridesharing prices and 6 

the compensations, it is reasonable to assume that  7 

𝑁𝑖 (𝐵𝒯𝑟(𝑖)
𝑤 +𝑀𝒯𝑟(𝑖)(𝑑𝒯𝑟(𝑖)

𝑤 )) ≥ 𝐵𝑖
𝑤 −𝑀𝑖(𝑠𝑖

𝑤), ∀𝑤, ∀𝑖 ∈ 𝑅𝐷            (13) 8 

Miscellaneous cost 9 

The miscellaneous costs are classified into fixed costs and trip costs. The fixed costs include the costs 10 

of depreciation and insurance, and the trip costs include the fuel costs, parking costs, tolls, and other costs 11 

incurred during the trips. Since the travelers in ridesharing are peers who possess vehicles, they all bear the 12 

fixed costs which are sunk costs to ridesharing and do not affect the route and role choices. Thus, we omit 13 

the fixed costs when investigating the RUE problem. However, the trip costs are generated during the trips 14 

and are borne only by the drivers. We let 𝑐𝑡 denote the trip costs hereafter. To sum up, the path travel cost 15 

functions are given by 16 

𝐶𝑝,𝑖
𝑤 ≜ {

𝜌𝑖𝑡𝑝
𝑤 + 𝑐𝑡 , ∀𝑤, ∀𝑝, ∀𝑖 ∈ 𝑆𝐷

𝜌𝑖𝑡𝑝
𝑤 + 𝐼𝑖(𝑡𝑝

𝑤) − (𝐵𝑖
𝑤 −𝑀𝑖(𝑠𝑖

𝑤)) + 𝑐𝑡 , ∀𝑤, ∀𝑝, ∀𝑖 ∈ 𝑅𝐷

𝜌𝑖𝑡𝑝
𝑤 + 𝐼𝑖(𝑡𝑝

𝑤) + (𝐵𝑖
𝑤 +𝑀𝑖(𝑑𝑖

𝑤)), ∀𝑤, ∀𝑝, ∀𝑖 ∈ 𝑅

                          (14) 17 

 18 

Subsidy and premium 19 

According to the market clearance in economics, the ride-matching constraints describe only the 20 

actual supply and demand of the ridesharing services, while the potential supply and demand (if any) are 21 

suppressed by additional costs. Many studies on the traditional UE problem with link capacity constraints 22 
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also considered such additional costs, and these costs were defined as the link tolls (Beckmann and Golob, 1 

1974) and queueing delay time (Meng et al., 2008) and were incorporated into the generalized travel costs. 2 

In the proposed RUE problem, the generalized travel costs should also take into account the additional costs 3 

whose values should equal the relevant optimal Lagrangian multipliers associated with the ride-matching 4 

constraints (Patriksson, 2015). Otherwise, the supply and demand will be imbalanced. We thus define the 5 

subsidy and premium in the ridesharing system as follows: 6 

𝜂𝑝,𝑖
𝑤 ≜ {

𝑁𝑖𝜆𝑝,𝑖
𝑤 , ∀𝑤, ∀𝑝, ∀𝑖 ∈ 𝑅𝐷

−𝜆𝑝,𝒯𝑟𝑑(𝑖)
𝑤 , ∀𝑤, ∀𝑝, ∀𝑖 ∈ 𝑅

         (15) 7 

where 𝜆𝑝,𝑖
𝑤  is the Lagrangian multiplier associated with the ride-matching constraint. When 𝜆𝑝,𝑖

𝑤  is positive, 8 

𝜂𝑝,𝑖∈𝑅
𝑤  would be negative, representing a discount in the price for riders, while 𝜂𝑝,𝑖∈𝑅𝐷

𝑤  is positive, denoting 9 

an extraction from the compensation for ridesharing drivers. Conversely, when 𝜆𝑝,𝑖
𝑤  is negative, 𝜂𝑝,𝑖∈𝑅

𝑤  10 

would be positive, denoting a premium price for riders, and 𝜂𝑝,𝑖∈𝑅𝐷
𝑤  is negative, representing a subsidy for 11 

ridesharing drivers.  12 

In practice, the subsidy and premium 𝜂𝑝,𝑖
𝑤  can be regarded as one part of the surge prices and 13 

compensations. For instance, if there are more potential (not actual) riders 𝒯𝑟(𝑖) than 𝑁𝑖  times of the 14 

ridesharing drivers 𝑖 on path 𝑝, the supply and demand of the 𝑁𝑖-rider ridesharing are imbalanced and the 15 

residual riders have to give up ridesharing or wait longer for being matched. In case of this, a negative 16 

multiplier 𝜆𝑝,𝑖
𝑤  will be produced to balance the supply and demand. According to Eq. (15), a premium price 17 

−𝜆𝑝,𝑖
𝑤  will be charged by the TNC on the riders to cool the demand, and a subsidy of 𝑁𝑖𝜆𝑝,𝑖

𝑤  will be given 18 

to the ridesharing drivers to incent the supply since each ridesharing driver 𝑖 serves 𝑁𝑖  riders 𝒯𝑟(𝑖). In 19 

contrast, if there is more potential supply than the demand, the positive 𝜆𝑝,𝑖
𝑤  results in that a discount −𝜆𝑝,𝑖

𝑤  20 

will be given to the riders and 𝑁𝑖𝜆𝑝,𝑖
𝑤  will be extracted from the compensations for ridesharing drivers.  21 

In summary, the generalized path travel cost functions are given by 22 
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𝐶̃𝑝,𝑖
𝑤 ≜ {

𝜌𝑖𝑡𝑝
𝑤 + 𝑐𝑡, ∀𝑤, ∀𝑝, ∀𝑖 ∈ 𝑆𝐷

𝜌𝑖𝑡𝑝
𝑤 + 𝐼𝑖(𝑡𝑝

𝑤) − (𝐵𝑖
𝑤 −𝑀𝑖(𝑠𝑖

𝑤)) + 𝑐𝑡 +𝑁𝑖𝜆𝑝,𝑖
𝑤 , ∀𝑤, ∀𝑝, ∀𝑖 ∈ 𝑅𝐷

𝜌𝑖𝑡𝑝
𝑤 + 𝐼𝑖(𝑡𝑝

𝑤) + (𝐵𝑖
𝑤 +𝑀𝑖(𝑑𝑖

𝑤)) − 𝜆𝑝,𝒯𝑟𝑑(𝑖)
𝑤 , ∀𝑤, ∀𝑝, ∀𝑖 ∈ 𝑅

                  (16) 1 

For instance, if we assume that ridesharing drivers can take at most two riders, the three ridesharing players 2 

will be divided into five roles: 𝑖 = 1 ∈ 𝑆𝐷 denotes the solo drivers; 𝑖 = 2,3 ∈ 𝑅𝐷 denote 1-rider and 2-3 

rider ridesharing drivers, respectively; and 𝑖 = 4,5 ∈ 𝑅 denote the riders taken by the ridesharing drivers 4 

𝑖 = 2,3, respectively. Then, the generalized travel cost functions for the above five roles are given by 5 

{
  
 

  
 

𝐶̃𝑝,1
𝑤 = 𝜌1𝑡𝑝

𝑤 + 𝑐𝑡  

𝐶̃𝑝,2
𝑤 = 𝜌2𝑡𝑝

𝑤 + 𝐼2(𝑡𝑝
𝑤) − (𝐵2

𝑤 −𝑀2(𝑠2
𝑤)) + 𝑐𝑡 + 𝜆𝑝,2

𝑤

𝐶̃𝑝,3
𝑤 = 𝜌3𝑡𝑝

𝑤 + 𝐼3(𝑡𝑝
𝑤) − (𝐵3

𝑤 −𝑀3(𝑠3
𝑤)) + 𝑐𝑡 + 2𝜆𝑝,3

𝑤

𝐶̃𝑝,4
𝑤 = 𝜌4𝑡𝑝

𝑤 + 𝐼4(𝑡𝑝
𝑤) + (𝐵4

𝑤 +𝑀4(𝑑4
𝑤)) − 𝜆𝑝,2

𝑤

𝐶̃𝑝,5
𝑤 = 𝜌5𝑡𝑝

𝑤 + 𝐼5(𝑡𝑝
𝑤) + (𝐵5

𝑤 +𝑀5(𝑑5
𝑤)) − 𝜆𝑝,3

𝑤

, ∀𝑤, 𝑝           (17) 6 

Remark 1. For the case that the ridesharing vehicles may have more than two riders, the travelers can be 7 

classified into more roles. The generalized travel cost functions and the ride-matching constraints can be 8 

easily modified. Such problems are still within the framework of the proposed model. 9 

Remark 2. For the case that some specific roles may have different VOTs, inconvenience coefficients, trip 10 

costs, etc., such roles can be further classified into sub-roles. The generalized travel cost functions and the 11 

ride-matching constraints can be easily modified. Such problems can still be addressed by the proposed 12 

methodology.  13 

Compared with the traditional UE problem (Ban et al., 2012; Ma et al., 2018a; Sheffi, 1985), the 14 

proposed RUE problem has the following unique characteristics: (i) there are multiple types of travelers; 15 

(ii) the travel cost experienced by three players is heterogeneous and mutually affected; and (iii) the capacity 16 

in carrying riders is determined by the number of ridesharing drivers rather than traffic capacity in the 17 

traditional UE problems. These characteristics make the RUE to be an asymmetric problem that cannot be 18 

formulated as an ordinary multi-modal TAP or a mathematical programming model which can be solved 19 

by many efficient algorithms (e.g., Di et al., 2014). It is a challenge to formulate the RUE problem. In the 20 
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traditional UE problem, travelers choose their routes to minimize their travel times. However, in the RUE 1 

problem, travelers can choose not only their routes but also their roles and the numbers of their peers to 2 

minimize their generalized travel costs. Specifically, the ride-matching constraints imply that the 3 

ridesharing drivers can further decide the number of seats they share, and the riders can choose whether to 4 

travel with other riders. Therefore, the RUE state is achieved if no one can reduce her/his generalized travel 5 

cost by unilaterally changing her/his route or role. In other words, at an RUE state, the generalized travel 6 

costs for all the used paths and all the roles are equal, and those for the unused paths are at least not lower 7 

than those for the used ones. This is a variant of the Wardrop first principle with the ridesharing services, 8 

which is referred to as the RUE principle.  9 

3. Mathematical Model 10 

According to the above description, we propose the mathematical formulation of the RUE principle:  11 

{
𝑓𝑝,𝑖
𝑤 > 0 ⇒ 𝐶̃𝑝,𝑖

𝑤 = 𝜋𝑤

𝑓𝑝,𝑖
𝑤 = 0 ⇒ 𝐶̃𝑝,𝑖

𝑤 ≥ 𝜋𝑤
, ∀𝑝, ∀𝑖, ∀𝑤                 (18a) 12 

∑ ∑ 𝑓𝑝,𝑖
𝑤

𝑖𝑝 − 𝑞𝑤 = 0, ∀𝑤       (18b) 13 

𝑁𝑖 ∙ 𝑓𝑝,𝑖
𝑤 − 𝑓𝑝,𝒯𝑟(𝑖)

𝑤 = 0, ∀𝑤, ∀𝑝, ∀𝑖 ∈ 𝑅𝐷       (18c) 14 

Eq. (18a) can be rewritten as the complementarity constraints: 15 

0 ≤ 𝑓𝑝,𝑖
𝑤 ⊥ 𝐶̃𝑝,𝑖

𝑤 − 𝜋𝑤 ≥ 0,∀𝑝, ∀𝑖, ∀𝑤               (19) 16 

where ⊥ is an orthogonal sign which makes the inner product of two vectors be zero. In what follows, we 17 

first build a VI model for the RUE principle and proceed to examine the existence and uniqueness of the 18 

RUE solution. 19 
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3.1 Variational inequality model 1 

Let 𝚿(𝐟) = (𝐶𝑝,𝑖
𝑤 , 𝑝 ∈ 𝑃𝑤 , 𝑤 ∈ 𝑊, 𝑖 ∈ 𝐼)T denote the vector of the travel cost function and Ω denote 2 

the set of feasible path flows, namely, Ω ≜ {𝐟|Eqs. (1) and (5) are satisfied}. It can be seen that 𝚿: Ω ⊆3 

ℝ|𝑃||𝐼| → ℝ|𝑃||𝐼| where 𝑃 = ⋃ 𝑃𝑤𝑤 . Based on these notations, we present the VI model below: 4 

[VI-RUE]: find a vector 𝐟∗ ∈ Ω such that 5 

(𝐟 − 𝐟∗)T𝚿(𝐟∗) ≥ 0, ∀ 𝐟 ∈ Ω           (20) 6 

Proposition 1: Any solutions to the model [VI-RUE] fulfill the RUE principle.  7 

Proof. Eq. (20) is clearly equivalent to  8 

𝐟T𝚿(𝐟∗) ≥ 𝐟∗𝚿(𝐟∗), ∀ 𝐟 ∈ Ω              (21) 9 

A vector 𝐟∗  is a solution to the model [VI-RUE] if and only if 𝐟∗  is a solution of the mathematical 10 

programming in the variable 𝐟 (with 𝐟∗ considered fixed):  11 

min
𝐟∈Ω

𝐟T𝚿(𝐟∗)                 (22) 12 

The Karush-Kuhn-Tucker (KKT) condition for the mathematical programming (22) implies that 13 

{

0 ≤ 𝑓𝑝,𝑖
𝑤 ⊥ 𝐶̃𝑝,𝑖

𝑤 − 𝜋𝑤 ≥ 0

∑ ∑ 𝑓𝑝,𝑖
𝑤

𝑖𝑝 − 𝑞𝑤 = 0, ∀𝑤

𝑁𝑖 ∙ 𝑓𝑝,𝑖
𝑤 − 𝑓𝑝,𝒯𝑟(𝑖)

𝑤 = 0,∀𝑤, ∀𝑝, ∀𝑖 ∈ 𝑅𝐷

             (23) 14 

which is exactly the RUE principle. □ 15 

Note that although the mathematical programming (22) is the key to prove Proposition 1, it cannot be 16 

solved directly because its objective function involves the unknown solution 𝐟∗ of the model [VI-RUE]. 17 

One may argue that since the multipliers 𝜆𝑝,𝑖
𝑤  included in the ridesharing prices and compensations are based 18 

on paths, will they make the prices and compensations not OD-based? Defining the paths with positive 19 

ridesharing participants as the used ridesharing paths, we have the following propositions. 20 
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Proposition 2. The multipliers 𝜆𝑝,𝑖
𝑤  are equal over all the used ridesharing paths 𝑝 ∈ 𝑃𝑤 between OD pair 1 

𝑤. 2 

Proof. Without loss of generality, we assume 𝑝1, 𝑝2 are any two used ridesharing paths at the RUE state, 3 

i.e., 𝑝1, 𝑝2 ∈ 𝑃
𝑤. According to Eq. (16), we have: 4 

𝜆𝑝,𝑖
𝑤 = {

1

𝑁𝑖
(𝐶̃𝑝,𝑖
𝑤 − 𝜌𝑖𝑡𝑝

𝑤 − 𝐼𝑖(𝑡𝑝
𝑤) − 𝐶𝑝,𝑖

𝑀,𝑤 − 𝑐𝑡)

𝜌𝒯𝑟(𝑖)𝑡𝑝
𝑤 + 𝐼𝒯𝑟(𝑖)(𝑡𝑝

𝑤) + 𝐶𝑝,𝒯𝑟(𝑖)
𝑀,𝑤 − 𝐶̃𝑝,𝒯𝑟(𝑖)

𝑤
 ∀𝑝, ∀𝑤, ∀𝑖 ∈ 𝑅𝐷   (24) 5 

Since 𝐶𝑝,𝑖
𝑀,𝑤

 is OD-based, i.e., 𝐶𝑝1,𝑖
𝑀,𝑤 = 𝐶𝑝2,𝑖

𝑀,𝑤
, ∀𝑖 ∈ 𝑅𝐷 ∪ 𝑅, we have: 6 

𝜆𝑝1,𝑖
𝑤 − 𝜆𝑝2,𝑖

𝑤 = {

1

𝑁𝑖
[(𝐶̃𝑝1,𝑖

𝑤 − 𝐶̃𝑝2,𝑖
𝑤 ) − 𝜌𝑖 ∙ (𝑡𝑝1

𝑤 − 𝑡𝑝2
𝑤 ) − (𝐼𝑖(𝑡𝑝1

𝑤 ) − 𝐼𝑖(𝑡𝑝2
𝑤 ))]

𝜌𝒯𝑟(𝑖)(𝑡𝑝1
𝑤 − 𝑡𝑝2

𝑤 ) + (𝐼𝒯𝑟(𝑖)(𝑡𝑝1
𝑤 ) − 𝐼𝒯𝑟(𝑖)(𝑡𝑝2

𝑤 )) − (𝐶̃𝑝1,𝒯𝑟(𝑖)
𝑤 − 𝐶̃𝑝2,𝒯𝑟(𝑖)

𝑤 )
 ∀𝑝, ∀𝑤, ∀𝑖 ∈ 𝑅𝐷  (25) 7 

Since paths 𝑝1 and 𝑝2 are two used ridesharing paths at the RUE state, we have 𝐶̃𝑝1,𝑖
𝑤 = 𝐶̃𝑝2,𝑖

𝑤 , 𝐶̃𝑝1,𝒯𝑟(𝑖)
𝑤 =8 

𝐶̃𝑝2,𝒯𝑟(𝑖)
𝑤 . Therefore, 9 

𝜆𝑝1,𝑖
𝑤 − 𝜆𝑝2,𝑖

𝑤 = {

1

𝑁𝑖
[−𝜌𝑖 ∙ (𝑡𝑝1

𝑤 − 𝑡𝑝2
𝑤 ) − (𝐼𝑖(𝑡𝑝1

𝑤 ) − 𝐼𝑖(𝑡𝑝2
𝑤 ))]

𝜌𝒯𝑟(𝑖)(𝑡𝑝1
𝑤 − 𝑡𝑝2

𝑤 ) + (𝐼𝒯𝑟(𝑖)(𝑡𝑝1
𝑤 ) − 𝐼𝒯𝑟(𝑖)(𝑡𝑝2

𝑤 ))

 10 

⇒ (
1

𝑁𝑖
𝜌𝑖 + 𝜌𝒯𝑟(𝑖)) 𝑡𝑝1

𝑤 +
1

𝑁𝑖
𝐼𝑖(𝑡𝑝1

𝑤 ) + 𝐼𝒯𝑟(𝑖)(𝑡𝑝1
𝑤 ) = (

1

𝑁𝑖
𝜌𝑖 + 𝜌𝒯𝑟(𝑖)) 𝑡𝑝2

𝑤 +
1

𝑁𝑖
𝐼𝑖(𝑡𝑝2

𝑤 ) + 𝐼𝒯𝑟(𝑖)(𝑡𝑝2
𝑤 )        11 

Define 𝛷(∙) ≜ (
1

𝑁𝑖
𝜌𝑖 + 𝜌𝒯𝑟(𝑖)) × (∙) +

1

𝑁𝑖
𝐼𝑖(∙) + 𝐼𝒯𝑟(𝑖)(∙) , since 𝑡𝑝

𝑤  and 𝐼𝑖(∙)  are both strictly 12 

monotone functions with respect to 𝑡𝑝
𝑤, we know that 𝛷(∙) is also a strictly monotone function regarding 13 

𝑡𝑝
𝑤. Thus, 𝛷(𝑡𝑝1

𝑤 ) = 𝛷(𝑡𝑝2
𝑤 ) implies that 𝑡𝑝1

𝑤 = 𝑡𝑝2
𝑤 , and then 𝜆𝑝1,𝑖

𝑤 = 𝜆𝑝2,𝑖
𝑤 . □ 14 

Proposition 3. The used paths (including ridesharing paths and non-ridesharing paths) between an OD pair 15 

must be the shortest in terms of travel time for all roles (if any) between the OD pair at the RUE state.  16 
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Proof. Without loss of generality, we assume 𝑝1 is a used ridesharing path at the RUE state, 𝑝1 ∈ 𝑃
𝑤 . 1 

According to Eq. (18a), the generalized travel cost 𝐶̃𝑝1,𝑖
𝑤 = 𝜋𝑤 is minimal by definition. Note that we cannot 2 

simply employ the conclusion for the traditional UE state or directly claim 𝑡𝑝1
𝑤 = 𝐶𝑝1,𝑖

𝑤 /𝜌𝑖 = 𝜋
𝑤/𝜌𝑖 for solo 3 

driver 𝑖 ∈ 𝑆𝐷 to prove this proposition, since there may be no solo drivers but only ridesharing participants 4 

on some paths. We consider the following two cases.  5 

Case 1. If there are solo drivers on the path 𝑝1, the travel time has to be minimal, i.e., 𝑡𝑝1
𝑤 = 𝜋𝑤/𝜌𝑖∈𝑆𝐷 ≤6 

𝑡𝑝
𝑤 , ∀𝑝 ∈ 𝑃𝑤. Otherwise, there must exist 𝜋′𝑤 < 𝜋𝑤 making 𝑝1 with no solo drivers on it.  7 

Case 2. If there are no solo drivers on path 𝑝1, path 𝑝1 can only be a used ridesharing path. According to 8 

Proposition 2, the multipliers 𝜆𝑝,𝑖
𝑤  are equal over all the used ridesharing paths. Thus, 𝜌𝑖 × (∙) + 𝐼𝑖(∙9 

) = 𝐶̃𝑝1,𝑖
𝑤 − 𝐶𝑝1,𝑖

𝑀,𝑤 − 𝜂𝑝1,𝑖
𝑤  is minimal. Define 𝛤𝑖(∙) ≜ 𝜌𝑖 × (∙) + 𝐼𝑖(∙) ; then, 𝛤𝑖(∙)  is a strictly 10 

monotone increasing function with respect to travel time 𝑡𝑝
𝑤. Therefore, 𝑡𝑝1

𝑤 = 𝛤𝑖
−1(𝐶̃𝑝1,𝑖

𝑤 − 𝐶𝑝1,𝑖
𝑀,𝑤 −11 

𝜂𝑝1,𝑖
𝑤 )  ≤ 𝑡𝑝

𝑤 , ∀𝑝 ∈ 𝑃𝑤, i.e., the travel time on path 𝑝1 is minimal for all roles.  12 

The proof is thus completed. □  13 

It should be pointed out that the above propositions indicate that ridesharing drivers seek the paths 14 

with minimal travel times under the OD-based pricing strategy. It implies that TNCs may reduce the 15 

complaints about deliberate detours if they use an OD-based pricing strategy (Catriona, 2016; RideGuru, 16 

2018).   17 

Proposition 4. A shortest path in terms of travel time between an OD pair is also a shortest path in terms 18 

of generalized travel cost for all roles between the OD pair. 19 

Proof. Without loss of generality, we assume that 𝑝1 is a shortest path in terms of travel time between a 20 

given OD pair. We only need to consider the following two cases. 21 
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Case 1. For solo drivers, since 𝐶̃𝑝1,𝑖
𝑤 = 𝜌𝑖𝑡𝑝1

𝑤 , ∀𝑤, ∀𝑖 ∈ 𝑆𝐷 where 𝜌𝑖 > 0, 𝑝1 is obviously the shortest path 1 

in terms of generalized travel cost.  2 

Case 2. For ridesharing participants, we use the reduction to absurdity. Assume that 𝑝1 is not the shortest 3 

path in terms of generalized travel cost, there must be other paths which are shortest. We consider 4 

two circumstances. Circumstance 1. If all these shortest paths carry no ridesharing participants, 5 

then it falls into Case 1. Circumstance 2. If there is at least one path 𝑝2 that carries ridesharing 6 

participants, we have 𝐶̃𝑝1,2
𝑤 > 𝐶̃𝑝2,2

𝑤 , and 𝑓𝑝2,3
𝑤 > 0. According to Proposition 3, 𝑝2 is a used path 7 

and must also be a shortest path in terms of travel time, i.e., 𝑡𝑝1
𝑤 = 𝑡𝑝2

𝑤 . According to Eq. (16), we 8 

have 𝜆𝑝1,2
𝑤 > 𝜆𝑝2,2

𝑤  which leads to 𝐶̃𝑝1,3
𝑤 < 𝐶̃𝑝2,3

𝑤  and then 𝑓𝑝2,3
𝑤 = 0 which contradicts with 𝑓𝑝2,3

𝑤 >9 

0.  10 

The proof is thus completed. □  11 

3.2 Existence and uniqueness of the RUE solution  12 

It is necessary to show the existence and uniqueness of the RUE solution based on the model [VI-13 

RUE]. Since 𝚿(∙) is continuous on the compact set Ω, the existence is immediate, and the proof of existence 14 

is thus omitted. We pay attention to the uniqueness.  15 

Proposition 5. The model [VI-RUE] has a unique solution, namely, the path flow pattern is unique at the 16 

RUE state, if the following conditions hold: 17 

(A) 𝑀𝑖 is strictly monotone increasing, i.e., 𝜕𝑖𝑀𝑖 > 0 18 

(B) 𝜌1 > (∑
(𝜌𝑖+𝑑𝑖−𝜌1)

2

4𝜕𝑖𝑀𝑖
𝑖∈𝑅𝐷 + ∑

(𝜌𝑖+𝑑𝑖)
2

4𝜕𝑖𝑀𝑖
𝑖∈𝑅 )∑ 𝛿𝑎,𝑝

𝑤 𝑡̇𝑎𝑎  19 

where 𝜌1  is the VOT of solo drivers; 𝜕𝑖  denotes 
𝑑

𝑑∑ 𝑓𝑝,𝑖
𝑤

𝑝
; 𝑡̇𝑎  denotes 

𝑑𝑡𝑎(𝑥𝑎)

𝑑𝑥𝑎
; and 𝑑𝑖  denotes 

𝑑𝐼𝑖(𝑡𝑝
𝑤)

𝑑𝑡𝑝
𝑤  for 20 

simplicity. 21 
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Proof. We first investigate the positive definiteness of Jacobian matrix 𝐉  of 𝚿(∙) . For the sake of 1 

presentation, without loss of generality, we use the travel cost functions for five roles as an example to 2 

illustrate an explicit Jacobian matrix. The Jacobian matrix 𝐉 of 𝚿(∙) for this case is given by 3 

𝐉 =

[
 
 
 
 
 
 
 
 
 
𝜕𝐶𝑝,1

𝑤

𝜕𝑓𝑝,1
𝑤

𝜕𝐶𝑝,1
𝑤

𝜕𝑓𝑝,2
𝑤

𝜕𝐶𝑝,1
𝑤

𝜕𝑓𝑝,3
𝑤

𝜕𝐶𝑝,1
𝑤

𝜕𝑓𝑝,4
𝑤

𝜕𝐶𝑝,1
𝑤

𝜕𝑓𝑝,5
𝑤

𝜕𝐶𝑝,2
𝑤

𝜕𝑓𝑝,1
𝑤

𝜕𝐶𝑝,2
𝑤

𝜕𝑓𝑝,2
𝑤

𝜕𝐶𝑝,2
𝑤

𝜕𝑓𝑝,3
𝑤

𝜕𝐶𝑝,2
𝑤

𝜕𝑓𝑝,4
𝑤

𝜕𝐶𝑝,2
𝑤

𝜕𝑓𝑝,5
𝑤

𝜕𝐶𝑝,3
𝑤

𝜕𝑓𝑝,1
𝑤

𝜕𝐶𝑝,3
𝑤

𝜕𝑓𝑝,2
𝑤

𝜕𝐶𝑝,3
𝑤

𝜕𝑓𝑝,3
𝑤

𝜕𝐶𝑝,3
𝑤

𝜕𝑓𝑝,4
𝑤

𝜕𝐶𝑝,3
𝑤

𝜕𝑓𝑝,5
𝑤

𝜕𝐶𝑝,4
𝑤

𝜕𝑓𝑝,1
𝑤

𝜕𝐶𝑝,4
𝑤

𝜕𝑓𝑝,2
𝑤

𝜕𝐶𝑝,4
𝑤

𝜕𝑓𝑝,3
𝑤

𝜕𝐶𝑝,4
𝑤

𝜕𝑓𝑝,4
𝑤

𝜕𝐶𝑝,4
𝑤

𝜕𝑓𝑝,5
𝑤

𝜕𝐶𝑝,5
𝑤

𝜕𝑓𝑝,1
𝑤

𝜕𝐶𝑝,5
𝑤

𝜕𝑓𝑝,2
𝑤

𝜕𝐶𝑝,5
𝑤

𝜕𝑓𝑝,3
𝑤

𝜕𝐶𝑝,5
𝑤

𝜕𝑓𝑝,4
𝑤

𝜕𝐶𝑝,5
𝑤

𝜕𝑓𝑝,5
𝑤 ]
 
 
 
 
 
 
 
 
 

=4 

[
 
 
 
 
 
 

𝜌1∑ 𝛿𝑎,𝑝
𝑤 𝑡̇𝑎𝑎 𝜌1∑ 𝛿𝑎,𝑝

𝑤 𝑡̇𝑎𝑎 𝜌1∑ 𝛿𝑎,𝑝
𝑤 𝑡̇𝑎𝑎 0 0

(𝜌2 + 𝑑2)∑ 𝛿𝑎,𝑝
𝑤 𝑡̇𝑎𝑎 (𝜌2 + 𝑑2)∑ 𝛿𝑎,𝑝

𝑤 𝑡̇𝑎𝑎 + 𝜕2𝑀2 (𝜌2 + 𝑑2)∑ 𝛿𝑎,𝑝
𝑤 𝑡̇𝑎𝑎 0 0

(𝜌3 + 𝑑3)∑ 𝛿𝑎,𝑝
𝑤 𝑡̇𝑎𝑎 (𝜌3 + 𝑑3)∑ 𝛿𝑎,𝑝

𝑤 𝑡̇𝑎𝑎 (𝜌3 + 𝑑3)∑ 𝛿𝑎,𝑝
𝑤 𝑡̇𝑎𝑎 + 𝜕3𝑀3 0 0

(𝜌4 + 𝑑4)∑ 𝛿𝑎,𝑝
𝑤 𝑡̇𝑎𝑎 (𝜌4 + 𝑑4)∑ 𝛿𝑎,𝑝

𝑤 𝑡̇𝑎𝑎 (𝜌4 + 𝑑4)∑ 𝛿𝑎,𝑝
𝑤 𝑡̇𝑎𝑎 𝜕4𝑀4 0

(𝜌5 + 𝑑5)∑ 𝛿𝑎,𝑝
𝑤 𝑡̇𝑎𝑎 (𝜌5 + 𝑑5)∑ 𝛿𝑎,𝑝

𝑤 𝑡̇𝑎𝑎 (𝜌5 + 𝑑5)∑ 𝛿𝑎,𝑝
𝑤 𝑡̇𝑎𝑎 0 𝜕5𝑀5]

 
 
 
 
 
 

         (26) 5 

Since 𝐉 is an asymmetric matrix whose positive definiteness cannot be proved by the methods for the 6 

symmetric matrices (Johnson, 1970), we construct a symmetric matrix and apply the third type of Gauss-7 

Jordan operation to it: 8 

𝐉̃ = 𝐉 + 𝐉T = 9 
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[
 
 
 
 
 
 
 
 
 
 
 2𝜌1∑𝛿𝑎,𝑝

𝑤 𝑡̇𝑎
𝑎

(𝜌1 + 𝜌2 + 𝑑2)∑𝛿𝑎,𝑝
𝑤 𝑡̇𝑎

𝑎

(𝜌1 + 𝜌3 + 𝑑3)∑𝛿𝑎,𝑝
𝑤 𝑡̇𝑎

𝑎

(𝜌4 + 𝑑4)∑𝛿𝑎,𝑝
𝑤 𝑡̇𝑎

𝑎

(𝜌5 + 𝑑5)∑𝛿𝑎,𝑝
𝑤 𝑡̇𝑎

𝑎

(𝜌1 + 𝜌2 + 𝑑2)∑𝛿𝑎,𝑝
𝑤 𝑡̇𝑎

𝑎

2(𝜌2 + 𝑑2)∑𝛿𝑎,𝑝
𝑤 𝑡̇𝑎

𝑎

+ 2𝜕2𝑀2 (𝜌2 + 𝜌3 + 𝑑2 + 𝑑3)∑𝛿𝑎,𝑝
𝑤 𝑡̇𝑎

𝑎

(𝜌4 + 𝑑4)∑𝛿𝑎,𝑝
𝑤 𝑡̇𝑎

𝑎

(𝜌5 + 𝑑5)∑𝛿𝑎,𝑝
𝑤 𝑡̇𝑎

𝑎

(𝜌1 + 𝜌3 + 𝑑3)∑𝛿𝑎,𝑝
𝑤 𝑡̇𝑎

𝑎

(𝜌2 + 𝜌3 + 𝑑2 + 𝑑3)∑𝛿𝑎,𝑝
𝑤 𝑡̇𝑎

𝑎

2(𝜌3 + 𝑑3)∑𝛿𝑎,𝑝
𝑤 𝑡̇𝑎

𝑎

+ 2𝜕3𝑀3 (𝜌4 + 𝑑4)∑𝛿𝑎,𝑝
𝑤 𝑡̇𝑎

𝑎

(𝜌5 + 𝑑5)∑𝛿𝑎,𝑝
𝑤 𝑡̇𝑎

𝑎

(𝜌4 + 𝑑4)∑𝛿𝑎,𝑝
𝑤 𝑡̇𝑎

𝑎

(𝜌4 + 𝑑4)∑𝛿𝑎,𝑝
𝑤 𝑡̇𝑎

𝑎

(𝜌4 + 𝑑4)∑𝛿𝑎,𝑝
𝑤 𝑡̇𝑎

𝑎

2𝜕4𝑀4 0

(𝜌5 + 𝑑5)∑𝛿𝑎,𝑝
𝑤 𝑡̇𝑎

𝑎

(𝜌5 + 𝑑5)∑𝛿𝑎,𝑝
𝑤 𝑡̇𝑎

𝑎

(𝜌5 + 𝑑5)∑𝛿𝑎,𝑝
𝑤 𝑡̇𝑎

𝑎

0 2𝜕5𝑀5
]
 
 
 
 
 
 
 
 
 
 
 

1 

3−𝑡𝑦𝑝𝑒 𝐺𝑎𝑢𝑠𝑠−𝐽𝑜𝑟𝑑𝑎𝑛 𝑒𝑙𝑖𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝑠
→                            

[
 
 
 
 
 
 
2𝜌1∑𝛿𝑎,𝑝

𝑤 𝑡̇𝑎
𝑎

− (∑
(𝜌𝑖 + 𝑑𝑖 − 𝜌1)

2

2𝜕𝑖𝑀𝑖

3

𝑖=2

+∑
(𝜌𝑖 + 𝑑𝑖)

2

2𝜕𝑖𝑀𝑖

5

𝑖=4

)(∑𝛿𝑎,𝑝
𝑤 𝑡̇𝑎

𝑎

)

2

0 0 0 0

0 2𝜕2𝑀2 0 0 0
0 0 2𝜕3𝑀3 0 0
0 0 0 2𝜕4𝑀4 0
0 0 0 0 2𝜕5𝑀5]

 
 
 
 
 
 

 2 

The 3-type Gauss-Jordan elimination does not change the positive definiteness of a matrix. By checking 3 

the determinants associated with all the up-left sub-matrices of 𝐉̃, it can be seen that 𝐉̃ is positive definite 4 

under Conditions (A) and (B).  5 

According to the definition of positive definiteness, the matrix 𝐉̃ is positive definite if and only if 6 

𝐱T𝐉̃𝐱 > 0 for any non-zero vector 𝐱, namely: 7 

 𝐱T𝐉̃𝐱 = 𝐱T(𝐉+ 𝐉T)𝐱 = 2 ∙ 𝐱T𝐉𝐱 > 0    (27) 8 

The right-hand-side of above equation implies that matrix 𝐉 is positive definite. In other words, 𝚿(∙) is 9 

strictly monotone increasing. According to Theorem 2.3.3(a) of Pang and Facchinei (2003), it can be thus 10 

concluded that the model [VI-RUE] has one unique solution. □ 11 

Note that Condition (A), i.e., 𝜕𝑖𝑀𝑖 > 0, ensures that the ridesharing price increases as the ridesharing 12 

demand increases and the compensation decreases when the supply increases, which is exactly the 13 

requirement of the surge pricing strategies. Besides, the travel time cost and inconvenience cost are inherent 14 

costs whose values can be measured by surveys, while the ridesharing prices and compensations are 15 

artificial costs set by the TNCs based on their pricing strategies. Therefore, Condition (B) 𝜌1 >16 

(∑
(𝜌𝑖+𝑑𝑖−𝜌1)

2

4𝜕𝑖𝑀𝑖
𝑖∈𝑅𝐷 + ∑

(𝜌𝑖+𝑑𝑖)
2

4𝜕𝑖𝑀𝑖
𝑖∈𝑅 )∑ 𝛿𝑎,𝑝

𝑤 𝑡̇𝑎𝑎 is actually an assumption for the employed pricing strategy 17 
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for specific networks. It suggests that the term 𝜕𝑖𝑀𝑖 should be larger than a threshold. In other words, the 1 

surge pricing strategy should not be too gentle. Moreover, apart from the predetermined coefficients and 2 

functions 𝜌𝑖 and 𝑑𝑖, we find that the term ∑ 𝛿𝑎,𝑝
𝑤 𝑡̇𝑎𝑎  is usually very small for specific networks. For instance, 3 

if we use the Bureau of Public Roads (BPR) function, it holds that 4 

𝑡̇𝑎 = 𝑡𝑎,0𝑏𝑒(
𝑥𝑎

𝑦𝑎
)𝑒−1

1

𝑦𝑎
, ∀𝑎 ∈ 𝐴          (28) 5 

where 𝑡𝑎,0 denotes the free-flow travel time of link 𝑎; the parameters 𝑏 = 0.15 and 𝑒 = 4 in general; 𝑥𝑎 6 

denotes the flow on link 𝑎; 𝑦𝑎 denotes the capacity of link 𝑎. The term 
𝑥𝑎

𝑦𝑎
 is the volume-to-capacity (V/C) 7 

ratio which approximates 1. Since the capacity 𝑦𝑎 is large, e.g., the magnitude of 𝑦𝑎 is larger than 104 for 8 

all links in the Sioux-Falls network, 𝑡̇𝑎 is a very small number in practice, which makes 𝜕𝑖𝑀𝑖 have a very 9 

wide range of values under Condition (B). In summary, both Conditions (A) and (B) are mild for the pricing 10 

strategy in practice.  11 

4. Parallel Solution Method 12 

Most VI problems can be reformulated into complementarity problems (CPs) and then solved by 13 

commercial solvers. However, it is known that most solvers require good model formulations, gentle scales, 14 

and appropriate initial points for convergence. Take the PATH solver as an example; even though the model 15 

is well defined, a large-scale numerical experiment or an inappropriate initial point may still lead to non-16 

convergence (Ferris and Munson, 2014). Hence, we develop an efficient solution method to find an exact 17 

solution for the large-scale RUE problems.  18 

Because of the non-additivity of the generalized travel costs, the model [VI-RUE] involves path flows, 19 

resulting in the computationally demanding issue. The projection methods are considered very efficient to 20 

solve VI problems because of the small amount of computation time in each iteration. Since we have 21 

rigorously demonstrated the monotonicity of the model [VI-RUE], a group of projection methods for 22 

solving the monotone VI models can be utilized. In addition, to obtain an exact solution and to further 23 

speed-up the computation, we use the column generation and parallel computing techniques to design an 24 

effective solution method. 25 
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4.1 Projection methods 1 

Before proposing the parallel solution method, we briefly introduce the projection methods. It is well-2 

known that VI problems are identical to the following projection operator (Eaves, 1971): 3 

[𝑄]: 𝐟 = 𝑃Ω[𝐟 − 𝚿(𝐟)]       (29) 4 

where 𝑃Ω(∙) denotes the projection of a vector (∙) on the set Ω in the Euclidean-norm, i.e.,  5 

𝑃Ω(∙) = argmin
𝐮∈Ω

‖𝐮 − (∙)‖             (30) 6 

Among various projection methods for solving VI problems, the basic projection method proposed by 7 

Goldstein (1964) and Levitxn and Polyak (1966) is presented below: 8 

[𝑄′]: 𝐟𝑘+1 = 𝑃Ω[𝐟
𝑘 − 𝛽𝑘𝚿(𝐟

𝑘)]           (31) 9 

where 𝛽𝑘 is the step size at the k-th iteration; 𝐟𝑘 is the vector of the path flow at the k-th iteration. With the 10 

different conditions for convergence, many variants of the basic projection methods have been developed, 11 

including the self-adaptive projection method (He et al., 2009) and the projection-based prediction-12 

correction method (Fu and He, 2010). Both of them require only the co-coercivity of the vector function 13 

𝚿(∙) to converge which is a milder condition than the strong monotonicity (Han and Lo, 2004).  14 

The projection methods have a wide range of application for solving VI models of UE traffic 15 

assignment (Han et al., 2012; Jing et al., 2017; Liu et al., 2018; Meng et al., 2014). We extend the projection 16 

methods to the RUE problem. However, the projection operations in these methods usually occupy 17 

excessive computing resources, especially for large-scale problems.  18 

A parallel-processing procedure on the projection operations is a direct and ideal engineering solution 19 

for accelerating the computation. We refer to the parallel computing method for the projection-type methods 20 

as the parallel projection (PP) method hereafter. Network decomposition is one commonly used strategy 21 

for solving the TAPs on parallel/distributed computing systems (Hribar et al., 2001; Liu and Meng, 2013). 22 

It partitions the overall network into small sub-networks. Herein, similar to the network decomposition, the 23 
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PP method decomposes the projection operation into a number of sub-projection operations. Each sub-1 

projection operation calculates the projection for a sub-network with only one OD pair. We assign multiple 2 

processors to handle these sub-projection operations. Thus, in this PP method, each processor calculates 3 

the projection for only one sub-network each time, which significantly saves the in-memory resources, and 4 

by making full use of the processors, the computational efficiency can be significantly improved. Besides, 5 

column generation is another widely used technique to save the in-memory resources and improve the 6 

computational efficiency for the large-scale TAP problems (Galligari and Sciandrone, 2019; Ji et al., 2017). 7 

It puts new shortest paths (if any) to the path sets at each iteration, thus the computational resources for 8 

computing and storing a priori path sets are saved.     9 

4.2 Parallel self-adaptive projection method incorporating column generation 10 

Unlike the self-adaptive projection method proposed by He et al. (2009), many other projection 11 

methods need a coercive module to determine the step size 𝛽𝑘. Because of its mild convergence condition 12 

and no need the coercive module, we modify it and propose the following PSPM incorporating column 13 

generation to solve the model [VI-RUE].  14 

Step 1 (Initiation): Given 𝜀 > 0, 𝜇 ∈ (0,1), 𝛿 ∈ (0,2), 𝛽0 > 0, 𝑘 = 1, 𝑙 = 0, the initial path set 𝑃𝑤  for 15 

each OD pair 𝑤 ∈ 𝑊 , and a feasible path flow vector 𝐟𝑤
1 ∈ Ω𝑤 , where Ω𝑤 =16 

{ 𝐟𝑤|Eqs. (1) and (5) are satisfied}.  17 

Step 2 (Update path set): Find current shortest paths 𝑝̂𝑤
𝑘 , ∀𝑤 ∈ 𝑊 with respect to link travel time 𝑡𝑎(𝐱

𝑘), 18 

∀𝑎 ∈ 𝐴, and let 𝑓𝑤
𝑘 denote the current flow on path 𝑝̂𝑤

𝑘 . Update 𝑃𝑤 = 𝑃𝑤 ∪ {𝑝̂𝑤
𝑘 } (note that 𝑝̂𝑤

𝑘  may 19 

already belong to 𝑃𝑤 before updating) and 𝐟𝑤
𝑘 = 𝐟𝑤

𝑘 ∪ {𝑓𝑤
𝑘}. 20 

Step 3 (Check stop criterion): If √
∑ (𝜀𝑤

𝑘 )2𝑤

∑ (𝜎𝑤
𝑘 )2𝑤
< 𝜀, then stop; otherwise, go to Step 4. Here we have: 21 

[𝑄𝑤]: 𝐠𝑤
𝑘 ≔ 𝑃Ω𝑤[𝐟𝑤

𝑘 −𝚿(𝐟𝑤
𝑘 )]              (32) 22 

𝜀𝑤
𝑘 ≔ ‖𝐟𝑤

𝑘 − 𝐠𝑤
𝑘 ‖      (33) 23 
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𝜎𝑤
𝑘 ≔ ‖𝐟𝑤

𝑘‖              (34) 1 

Step 4. (Determine step size) Let 2 

𝛽𝑘 ≔ 𝜇𝑙𝛽𝑘−1       (35) 3 

[𝑄𝑤
′ ]: 𝐟𝑤

𝑘+1 ≔ 𝑃Ω𝑤[𝐟𝑤
𝑘 − 𝛽𝑘𝚿(𝐟𝑤

𝑘 )]      (36) 4 

𝛼𝑤
𝑘 ≔ 𝛽𝑘||𝚿(𝐟𝑤

𝑘 ) − 𝚿(𝐟𝑤
𝑘+1)||2     (37) 5 

𝜔𝑤
𝑘 ≔ (𝐟𝑤

𝑘 − 𝐟𝑤
𝑘+1)T[𝚿(𝐟𝑤

𝑘 ) − 𝚿(𝐟𝑤
𝑘+1)]         (38) 6 

If 
∑ 𝛼𝑤

𝑘
𝑤

∑ 𝜔𝑤
𝑘

𝑤
≤ 2 − 𝛿, let 𝑘 = 𝑘 + 1 and go to Step 2; otherwise, 𝑙 = 𝑙 + 1, repeat Step 4. 7 

 8 

The projection operations in [𝑄𝑤 ] and [𝑄𝑤
′ ] shown in Steps 3 and 4 are solved by the following 9 

quadratic programming: 10 

arg min
𝐡∈Ω𝑤

||𝐡 − [𝐟𝑤
𝑘 − 𝛽𝑘𝚿(𝐟𝑤

𝑘 )]||          (39) 11 

where 𝛽𝑘 = 1 for [𝑄𝑤 ]. Step 2 is known as the column generation that augments the path set 𝑃𝑤  by 12 

including the path 𝑝̂𝑤
𝑘  that is the shortest in terms of travel time at each iteration 𝑘. Leventhal et al. (1973) 13 

proved that column generation guarantees a global convergence without listing all the paths to save the in-14 

memory resources and improve the computational efficiency. It is widely used for the traditional UE 15 

problem where the travel time is taken into account to find the shortest path. Although it is the generalized 16 

travel cost rather than the travel time that affects travelers’ route choice in the RUE problem, according to 17 

Proposition 4, we know that the shortest paths in terms of travel time between an OD pair are also the 18 

shortest paths in terms of generalized travel cost for all roles between the OD pair for the proposed model 19 

[VI-RUE]. Thus, we only need to find the shortest paths in terms of travel time, and the column generation 20 

can be easily incorporated into the solution method. For other RUE models where Proposition 4 does not 21 

hold, the incorporation of column generation may be non-trivial. In this way, the benefits of saving in-22 

memory resources and improving computational efficiency partially result from our model development. 23 

Moreover, since the column generation and parallel computing techniques do not change the convergence 24 
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condition for the self-adaptive projection method, the convergence of the proposed method follows He et 1 

al. (2009).  2 

4.3 Performance measures 3 

As the size of the path set increases, the execution time and the in-memory requirements may increase 4 

nonlinearly, where the former one measures the computational efficiency and the latter one affects the 5 

computational feasibility. If a computing implementation takes excessive time to execute, the 6 

computational efficiency is low; if it requires more in-memory resources than provided, the computing may 7 

be infeasible. Thus, the execution time and the in-memory requirement will be used as the performance 8 

measures in the evaluation of the proposed parallel method against the traditional projection method. 9 

Besides, several other performance measures are used to evaluate the performance of parallel 10 

computing implementations in the literature, among which the most frequently used one is the speedup that 11 

measures the computation efficiency of parallel computing approaches (Liu and Meng, 2013). The speedup 12 

for j processors can be defined as: 13 

𝑆(𝑗) =
𝑇1

𝑇𝑗
             (40) 14 

where 𝑇𝑗 is the execution time when 𝑗 processors are involved in the calculation. Note that as the number 15 

of processors increases, the computing time spent in data communication would keep increasing. Therefore, 16 

the speedup would be a sub-linear function with respect to the number of processors. 17 

Another performance measure is called the time-saving ratio proposed by Zhang et al. (2017). It 18 

measures the ratio of the execution time saved by the parallel method and is defined as: 19 

𝑇(𝑗) =
𝑇0−𝑇𝑗

𝑇0
              (41) 20 

where 𝑇0 denotes the execution time of the traditional (non-parallel) method. 21 
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5. Numerical Experiments 1 

In this section, three networks, i.e., Braess network, Sioux-Falls network, and Eastern-Massachusetts 2 

network, will be used for the numerical experiments. We first use the Braess network to analyze the impact 3 

of ridesharing services on the network and carry out the sensitivity analysis on the VOTs, inconvenience 4 

coefficients, pricing coefficients, benchmark prices, and trip costs to provide some practical insights. We 5 

then use the Sioux-Falls network and the Eastern-Massachusetts network to examine the computational 6 

feasibility and efficiency of the proposed solution method. The results are obtained by solving the VI model 7 

using the developed PSPM.  8 

5.1 Braess network 9 

We first examine how the introduction of ridesharing affects the equilibrium flow pattern and the 10 

resultant travel costs of all the roles by comparing the UE state with and without ridesharing services. The 11 

Braess network, its link cost functions and travel demand are shown in Fig. 1. There are three paths in total: 12 

Path 1: 1-2-4, Path 2: 1-3-4 and Path 3: 1-2-3-4.  13 

 14 

1 4

2

3

t1=10x1

t3=10x3t2=50+x2

t4=50+x4

t5=10+x2
d=6

 15 

Fig. 1. Braess network. 16 

 17 

We assume that there are five roles and the functions 𝐼𝑖(∙) and 𝑀𝑖(∙) for the inconvenience costs, the 18 

prices, and the compensations follow the affine function. The generalized travel cost functions of the five 19 

roles are expressed by  20 
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{
  
 

  
 

𝐶𝑝,1
𝑤 = 𝜌1𝑡𝑝

𝑤 + 𝑐𝑡

𝐶𝑝,2
𝑤 = 𝜌2𝑡𝑝

𝑤 + 𝛾2𝑡𝑝
𝑤 − (𝐵2

𝑤 −𝑚2∑ 𝑓𝑝,2
𝑤

𝑝 ) + 𝑐𝑡

𝐶𝑝,3
𝑤 = 𝜌3𝑡𝑝

𝑤 + 𝛾3𝑡𝑝
𝑤 − (𝐵3

𝑤 −𝑚3∑ 𝑓𝑝,3
𝑤

𝑝 ) + 𝑐𝑡

𝐶𝑝,4
𝑤 = 𝜌4𝑡𝑝

𝑤 + 𝛾4𝑡𝑝
𝑤 + (𝐵4

𝑤 +𝑚4∑ 𝑓𝑝,4
𝑤

𝑝 )

𝐶𝑝,5
𝑤 = 𝜌5𝑡𝑝

𝑤 + 𝛾5𝑡𝑝
𝑤 + (𝐵5

𝑤 +𝑚5∑ 𝑓𝑝,5
𝑤

𝑝 )

, ∀𝑤, 𝑝             (42) 1 

where 𝛾𝑖 is the inconvenience coefficient for role 𝑖; and 𝑚𝑖 is the coefficient for calculating the surge price 2 

or compensation for role 𝑖. For simplicity, we assume that the riders’ VOT is lower than their drivers’, i.e., 3 

𝜌𝒯𝑟(𝑖) < 𝜌𝑖 , ∀𝑖 ∈ {2,3}. Besides, since the inconvenience costs are relative to the numbers of in-vehicle 4 

strangers, we also assume that the inconvenience coefficient for the 2-rider ridesharing is higher than that 5 

of 1-rider, i.e., 𝛾3 = 𝛾5 > 𝛾2 = 𝛾4. We assume 𝑚𝑖 > 0 to meet the requirement of surge pricing strategy. 6 

The values of these parameters are listed in Table 1.  7 

Table 1. Parameter setting for the Braess network 8 

Description Constants Values 

Values of time 𝜌1, 𝜌2, 𝜌3, 𝜌4, 𝜌5 1, 0.8, 0.8, 0.4, 0.4 

Inconvenience coefficients 𝛾2, 𝛾3, 𝛾4, 𝛾5 0.3, 0.4, 0.3, 0.4 

Pricing coefficients 𝑚2, 𝑚3, 𝑚4, 𝑚5 5, 5, 1, 1 

Benchmark price 𝐵𝑖 20 

Trip cost 𝑐𝑡 1 

 9 

Table 2 shows the values of the concerned variables at the RUE state. Specifically, it can be seen that 10 

the generalized travel cost 𝐶̃𝑝,𝑖 of each role 𝑖 on the used path 𝑝 is minimal, which aligns with the RUE 11 

principle. The travel time 𝑡𝑝 on the used path is minimal as Proposition 3 exhibits. In addition, we find that 12 

ridesharing participants only exist on Path 3. For the Braess network without ridesharing services, the travel 13 

time is 92. However, with ridesharing, the travel time on Paths 1 and 2 reduces to 82.4, even though no 14 

ridesharing participants travel on them. This is because some travelers spontaneously switch to riders due 15 
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to the introduction of ridesharing, which reduces the number of vehicle trips. Therefore, ridesharing reduces 1 

the travel time for not only ridesharing participants but also solo drivers. All the involved players benefit 2 

from ridesharing services. This finding provides strong justification to promote ridesharing services for the 3 

sake of congestion mitigation. 4 

Table 2. Numerical results for the Braess network 5 

(𝑝, 𝑖) 

With ridesharing   Without ridesharing  

𝐶̃𝑝,𝑖 𝑓𝑝,𝑖 𝑡𝑝  𝑓𝑝 𝑡𝑝 

(1,1) 83.4 0 

82.4 

 

2 92 

(1,2) 85.4 0  

(1,3) 79.9 0  

(1,4) 80.4 0  

(1,5) 85.9 0  

(2,1) 83.4 0 

82.4 

 

2 92 

(2,2) 85.4 0  

(2,3) 79.9 0  

(2,4) 80.4 0  

(2,5) 85.9 0  

(3,1) 79.0 0.475 

78.0 

 

2 92 

(3,2) 80.6 2.762  

(3,3) 74.6 0  

(3,4) 77.4 2.762  

(3,5) 82.4 0  

 6 
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We further investigate the impacts of the VOTs, the inconvenience coefficients, and the pricing 1 

coefficients on the role choice of the travelers. Moreover, since the prices and trip costs may directly affect 2 

the supply and demand and then the number of vehicle trips, we also examine the impact of the benchmark 3 

prices and trip costs on the role choice, the vehicle trips and the travel time.  4 

Without loss of generality, we take the VOT of riders and the inconvenience coefficient for 2-rider 5 

ridesharing as examples. Figure 2 shows the variation of the role choice against the VOT of riders. It can 6 

be seen that the number of riders decreases, while the number of ridesharing drivers first increases then 7 

decreases since restricted by the number of riders. As the VOT of riders increases, the riders switch to other 8 

players, i.e., the ridesharing drivers and solo drivers. It suggests that VOT is an influential factor for the 9 

travelers’ role choice. If the riders have a higher VOT, they will perceive higher travel time costs, and the 10 

difference between the travel time costs of riders and those of drivers will be narrowed. As a result, more 11 

riders will switch to drivers. Figure 3 shows the variation of the two ridesharing driver roles. We omit the 12 

riders because the riders 𝒯𝑟(𝑖) are exactly 𝑁𝑖 times as many as the ridesharing drivers 𝑖, ∀𝑖 ∈ 𝑅𝐷. It can be 13 

seen that, as the inconvenience coefficient increases, the number of 2-rider ridesharing activities decreases; 14 

and that of 1-rider ridesharing activities increases. This is because, as 2-rider ridesharing activities become 15 

more inconvenient, fewer ridesharing participants would like to participate in them. They change from 2-16 

rider ridesharing to 1-rider that is more attractive. It decreases the occupancy ratio of ridesharing vehicles. 17 

This finding suggests that the inconvenience cost may be a vital factor for the participants’ choice of 18 

ridesharing services. The TNCs can promote their premium ridesharing services that have fewer in-vehicle 19 

riders, e.g., the UberX, KuaiChe, and GrabCar services, by improving the service quality and reducing the 20 

inconvenience cost. 21 
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 1 

 2 

Fig. 2. The effect of the VOT of riders on the role choice 3 

 4 

 5 

Fig. 3. The effect of the inconvenience coefficient for 2-rider ridesharing on the role choice. 6 

The increasing VOTs and inconvenience coefficients may also influence the average occupancy ratio 7 

of the whole network and the market penetration rate of ridesharing services that are concerned by the 8 

traffic managers and the TNCs, respectively. We define the average occupancy ratio as the ratio of all the 9 
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travelers to all the drivers, i.e., 
𝑞𝑤

∑ ∑ 𝑓𝑝,𝑖
𝑤

𝑝𝑖∈𝑆𝐷∪𝑅𝐷
, and the market penetration rate as the ratio of ridesharing 1 

participants to all the travelers, i.e., 
∑ ∑ 𝑓𝑝,𝑖

𝑤
𝑝𝑖∈𝑅𝐷∪𝑅

𝑞𝑤
. Figure 4 shows how the variation of the VOTs and the 2 

inconvenience coefficients affects the average occupancy ratio and the market penetration rate. As the 3 

VOTs and inconvenience coefficients increase, the average occupancy ratio and the market penetration rate 4 

decrease simultaneously. This observation suggests that a low travel time cost or inconvenience cost of 5 

each ridesharing participant may help increase the average occupancy ratio and the market penetration rate. 6 

Traffic managers and TNCs may try to reduce the travel time cost and the inconvenience cost for ridesharing 7 

participants to mitigate traffic congestion and attract customers.  8 

  9 

Fig. 4. The effect of the VOTs and inconvenience coefficients on the average occupancy ratio and market 10 

penetration rate. 11 

Figure 5 shows the variation of the role choice against the pricing coefficients. It can be seen that, as 12 

the pricing coefficient increases, the number of ridesharing participants decreases; and that of solo drivers 13 

increases. This is because, as ridesharing activities become more expensive for riders or less profitable for 14 

ridesharing drivers, their generalized travel costs become higher, which reduces travelers’ willingness to 15 
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participate in ridesharing. This finding suggests that although an overly surged pricing strategy increases 1 

TNC’s profit per ridesharing activity, it will also decrease the number of ridesharing activities. A proper 2 

pricing strategy may help TNCs maximize their profit. 3 

 4 

Fig. 5. The effects of the pricing coefficients on the role choice. 5 

Figure 6 shows the variation of the role choice against the benchmark price and trip costs. As the 6 

benchmark price increases, the number of riders decreases and that of ridesharing drivers increases, which 7 

shows that a high price may restrain the ridesharing demand and stimulate the supply. Moreover, we observe 8 

that the number of 1-rider ridesharing activities increases and that of 2-rider ridesharing activities decreases. 9 

This suggests that a high price may draw the ridesharing participants into the ridesharing services with 10 

fewer in-vehicle riders. When the trip costs increase, more travelers want to take a ride rather than to drive, 11 

which makes the 2-rider ridesharing service more attractive.  12 
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 1 

 2 

Fig. 6. The effects of the benchmark price and trip cost on the role choice. 3 

Figure 7 shows the variation of the number of vehicle trips and the travel time against the benchmark 4 

price and trip costs. It suggests that a low benchmark price (or a high trip cost) may increase the number of 5 

riders and reduce the vehicle trips and thus the travel time of each traveler. We investigate the relationship 6 

between the travel time and the number of riders by sampling in Figure 8, where each marker represents a 7 

sample. It suggests that the more the riders (i.e., the more vehicle trips reduced by ridesharing), the lower 8 

the travel time. Note that this is only a general speaking since the well-known Braess paradox may happen 9 

when the number of vehicle trips changes. An interesting discussion about the relationship between the 10 

Braess paradox and the amount of traffic demand [vehicle trips] can be seen in Ma et al. (2018b).   11 
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 1 

 2 

Fig. 7. The effect of the benchmark price and trip cost on travel time and vehicle trips. 3 

 4 

 5 

Fig. 8. The effect of the number of riders on travel time. 6 

 7 
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5.2 Sioux-Falls network 1 

Herein, we solve the RUE problem for the Sioux-Falls network to assess the validity of the proposed 2 

solution method. The link flows and the number of paths between each OD pair at the RUE state are 3 

illustrated. The computational feasibility and efficiency of the proposed solution method are tested by 4 

comparing the in-memory requirement and the execution time of the traditional method and the proposed 5 

method when only one processor is utilized. Finally, to test the performance in parallel computing of the 6 

proposed method, the variation of the speedup and the time-saving ratio against the number of utilized 7 

processors will be investigated. We use the well-known Sioux-Falls network for the test, which has 24 8 

nodes, 76 links, and 528 OD pairs. The topology of the Sioux-Falls network is shown in Figure 9. The 9 

Bureau of Public Roads (BPR) function is used to describe the link travel time: 10 

𝑡𝑎(𝑥𝑎) = 𝑡𝑎,0 [1 + 𝑏 (
𝑥𝑎

𝑦𝑎
)
𝑒
] , ∀𝑎 ∈ 𝐴    (43) 11 

where 𝑡𝑎,0 denotes the free-flow travel time of link 𝑎; 𝑦𝑎 denotes the capacity of link 𝑎; and the parameters 12 

𝑏 = 0.15, 𝑒 = 4 in general. The values of the free-flow travel time, the link capacity, and the OD trips can 13 

be found in Bar-Gera (2016). 14 
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 1 

Fig. 9. Sioux-Falls network. 2 

The computing platform used for this study is a PC system using Intel Core i7 3770 (Quad-Core; 3 

Intel® Core™, Santa Clara, CA, USA) processor, with a clock speed of 3.40 GHz, 1 MB L2 cache per core, 4 

8 MB L3 cache, and 6 GB of 1333 MHz DDR3 RAM. The operating system is Windows 7 Enterprise SP1 5 

64 Bit version. The programs for this study are coded in MATLAB R2015a. 6 

We solve the RUE problem by using the proposed solution method incorporating column generation. 7 

Table 3 illustrates the link flows at the RUE state. Besides, it is known that the column generation augments 8 

the initial path set by including new shortest paths (if any) at each iteration to ensure a globally optimal 9 

solution (Leventhal et al., 1973). Thus, the path set increases as the solution method proceeds, which makes 10 

the computational performance strongly depends on the size of the path set. However, it has been supported 11 

by many studies that, although the actual number of paths in the network may be large, the number of paths 12 
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included in the working path set 𝑃𝑤 remains small (Leventhal et al., 1973). To verify this, we show the 1 

number of paths at the RUE state. Table 4 suggests that the number of paths in each path set is not more 2 

than 5. Details can be seen in Appendix B. 3 

Table 3. Link flows at the RUE state 4 

Link Flow Link Flow Link Flow Link Flow 

1 4796.3 20 12559.1 39 10948.3 58 10101.8 

2 8325.5 21 6963.4 40 9609.7 59 8609.3 

3 4808.0 22 8237.6 41 8936 60 18837.9 

4 5607.2 23 15499.5 42 8248.7 61 8631 

5 8313.0 24 7022.8 43 22537.8 62 6456.7 

6 14073.8 25 21793.8 44 8929.6 63 6910.7 

7 10043.0 26 21938.3 45 18221.7 64 6497.1 

8 14082.4 27 17512.1 46 18123.6 65 8383.2 

9 18323.7 28 22015.8 47 8364.1 66 10175.8 

10 5477.2 29 11087.1 48 11044.6 67 18130.2 

11 18408.3 30 7399.9 49 11417.8 68 6910.5 

12 8632.4 31 5398.0 50 15219.3 69 8393.1 

13 15409.7 32 17586.1 51 8002.2 70 9508.9 

14 5618.9 33 8250.1 52 11420.3 71 8245.5 

15 8625.7 34 9853.8 53 10099.5 72 9525.2 

16 12641.6 35 10021.8 54 15395.5 73 7750.5 

17 12541.7 36 8272.1 55 15222.4 74 10906.9 

18 14720.3 37 12725.0 56 18819.2 75 10204.8 

19 12645.1 38 12724.5 57 18241.0 76 7763.1 

 5 
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Table 4. Number of paths at the RUE state 1 

# of paths in the overall network # of paths between OD pair # of OD pairs 

1090 

1 169 

2 203 

3 120 

4 25 

5 11 

≥ 6 0 

  2 

Besides the column generation, many other path generation algorithms can be used to generate the 3 

path sets for the proposed solution method. For example, the k-shortest path algorithm proposed by Yen 4 

(1971) can generate path sets that contain desired numbers of paths. Next, to investigate the variation of the 5 

performance of the proposed method against the size of the path set, we use the k-shortest path algorithm 6 

instead of the column generation to enumerate fixed path sets 𝑃𝑤 for illustration. The projection operations 7 

of projection-type methods take up most of the computational resources, thus we focus on the projection 8 

operations to investigate the computational feasibility and efficiency of the proposed method. Since the 9 

proposed method decomposes the original projection operation [𝑄] into 528 sub-projection operations 10 

[𝑄𝑤]s, to make it fair, we compare the execution times of the traditional method and the proposed method 11 

to solve one [𝑄] and 528 [𝑄𝑤]s, respectively. Besides, only one core of the processor is opened for the 12 

proposed method, thus the merit of parallel computing is excluded. Figure 10 and Figure 11 show the 13 

variation of the in-memory requirement and the execution time, respectively, of the projection operations 14 

of both methods against the number of paths. It can be seen that, if we generate more than 4 paths for each 15 

OD pair, the traditional method fails because more in-memory is needed than provided, while the proposed 16 

method still performs well, which suggests that the proposed method has a better computational feasibility. 17 

Moreover, as the number of paths increases, both the in-memory requirement and the execution time of the 18 
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traditional method increase sharply, while those of the proposed method rise slowly. It suggests that the 1 

proposed method is less sensitive to the size of the path set.  2 

 3 

 4 

Fig. 10. The variation of the in-memory requirement against the number of paths per OD pair 5 

 6 

 7 

Fig. 11. The variation of the execution time against the number of paths per OD pair 8 
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Next, we use more cores of the processor to numerically test the performance of parallel computing 1 

of the proposed method. Table 5 shows the variation of the execution time, the speedup, and the time-saving 2 

ratio against the number of utilized cores when the number of paths is 4 × 528 and the accuracy level is 3 

𝜀 = 10−3. Compared with 𝑇1 , the execution time is inherently reduced when multiple cores are used. 4 

Moreover, as the number of cores increases, the speedup and the time-saving ratio keep increasing. These 5 

observations suggest the validity of the proposed parallel method and imply that this method has sound 6 

parallelism, i.e., the time elapsed in data communication is less than the time saved by parallel computing, 7 

and the overall idle time is trivial. 8 

Table 5. Test of the parallel solution method in the Sioux-Falls network (4 × 528 paths, 𝜀 = 10−3) 9 

Non-parallel execution time (s) 

𝑇0 

No. of cores 

𝑗 

Execution time (s) 

𝑇𝑗 

Speedup 

𝑆(𝑗) 

Time-saving ratio 

𝑇(𝑗) 

7994.9 

1 6834.7 1.000 0.145 

2 3945.5 1.732 0.506 

3 3099.4 2.205 0.612 

4 2753.3 2.482 0.656 

 10 

5.3 Eastern-Massachusetts network 11 

Herein, we use another large-scale network to further demonstrate the effectiveness of the proposed 12 

solution method to solve realistically-sized problems. For large-scale networks, finding the shortest paths 13 

(i.e., column generation) may occupy excessive computing resources. We hence test the parallel solution 14 

method incorporating column generation in the Eastern-Massachusetts (EMA) network which has 258 links 15 

and 74 nodes. The topology, the parameters for the BPR function, and the OD trips of the EMA network 16 

can be found in Bar-Gera (2016). To check the performance of the solution method under different levels 17 

of congestion, we expand the OD trips by up to four times. Similar to the traditional UE problems, the levels 18 
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of congestion also affect the convergence as shown in Table 6. For an extremely congested network (with 1 

4 times of the OD trips), the proposed solution method can still converge in an acceptable computational 2 

time.     3 

Table 6. Test of the parallel solution method in the EMA network (4 cores, column generation, 𝜀 =4 

10−3) 5 

OD trips Execution time (h) 

1x 0.25 

2x 1.01 

3x 4.56 

4x 11.97 

 6 

6. Conclusions 7 

This study develops a VI model for the RUE problem under the OD-based surge pricing strategy. It 8 

takes the first attempt to introduce an OD-based path-independent surge pricing strategy into the RUE 9 

problem. The developed VI model explicitly takes into account how to formulate a more realistic cost 10 

function that captures the non-additive generalized travel costs of ridesharing travelers. Compared with 11 

existing studies of the RUE problem, the proposed model formulates the capacity in carrying riders more 12 

explicitly, which removes the assumptions required by existing techniques and widens the application of 13 

existing RUE models. We propose the PSPM incorporating column generation that can be applied on the 14 

parallel/distributed computing systems to solve the large-scale problems and to speed up the computation. 15 

Finally, numerical experiments are conducted to provide some practical insights and to assess the 16 

computational feasibility and efficiency of the proposed solution method. In short, the contributions of this 17 

study are fourfold: (i) we consider an OD-based path-independent surge pricing strategy and an explicit 18 
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assignment of riders; (ii) an interesting VI formulation for the RUE problem is developed; (iii) a practical 1 

solution method based on the column generation and parallel computing techniques is proposed; and (iv) 2 

numerical experiments are conducted to provide some insights and demonstrate the effectiveness of the 3 

proposed method. 4 

Future challenges may include: (i) the consideration on the elastic demand, the link capacity 5 

constraints, and the uncertainty; (ii) more travel modes for travelers to choose; and (iii) the extension to the 6 

so-called dedicated ridesharing which allows dedicated drivers to participate in.  7 
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 15 

Appendix A: list of notations used throughout the study 16 

Notations Explanations 

Sets:  

𝐴  set of links, where 𝐴 = {𝑎} 

𝐼  set of roles, where 𝐼 = 𝑆𝐷 ∪ 𝑅𝐷 ∪ 𝑅 = {𝑖}; 𝑖 ∈ 𝑆𝐷 denotes solo drivers; 𝑖 ∈ 𝑅𝐷 

denotes ridesharing drivers; and 𝑖 ∈ 𝑅 denotes riders 

𝑁  set of nodes, where 𝑁 = {𝑛} 

𝑃𝑤  set of paths between OD pairs 𝑤, where 𝑃𝑤  = {𝑝} 

𝑃 set of all paths, where 𝑃 = ⋃ 𝑃𝑤𝑤  

𝑊  set of OD pairs, where 𝑊 = {𝑤} 

Parameters:  

https://doi.org/10.1061/(ASCE)HY.1943-7900.0001225


 

51 

 

𝐵𝑖
𝑤  benchmark price (compensation) for riders (ridesharing driers) 𝑖 between OD pair 

𝑤 

𝐶  ridesharing capacity, 𝐶 = 4 denotes one ridesharing drivers can pick up at most 

four riders 

𝑐𝑎, 𝑡𝑎
0  capacity and free-flow travel time of link 𝑎 

𝑞𝑤  travel demand between OD pair 𝑤 

𝑏, 𝑒  parameters used in BPR function 

𝜌𝑖, 𝛾𝑖, 𝑚𝑖 value of time, inconvenience coefficient, and pricing coefficient for role 𝑖 

𝛿𝑎,𝑝
𝑤   link-path incidence parameter, where 𝛿𝑎,𝑝

𝜔 = 1 if link 𝑎 belongs to path 𝑝, 

otherwise 𝛿𝑎,𝑝
𝜔 = 0 

Variables:  

𝐶𝑝,𝑖
𝑇,𝑤

, 𝐶𝑖
𝐼,𝑤

, 𝐶𝑖
𝑀,𝑤

 travel time, inconvenience and monetary cost of role 𝑖 between OD pair 𝑤  

𝐶𝑝,𝑖
𝑤   travel cost function of role 𝑖 on path 𝑝 between OD pair 𝑤 

𝐶̃𝑝,𝑖
𝑤  generalized travel cost function of role 𝑖 on path 𝑝 between OD pair 𝑤 

𝐼𝑖 function of inconvenience cost for role 𝑖 

𝑅𝑖, 𝐶𝑖, 𝑀𝑖 functions used to calculate surge price or compensation for role 𝑖 

𝑓𝑝,𝑖
𝑤   path flow of role 𝑖 on path 𝑝 between OD pair 𝑤 

𝑡𝑎  travel time of link 𝑎 

𝑡𝑝
𝑤 travel time of path 𝑝 between OD pair 𝑤 

𝑥𝑎,𝑖  link flow of role 𝑖 on link 𝑎 

 1 

  2 
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Appendix B: number of paths between each OD pair 

D 

O 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 

1 0 1 1 1 1 1 2 2 1 1 1 1 1 2 2 3 2 2 2 3 3 3 1 1 

2 1 0 1 2 2 1 2 2 2 3 2 1 1 3 3 3 2 0 3 3 0 2 0 0 

3 1 1 0 1 1 2 3 3 1 1 1 1 1 2 2 4 2 0 0 0 0 3 1 0 

4 1 2 1 0 1 1 2 2 1 1 1 1 1 3 2 3 2 2 2 3 4 2 2 1 

5 1 2 1 1 0 1 2 2 1 1 1 1 1 2 1 3 2 0 2 3 4 1 2 0 

6 1 1 2 1 1 0 2 2 1 2 1 2 2 3 2 3 2 2 3 2 2 2 3 3 

7 2 2 3 2 2 2 0 1 2 2 3 3 2 3 2 1 2 1 2 1 1 1 1 2 

8 2 2 3 2 2 2 1 0 1 2 3 3 3 3 2 2 2 1 2 1 1 1 1 2 

9 1 2 1 1 1 1 2 1 0 1 2 2 2 2 1 3 2 2 2 3 3 1 3 4 

10 1 3 1 1 1 2 2 2 1 0 1 2 2 2 1 4 2 4 2 3 2 1 3 3 

11 1 2 1 1 1 1 3 3 2 1 0 2 2 2 2 5 2 5 2 3 3 2 4 4 

12 1 1 1 1 1 2 3 3 2 2 2 0 1 2 3 5 3 4 3 3 3 3 1 1 

13 1 1 1 1 1 2 3 3 2 2 2 1 0 1 4 3 3 2 4 4 1 2 1 1 

14 3 5 3 2 2 2 3 3 2 2 2 3 1 0 1 3 2 3 1 2 3 2 1 1 
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15 2 3 2 2 1 2 3 3 1 1 2 3 5 1 0 3 2 3 1 2 2 1 2 3 

16 3 3 4 3 3 3 1 2 3 4 5 5 4 3 2 0 3 1 2 1 2 2 2 3 

17 2 3 2 2 2 2 2 2 2 2 2 3 3 2 2 3 0 3 2 3 4 2 3 5 

18 2 0 0 2 0 2 1 1 2 4 5 4 3 3 2 1 3 0 2 1 1 1 1 0 

19 2 3 0 2 2 3 2 2 2 2 2 3 5 2 1 2 2 2 0 1 2 2 3 4 

20 3 3 0 3 3 3 1 1 3 2 2 2 2 2 1 1 3 1 1 0 1 1 1 2 

21 3 0 0 3 4 3 1 1 3 2 3 3 3 3 2 2 4 1 2 1 0 2 3 3 

22 2 2 2 5 3 4 1 1 3 2 4 2 2 2 2 2 4 1 2 1 2 0 1 2 

23 1 0 1 2 3 2 1 1 2 2 3 1 1 1 2 2 3 1 2 1 1 1 0 1 

24 1 0 0 1 0 3 2 2 3 2 3 1 1 1 2 3 4 0 2 2 1 2 1 0 

 




