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Abstract The split feasibility problem is to find an element in the intersection
of a closed set C' and the linear preimage of another closed set D, assuming the
projections onto C' and D are easy to compute. This class of problems arises
naturally in many contemporary applications such as compressed sensing. While
the sets C and D are typically assumed to be convex in the literature, in this paper,
we allow both sets to be possibly nonconvex. We observe that, in this setting,
the split feasibility problem can be formulated as an optimization problem with
a difference-of-convex objective so that standard majorization-minimization type
algorithms can be applied. Here we focus on the nonmonotone proximal gradient
algorithm with majorization studied in [22, Appendix A]. We show that, when
this algorithm is applied to a split feasibility problem, the sequence generated
clusters at a stationary point of the problem under mild assumptions. We also
study local convergence property of the sequence under suitable assumptions on
the closed sets involved. Finally, we perform numerical experiments to illustrate
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the efficiency of our approach on solving split feasibility problems that arise in
completely positive matrix factorization, (uniformly) sparse matrix factorization,
and outlier detection.

1 Introduction

The split feasibility problem aims at finding an element common to a closed set C
and the linear preimage of another closed set D, under the assumption that the
projections onto C and D can be computed efficiently. This latter assumption is
satisfied by a large class of closed convex sets (to which the projection is unique)
including some simple polyhedral sets, and many widely used nonconvex sets such as
the set of s-sparse vectors (see, for example, [24, Proposition 3.1]), the simplex with
additional cardinality constraints [18], the set of orthogonal matrices [1, Proposition
7] and the set of matrices of rank at most r [15], etc. The split feasibility problem
was first introduced in [11], and has found various applications, such as compressed
sensing, signal processing, image reconstruction and intensity modulated therapy;
see, for example, [10,12,23,33] and references therein.

Although the split feasibility problem can be seen as a special case of the
classical feasibility problem that finds a point in the intersection of two closed sets,
a direct application of algorithms for feasibility problems such as the alternating
projection method and the Douglas-Rachford splitting method may not be desirable.
This is because, in a split feasibility problem, we only assume that the projections
onto C' and D are easy to compute; in particular, it can be difficult to project onto
the linear preimage of D, rendering a direct application of classical methods for
feasibility problems inefficient. Specialized algorithms have thus been proposed
for solving split feasibility problems, using only projections onto C' and D as well
as applications of the linear map and its adjoint. However, most existing work
on split feasibility problems focuses on the convex settings, i.e., they assume C
and D are also convex; see, for example [10-13,23,29,31-35]. This does not cover
contemporary applications that involve nonconvex constraints.

In this paper, we consider the split feasibility problem in a possibly nonconvex
setting, i.e., we allow the sets C' and D to be possibly nonconvex. We propose an
algorithm for solving it and analyze its global and local convergence properties.
The algorithm we propose can be viewed as a generalization of the classical CQ
algorithm, which was proposed in [10] for convex split feasibility problems. Indeed,
as we will discuss in more detail in Section 3, the split feasibility problem can
be reformulated into a special possibly nonconvex optimization problem with a
difference-of-convex objective function so that standard majorization-minimization
type algorithms can be employed. Our main algorithm is an adaptation of the
majorization-minimization type algorithm proposed in [22, Appendix A] to solve
this special optimization problem. When C' and D are both convex and a constant
stepsize strategy is adopted, our proposed algorithm reduces to the classical CQ
algorithm.

Since we are solving the split feasibility problem via solving a nonconvex op-
timization problem, one cannot expect to obtain a global minimizer in general.
Instead, we define a new concept of stationary point for split feasibility problem
in Definition 3 below and show that, under mild assumptions, any cluster point
of the sequence generated by our algorithm is a stationary point of the split feasi-
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bility problem. The whole sequence generated is further shown to be convergent
under additional assumptions such as the Kurdyka-Lojasiewicz property [3-5]
and Lipschitz differentiability at the limit point. Furthermore, we also analyze
local convergence rate, based on the Kurdyka-Lojasiewicz exponent [3,4,20] and a
generalization of the concept of linearly regular intersection: the concept of linearly
regular intersection was proposed in [19] for studying local convergence rate of the
alternating projection method for feasibility problems.

Finally, we perform numerical experiments to illustrate the efficiency of our
method for solving split feasibility problems. Specifically, we perform numerical ex-
periments on the completely positive matrix factorization problem, the (uniformly)
sparse matrix factorization problem and an outlier detection problem. In particular,
for the completely positive matrix factorization problem, we follow the approach
in [17] to reformulate the completely positive matrix factorization problem into a
nonconvex split feasibility problem. Our numerical results show that our method
always outperforms [17, Algorithm 2] in terms of both CPU time and solution
quality.

The rest of the paper is organized as follows. In Section 2, we introduce notation
and some preliminary results. The mathematical formulation of the split feasibility
problem and our main algorithm for solving it are described in Section 3. In
Section 4, we study subsequential convergence of the sequence generated by our
algorithm. The global (sequential) convergence and the local convergence rate
of the sequence generated by our algorithm are studied in Section 5. Finally, in
Sections 6, 7 and 8, we discuss how our algorithm can be applied to solving the
completely positive matrix factorization problem, the (uniformly) sparse matrix
factorization problem and an outlier detection problem, respectively, and perform
numerical experiments to study the performance of our algorithm.

2 Notation and preliminaries

In this paper, we let R denote the n-dimensional Euclidean space. For a vector
x € R", we denote its Euclidean norm, ¢; norm and ¢ norm by ||z, ||z]1 and
|z||oc respectively. We also let B(z,r) denote the closed ball centered at z with
radius r, i.e., B(z,r) ={u e R": |lu—z| <r}.

An extended real valued function f : R” — (—o0,00] is said to be proper if
domf :={z € R": f(z) < oo} # 0. Such a function is said to be closed if it is
lower semicontinuous. For a proper closed function f, the regular subdifferential
and the (limiting) subdifferential of f at an z € domjf are respectively defined
as [30, Definition 8.3]

0f(z) == {veR": liminf L&) =@ — vz -) zo},

TSI, TAT HI‘ — i’”

and
of(z) :={veR™: 3 Iy 7 and o' = v with o' € df (z') for each t},

where 2t <15 % means both f(z*) — f(z) and z' — Z. By convention, we also set
Of(z) = 0f(z) =0 if z ¢ domf. We let domdf denote the domain of subdifferential,
which is defined as domdf := {z € R" : 9f(z) # 0}. It is known in [30, Exercise 8.8]
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that if f is continuously differentiable at = € R™, then 8f(x) = {V f(z)}. In addition,
if f is proper convex, then df coincides with the notion of subdifferential in convex
analysis; see [30, Proposition 8.12].

For a nonempty closed set C' C R", we let C*° denote the horizon cone of C,
which is defined in [30, Definition 3.3] as

C® :={zeR": 3z' € C and B | 0 with Bz’ — z}.

It is known that C is compact if and only if C*° = {0}; see [30, Theorem 3.5]. We
also let - denote the indicator function of C, which is zero in C' and equals infinity
otherwise. The distance from z to C is denoted by d(z,C) := inf,c¢ ||z — u||, and
we use Projo(x) to denote the set of projections of z onto C, which is defined as

Projc(x) := Argmin ||y — =,
yeC

where Argmin denotes the set of minimizers. The set of projections onto the
nonempty closed set C' is always nonempty, and reduces to a singleton set if C
is in addition convex. The regular normal cone and the (limiting) normal cone
of a nonempty closed set C at an x € C are defined by Ng(x) := 85¢(x) and
N¢(z) := 86¢(x) respectively. These notions of normal cones are closely related
to projections. Indeed, if z € Proj-(y), then we have from [30, Example 6.16]
and [30, Proposition 6.5] that

y—z € No(z) € Ne(x). (1)

Finally, following [30, Definition 6.4] and [30, Definition 7.25], we say that a
nonempty closed set C is (Clarke) regular at an z € C if No(z) = No(z), and a
proper closed function f is regular at an = € dom f if its epigraph epi f := {(x,t) €
R™ x R: f(z) <t} is regular at (=, f(z)).

We next recall the Kurdyka-Lojasiewicz (KL) property [4]. This property has
been used extensively in recent years for analyzing the rate of convergence of various
first-order methods, especially in a nonconvex setting; see, for example, [3-5].

Definition 1 (KL property) We say that a proper closed function f satisfies the
KL property at € domdf if there exist a neighborhood U of z, s € (0,00] and a
continuous concave function ¢ : [0,s) — Ry with ¢(0) = 0 such that:

(i) % is continuously differentiable on (0,s) with 9’ > 0;
(ii) for all z € U with f(z) < f(z) < f(z) + s, one has

W (f(2) = f(2))d(0,0f(x)) > 1.

A proper closed function f satisfying the KL property at all points in domdf is
called a KL function.

Functions satisfying the KL property arise naturally in many applications.
In particular, it is known that any proper closed semialgebraic function is a KL
function; see [4,8] for more examples. Moreover, for proper closed semialgebraic
functions, the ¢ in Definition 1 can actually be chosen as ¥ (a) = ca' ™ for some
¢>0and 6 € [0,1); see [4, Section 4.3] and references therein. This exponent 6 is
important in estimating the rate of convergence of sequences generated by various
first-order methods; see, for example, [3,4,20].



Title Suppressed Due to Excessive Length 5

Definition 2 (KL exponent) Let 6 € [0,1) and f be a proper closed function. We
say that f satisfies the KL property at £ € domdf with exponent 6 if there exist
¢,e >0 and s € (0,+o0] such that

d(0,0f(x)) > e(f(z) — £(z))°

whenever ||z — Z|| < e and 0 < f(z) — f(Z) < s. If f satisfies the KL property with
exponent 6 at every x € domdf, then we say that f is a KL function with exponent
0.

3 Problem statement and difference-of-convex reformulation

In this section, we give the formal mathematical definition of the split feasibility
problem and describe the basic ideas leading to our solution strategy. Precisely,
the split feasibility problem [11] is stated as follows: Given a matrix A € R™*"
and two nonempty closed sets C C R"™ and D C R™,

Find z € R" s.t. Az € D and x € C; (2)

here, we assume that an element of Proj-(z) and Projp(x) can be computed
efficiently for any given z. The above problem arises in various contemporary
applications. For instance, the noiseless compressed sensing problem was modeled
as an instance of (2) in [23, Section 6], where D is the singleton set containing the
noiseless measurement and C' is the ¢; norm ball of suitable radius; notice that
Projc(z) and Projp(z) can be computed efficiently for this choice of C and D.
We would like to point out that (2) can also be viewed as a special case of the
classical feasibility problem, where one attempts to find a point in the intersection
of two closed sets: in this case, A~'D and C. However, classical algorithms for
such a feasibility problem typically involve Proj,-1p(x), which can be hard to
compute even though Projp(z) can be computed efficiently. Thus, specialized
algorithms have been designed for solving (2), making use of only projections onto
C and D as well as multiplications by the matrix A and its transpose. Almost all
algorithms proposed for solving (2) were for the convez setting, i.e., when C and D
are both in addition convex. One classical algorithm is the so-called CQ algorithm
proposed in [10, Algorithm 1.1], which takes the following form: given z° € R™ and

v € (0, m), update
2 = Proj., (:vt — AT [Az! — Proj D(Axt)]> . (3)

After the proposal of the CQ algorithm, many other algorithms for solving the
split feasibility problem (2) in the convex setting have been proposed; we refer the
interested readers to [29,34,35] for more detail.

In this paper, we consider the split feasibility problem (2) in a possibly nonconvex
setting, i.e., we allow the sets C' and D to be possibly nonconvex. Our approach is
based on a (standard) reformulation of (2) into the following optimization problem:

min F () := 2d° (Az, D) + b (x). (4)

x
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Indeed, it is easy to see that (2) is solved if and only if (4) has an optimal solution
with the optimal value being zero. Thus, in order to solve (2), it suffices to solve
(4).

In the case when C and D are both convex, problem (4) is a convex optimization
problem and the function = — %d2 (Az, D) is smooth with Lipschitz gradient whose
modulus is )\maX(ATA). Thus, one can apply first-order methods such as the
proximal gradient algorithm and its variant for solving (4) efficiently; in particular,
in each iteration of these algorithms, one only needs to compute the projections
onto D (for evaluating the gradient of 2d*(A4-, D)) and C as well as multiplications
by A and AT, which can be done efficiently. Notice that the classical CQ algorithm
(3) is just an application of the standard proximal gradient algorithm to (4) in the
convex setting; see, for example, the introduction of [23].

However, in the general case when C and D can be both nonconvex, the squared
distance function in problem (4) is nonsmooth in general, and the proximal gradient
algorithm cannot be applied. Fortunately, it is known that the squared distance
function can be written as the difference of two convex functions [2]: specifically,
for any u € R™, we have

1 2 _ 1 2 1 2
3o .0 = g hl? = sp {0 = S11? .
Now, notice that the function u — sup,cp{(u,y) — %HyHQ}, as the supremum of

affine functions and being finite valued, is convex continuous. Thus, we can write
Fin (4) as

1 1
F(z) = = [|Az|* + d¢ (z) — sup < (Az,y) — > [lyl1* ¢, (5)
2 N~—~~— y€D 2
P(x)
h@) 9(2)

where h is quadratic, P is proper closed and g is convex continuous. Moreover,
under a mild additional assumption, we can show in the next proposition that for
any z° € C, the set {z : F(z) < F(z°)} is bounded.

Lemma 1 Consider the split feasibility problem (2) with C*° N A~ D> = {0}. Then
for any z° € C, the set {x : F(z) < F(2°)} is bounded, where F is defined in (4).

Proof Suppose to the contrary that the set {z : F(z) < F(2°)} is unbounded. Then
there exists a sequence {z'} such that F(2') < F(z°) for all t and lim;— ||2*| =
+o00. By passing to a subsequence if necessary, we may assume without loss of
generality that ||zf|| # 0 for all ¢ and that N y* for some y*. Then it holds

flz*]]
that [|y*|| = 1 and we also have y* € C*° from the definition of the horizon cone.
Next, for each ¢, we have
58(Ax', D) = F(a') < F(°) = Jd*(Aa®, D).

Hence there exists {d'} C D such that for each t,
|Az" — d'|| < d(Az°, D).

Since ||z'|| # 0 for all ¢, dividing both sides of the above inequality by |z'||, we
have for all ¢ that
‘ Axt B dt
Izt fl=*]

d(Az°, D)
==l
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Passing to the limit as ¢ — oo in the above inequality and noting that ﬁ -y,
t

we deduce further that d—;” — Ay*. Thus, we have Ay* € D, ie., y* € A71D>,

=
according to the definition of the horizon cone. Since it also holds that y* € C*
and ||y*|| = 1, we have arrived at a contradiction. This completes the proof. O

Remark 1 The condition C*° N A71D> = {0} used in Lemma 1 holds in the
following cases.

(i) The set C is compact: in this case, we can deduce from [6, Proposition 2.1.2]
that C° = {0} and hence C>° N A~ D> = {0}.

(ii) The sets C, D are closed convex with C NA™!D being nonempty and bounded:
in this case, we have

C®¥NATID® =Cc®n(A7'D)® = (CnA™'D)™® = {0},

where the first equality follows from [6, Proposition 2.1.11] and the fact that
A7ID # ), the second equality follows from [6, Proposition 2.1.9] and the fact
that C N A™'D # ), and the last equality follows from [6, Proposition 2.1.2].

Consequently, thanks to Lemma 1, under the additional assumption that
C>*® N A'D>® = {0}, the function F = h + P — g given in (5) satisfies all the
assumptions necessary for applying the so-called NPGyajor in [22, Appendix A].
In addition, since

ATProjp(Az) C dg(x), (6)

one can choose in Step 1a) of the NPGpajor any 1 € Projp(Az") so that ¢! :=
ATnt € dg(xt). Moreover, using the definition of h and P in (5), the subproblem of
NPGmajor in [22, Eq (45)] becomes

. AT (Az! —nt)
u € Projo <xt - )

Having these in mind, we are now ready to present our algorithm SpFeasp, as
Algorithm 1 below for solving (2), which is basically an application of the NPGpajor
in [22, Appendix A] to (4).

Algorithm 1 SpFeasp ¢, for (2)

Step 0. Choose z° € C, Limax > Lmin > 0, 7 > 1, ¢ > 0 and an integer M > 0. Set t = 0.
Step 1. Choose any L? € [Limin, Lmax] and set Ly = L?_
1a) Pick any n' € Projp(Az?) and find

AT (Azt — nt)) .

u € Proj zt —
ic .

1b) If
d*(Au, D) < max  d?(Az?, D) — ¢|ju — 2t|)? (7)
[t—M]y <i<t
is satisfied, go to Step 2).
1c) Set Ly «+ 7Ly and go to Step 1a).
Step 2. If a termination criterion is not met, set Ly = Ly, 27! = u,t =t + 1. Go to Step
1.
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Notice that each iteration of SpFeasp,_ only involves projections onto C' and
D as well as multiplications by the matrix A and its transpose, which can be
performed efficiently. Moreover, when C® N A~!D>® = {0}, it can be shown as
in [22, Proposition 1] that the linesearch criterion in Step 1b) must be satisfied
after finitely many inner iterations (independent of ¢), and as in [22, Proposition 2]
that successive changes of the sequence {z'} go to zero. In summary, we have
the following convergence result as an immediate corollary of [22, Proposition 1]
and [22, Proposition 2].

Lemma 2 Consider the split feasibility problem (2) with C°° N A~*D> = {0} and
let {x'} and {Li} be generated by SpFeasp, . Then it holds that sup; Ly < oo and
lim; 00 ||actJrl — th =0.

Using Lemma 2, it is routine to show that, when C*° N A71D> = {0}, any
accumulation point Z of {z'} generated by SpFeasp, satisfies

0 € Oh(z) + OP(z) — 99(Z), (8)

where h, P and g are given in (5). However, in view of the structure of g, it is not
trivial to completely characterize the set dg so as to relate (8) to the original split
feasibility problem (2). In the next section, we will look at another characterization
of the set of accumulation points of {z'} that is more closely tied with (2).

4 Subsequential convergence of SpFeasp,

In this section, we characterize the set of accumulation points of the sequence {z'}
generated by SpFeasp, under the assumption C°° N AT1D™>® = {0}. We start with
the following proposition, which concerns the subdifferential of F in (4).

Proposition 1 Consider the split feasibility problem (2) and let F be defined in (4).
Then for every x € C, we have

OF (z) C AT Az — ATProjp(Az) + N (). (9)

If in addition C is regular at some T € C and the function y — dp(y) is regular at
Az € R™, then we have

OF(z) = AT Az — ATProjp (Az) + No ().

Remark 2 In view of [30, Example 8.53] and [30, Corollary 8.11], we see that the
function y — dp(y) is regular at Az under one of the following conditions:

(i) Az ¢ D and Projp(Az) is a singleton set;
(i) Az € D and D is regular at Az.

Proof Notice from [30, Example 8.53] and [25, Theorem 1.110(ii)] that for any
y € R™, we have

2 (%d?(-,m) (v) = d(y, DYA((, D)) (y) = y — Projp(y). (10)

This together with [30, Corollary 10.9] and [30, Theorem 10.6] gives (9).
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Now, assume in addition that C is regular at some z € C and y — dp(y) is
regular at AZ € R™. Then at § := AZ, we have

P <%d2(~, D)> @) 2 az, D)o (d(, D)) (7)

© a.2oac.0) 5) €0 (560)) @) <0 (3 .0)) )

where (a) follows from [25, Theorem 1.110 (ii)], (b) follows from the assumption
that y — dp(y) is regular at § and [30, Corollary 8.11] and (c) can be verified
directly from the definition. Thus,

o(30.0) 0 =0 (56.0)) 5

This together with [30, Corollary 8.11] implies that the function y %dQ(% D) is
regular at y. Using this together with [30, Theorem 10.6], we deduce further that
the function z — 3d*(Az, D) is regular at # and

0 (3(40)) @) = 470 (3(.D) ) (4) = A7 (A7 ~ Proj (A7),

where the last equality follows from (10). Finally, since C is regular at z, we have
from [30, Example 7.28] that 6¢ is regular at Z. The desired conclusion now follows
from [30, Corollary 10.9]. O

Notice that if x* solves (2), then it also solves (4). According to [30, Theo-
rem 10.1], we must then have 0 € dF(z*). Motivated by this observation and
Proposition 1, we make the following definition.

Definition 3 (Stationary points of (2)) For the split feasibility problem (2), we
say that z* is a stationary point of this problem if

0 e AT Az* — ATProjp,(Az*) + Neo(a™).

Based on [30, Theorem 10.1] and Proposition 1, we see that if 2* solves (2) (and
hence (4)), then it is a stationary point of (2). Moreover, if C is regular at z* € C
and y — dp(y) is regular at Az* € R™, then z* being stationary for problem (2) is
the same as z* being a stationary point of the function F defined in (4), in the
sense that 0 € OF(z*). Finally, in view of (6), we deduce that if 2* is a stationary
point of (2) in the sense of Definition 3, then it satisfies (8) in place of z. This
shows that the notion of stationarity of (2) defined in Definition 3 is at least as
strong as the condition (8).

We next show that the sequence generated by SpFeasp,, clusters at a stationary
point of (2).

Theorem 1 (Subsequential convergence of SpFeasp, ) Consider the split feasi-
bility problem (2) with C° N A~ D> = {0} and let {'} be the sequence generated by
SpFeaspc, . Then the following statements hold:

(i) The sequence {z'} is bounded.
(ii) Any accumulation point of {a} is a stationary point of (2).
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Proof The boundedness of {z'} follows from Lemma 1 and (7).

Next, let z* be an accumulation point of {z!}, which exists because the se-
quence is bounded. Then there exists a convergent subsequence {z!/} such that
lim;_,o, 2% = 2*. Clearly, 2* € C because C is closed. Now, using (1) and the
definition of z'™! as a projection of z' — L; *[AT (Az' — 7')] onto C, we have for
each j that

0€ Ly, (a1 —ab) + AT Azl — ATyb 4 Ne (2971, (11)

moreover, {L¢,} is bounded thanks to Lemma 2.

On the other hand, notice from the definition of '/ as projection that F(z%) =
1Azt — nli||? for all j, where F' is defined in (4). Since F(z') < F(2°) for
all j according to (7) and the sequence {z'} is bounded according to (i), we
deduce further that {n%} is bounded. By passing to a further subsequence if
necessary, we may assume without loss of generality that n% — n* for some n*.
Since 7% € Projp(Az') and D is closed, we have n* € D. Also, we have

1dQ(AJC*,D) = lim 1d?(Agu‘ff,D) = lim 1||Amtj -7 = 1|\Agg* — "%
2 Jj—o00 2 Jj—o0 2 2

This shows that n* € Projp(Az*). Now, passing to the limit as j — oo in (11) and
invoking Lemma 2 and the closedness of x = N¢(z) at z* € C, we obtain
0c AT Az* — ATy* + Ne(2¥),
showing that z* is a stationary point of (2). This completes the proof. O
The algorithm SpFeasp,, involves a linesearch subroutine in each iteration. We

next discuss a variant that does not require any linesearch procedure, which is
presented in Algorithm 2 below as SpFeasp, where

(12)

2 if C is convex,
re = .
1 otherwise.

We will argue that SpFeasp is a special instance of SpFeasp, -

Algorithm 2 SpFeasp ¢ for (2).

T
Step 0. Choose z° € C and L > M

c
Step 1. For each t = 0, 1,2, ..., pick any n* € Projp(Ax?) and set

AT A t_ ot
1 € Projq (:ct - %) .

Step 2. If a termination criterion is not met, go to Step 1.

To this end, we first prove the following proposition.
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Proposition 2 Consider the split feasibility problem (2) and let F be defined as in
(4). Let L >0, z € C, n € Projp(Ax) and set

T
u € Projo (m — W) . (13)
Then -
F(u) < F(z) - L= Amax( A A)) 2 (14)

2
where T¢ is defined as in (12).

Proof Using the decomposition of F in (5), we have for any u € C that

F(u) = hw) + P(u) ~ g(u) = 3 | Aul®* + 6c(u) — g(u)

Amax (AT A) -z
2

1
< §||Aa:||2 + (Aac)T(Au — Az) + H2 — nT(Au — Az) — g(x)

Amax (AT A)

= F(z) + (Az — n)T (Au — Az) + 5

lu— =%,

(15)
where the inequality holds because of the Taylor’s inequality applied to w %\|Aw|\2
and the fact that ATy € dg(x) (see (6)).

Now, suppose that C is not convex. Then we see from (13) that

T p—
ufx—l-iA (ALx )

2 T 2
===l
- L

because z € C. Thus, £ u—z|? + (u— x)T AT (Az —n) < 0. This together with (15)
shows that (14) holds (with r& = 1) when C is nonconvex.

On the other hand, if C is convex, then the function p(y) := (AT Az —ATn)T (y—
:c)—f—% lly—z||*+dc(y) is a strongly convex function with modulus L. Moreover, we see
from (13) that u is the unique minimizer of p. Thus, we have p(z)—p(u) > £ |z —u|?,
which gives

Lilu—z|* + (u—2)T AT (4z — ) < 0.

This together with (15) shows that (14) holds (with r¢ = 2) when C is convex.
This completes the proof. ad

We can now argue that SpFeasp is a special instance of SpFeasp, . To this

T
end, pick an z° € C and suppose that an L > W is chosen. Let ¢ > 0 be
such that
¢4 Amax (AT A) -

rc

L= 0. (16)

If we use this ¢ in SpFeaspc,,, set Lmax = Lmin = L and fix any nonnegative integer

M and any 7 > 1, then, according to Proposition 2, the linesearch condition in (7)

is always satisfied with Ly = LY = L. Hence, SpFeasp initialized at z0 € C with
T

the chosen L > %’;’4) generates the same sequence as SpFeasp o, initialized at

20 € C with ¢ chosen as in (16) and Lmax = Lmin = L. We thus have the following
immediate corollary concerning the convergence of SpFeasp .
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Corollary 1 (Subsequential convergence of SpFeasp) Consider the split feasi-
bility problem (2) with C° N A1 D> = {0} and let {'} be the sequence generated by
SpFeasp. Then the following statements hold:

(i) The sequence {z'} is bounded.
(ii) Any accumulation point of {a} is a stationary point of (2).

On passing, we note that SpFeasp reduces to the classical CQ algorithm (3)
when C' and D are both convex.! Thus, our algorithm SpFeasp ¢, is a generalization
of the classical CQ algorithm for solving (2) in the general nonconvex setting.

5 Sequential convergence based on KL property
5.1 Global convergence

In this section, we establish the convergence of the whole sequence generated
by SpFeasp, with M = 0 under the KL property and some mild assumptions.
The KL property has been used extensively in recent years for establishing global
convergence of the sequence generated by various first-order methods; see, for
example, [3-5]. Our proof for the next theorem follows closely the arguments in [5]
and is routine. We include its proof in the appendix for the ease of readers.

Theorem 2 (Global convergence of SpFeasp, with M = 0) Consider the split
feasibility problem (2) with C°° N A~tD> = {0} and let the function F in (4) be a
KL function. Let {xt} be the sequence generated by SpFeasp, with M = 0. Then the
sequence {x'} is bounded. Let x* be an accumulation point of {x'} and suppose that
the function y — %d2 (y, D) is continuously differentiable at Axz™ with locally Lipschitz
gradient. Then the whole sequence {z'} is convergent.

Theorem 2 requires the function F' in (4) to have the KL property. This particular
condition is not very restrictive. Indeed, according to [4, Section 4.3], the function
F satisfies the KL property when C and D are both in addition semialgebraic.
On the other hand, since D is possibly nonconvex, the function y +— %dQ (y, D)
may not be differentiable in general at Az*, where z* is an accumulation point
of {«'}, as required by Theorem 2. In the next two propositions, we give simple
sufficient conditions for y — 3d*(y, D) to be continuously differentiable at Az*
with locally Lipschitz gradient. The first proposition concerns prox-regularity and
is an immediate consequence of [19, Proposition 8.1]. Recall from [28, Theorem
1.3] that a closed set (2 is said to be prox-regular at an z € £2 if there exists ¢ > 0
such that Proj,(z) is single-valued for every z € B(z,¢).

Proposition 3 Consider the split feasibility problem (2). If z* € C' N A™YD and D
is proz-regular at Ax™, then y — %d2 (y, D) is continuously differentiable at Ax™ with
locally Lipschitz gradient.

Proof The desired result follows directly from [19, Proposition 8.1]. O

1 This is because in this case, we have rc = 2 and hence SpFeasp corresponds to (3) with
1
Y=1-
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Proposition 4 Consider the split feasibility problem (2) and suppose that D = |J;~, D;,
where each D;, i = 1,...,m, is closed and convex. If I(Az*) := {i : d(Az*,D) =
d(Az*, D;)} is a singleton set, then y — %dz(y,D) is continuously differentiable at
Ax™ with locally Lipschitz gradient.

Proof It is easy to see that %dZ(y,D) = minj<;<m %dQ(y,Di) for all y € R™.
Moreover, for each 7, the function y — %dQ(% D;) is continuously differentiable with
Lipschitz gradient because D; is closed and convex. Write y* = Az™ for notational
simplicity and note that I(y*) = {io} for some ip € {1,...,m} by assumption.

From the definition of I(y*) we have min;¢;(,-) 5d*(y*, D;) > 3d°(y*, D). By
continuity, it then holds that for all y sufficiently close to y*, we have

. 1o
=d“(y,D;) > =d“(y, D).
i 5d*(y, D) > 5d°(y, D)
Hence I(y) = {io} for all y sufficiently close to y*. Thus, it holds that 3d*(y,D) =
%dz(y, D;,) locally around y*. Consequently, the function y — %dQ(y,D) is con-
tinuously differentiable at y* with locally Lipschitz gradient. This completes the
proof. O

5.2 Local convergence behavior

In this section, we study the local convergence rate of the sequence {z!} generated
by SpFeaspc, with M = 0. Local convergence rates of various first-order methods
have been widely studied recently and they are usually analyzed based on the
so-called KL exponent of a certain potential function; see, for example, [3,4,20].
Here, our analysis uses the F' in (4) as the potential function and makes use of the
assumption that F is a KL function with exponent 6 € [0,1). We first show in the
proposition below that this latter assumption holds when C' and D are subanalytic
sets (see [8, Definition 2.1 (ii)] for the definition of subanalytic sets).

Proposition 5 Consider the split feasibility problem (2) and let F be defined in (4).
If C and D are subanalytic sets, then F is a KL function with exponent 6 € [0,1).

Proof First of all, since D is subanalytic, we see from p3 and p5 of [16, page 597]
that the squared distance function x — %dz(Aw, D) is a subanalytic function, which
means that its graph, given by {(z, 3d*(Az, D)) : € R"}, is a subanalytic set.
Next, notice that the graph of F' in (4) is given by

{(z,3d*(Az, D)) : z € C} = {(2, 3d*(Az, D)) : z € R"} N (C x R).

In addition, the set C' xR is subanalytic as C' is subanalytic, thanks to p2 of [16, page
597]. In view of these, we deduce from pl of [16, page 597] that the graph of F is
also subanalytic, which means that F is a subanalytic function. Now, since dom F
is closed and F is continuous relative to dom F, using [8, Theorem 3.1], we conclude
that F' is a KL function with exponent 6 € [0,1). This completes the proof.

We now state in the following theorem our local convergence result for SpFeasp
with M = 0 based on the KL exponent 6 of the F in (4). The proof is standard and
follows a similar line of arguments as in [3, Theorem 2], is thus omitted for brevity.
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Theorem 3 (Local convergence rate) Consider the split feasibility problem (2)
with C*°NA™ D> = {0} and let the function F in (4) be a KL function with exponent
6 €10,1). Let {z!} be the sequence generated by SpFeaspc, with M = 0 and let x*
be its accumulation point. If y %d2 (y, D) is continuously differentiable at Ax™ with
locally Lipschitz gradient, then the following statements hold:

(i) If 6 = 0, then there exists T > 0 such that ' = x* whenever t > t;
(ii) If0 € (0, 3], then there existt > 0,d > 0 and o € (0,1) such that ||z" —z*|| < do”

for all t > t;
— - — 1—6
(ii) If 0 € (3,1), then there exist t > 0 and d > 0 such that ||z* — 2*|| < dt™20-1 for
all t > t.

From Theorem 3, we know that if the function F in (4) satisfies the KL property
with exponent % and a certain differentiability assumption holds at an accumulation
point of {z'}, then the sequence {z'} generated is locally linearly convergent. We
next give sufficient conditions on C and D in (2) so that the F in (4) satisfies the
KL property with exponent % Our first result concerns polyhedrality.

Theorem 4 Consider the split feasibility problem (2) and let F be defined in (4). If
C and D are both unions of polyhedral sets, then F' is a KL function with exponent %

Proof Let D = Ule D; and C = U§:1 Cj, where D1,...,Dy and C1,...,Cy are all
polyhedral sets. Then one can see that

— min 12 ,
F(z) = oin, 2d (Az, D;) +dc, (z) . (17)
1<5<¢
Fij(2)

Since D; and C; are polyhedral for each ¢ and j, we conclude from [30, Exercise
10.22] and [30, Example 12.31] that F; ; is piecewise linear-quadratic for each ¢
and j. Using the definition of piecewise linear-quadratic function, we can further
rewrite F; ; as follows:

. 1 7 T
F;i(z) = 1SI1£1glli,j {ix Gijwr + ;@ + Biju + 61:1,’],1”(3:)} , (18)
where G; j, € R"*" is symmetric, «; j, € R", B; ;, € R, and P, ; , is polyhedral
for each v € {1,...,1;;}. The desired conclusion now follows from (17), (18) and [20,
Corollary 5.2]. This completes the proof. ad

Our next result concerns a certain kind of regularity condition, defined as
follows.

Definition 4 (Linearly regular intersection with respect to A) Consider the
split feasibility problem (2). We say that the pair of sets {C, A7 D} has a linearly
regular intersection with respect to A at a point z* € C' N A~1D if the following
implication holds:

ATw* +v* =0 for some w* € Np(Az*) and v* € Ng(z*),

. . (19)
= w =0and v" =0.
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The concept of linearly regular intersection defined above for split feasibility
problems is a generalization of the corresponding property for classical feasibility
problems. Recall from [19, Section 2] that the pair of nonempty closed sets {C1,Ca}
has linearly regular intersection at a point z* € C1 N Cs if the following implication
holds:

v1 + v2 = 0 for some v1 € N¢, (z*) and v2 € Ng, (z™),
= v =wve = 0.

It was proved in [19, Theorem 5.16] that if {C1, C2} has linearly regular intersection
at an z* € C; N Cs and at least one of these two sets is super-regular at z*
(see [19, Definition 4.3]), then the sequence generated by the alternating projection
algorithm for finding a point in C1 N Cq is locally linear convergent as long as the
algorithm was initialized sufficiently close to =*. Here, we will show in Theorem 5
below that (19) has a similar implication on split feasibility problem (2): under
(19), the function F' defined in (4) has the KL property with exponent % at the
point z* € CNA~'D.
We start with an auxiliary lemma.

Lemma 3 Consider the split feasibility problem (2). Let z* € CNA™'D and suppose
that the pair of sets {C, AilD} has a linearly regular intersection with respect to A at
x*, i.e., (19) holds. Then the following statements hold:

(i) There exist y1 > 0 and €1 > 0 such that
14T (Az — )| > 71| Az — 7] (20)

whenever © € B(z*,€1) and n € Projp(Az).
(ii) There exist y2 € [0,1) and e2 > 0 such that

ot AT (A =) > =2l AT (Az — )| lv] (21)
whenever © € B(z*,e2) NC, n € Projp(Az) and v € No(z).

Proof We first prove (i). Suppose to the contrary that (i) does not hold. Then there
exist {z'} and {n'} satisfying z' — «*, n* € Proj,(Az') and

1
AT (Az" ") < SllAz" — '] (22)

for all ¢ > 1. In particular, we have Azt —n' # 0 for all t > 1. Moreover, by passing
to a subsequence if necessary, we may assume without loss of generality that

Aﬂit - 7']t *

—_— 23
[t =] 2

for some ¢* with ||¢*|| = 1.
Now, since n' € Projp(Az') and Az* € D, we have for all ¢ > 1 that

t t t
In" — Az’|| < [|Az® — Az™|.

This together with #! — z* implies that n* — Az*. In addition, the relation
nt € Projp(Az') together with (1) implies that for all ¢ > 1,

Azt —n' € Np(nh).
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Combining this with (23), the fact that n° — Az* and the closedness of the normal
cone mapping yields ¢* € Np(Az*). Next, divide both sides of (22) by ||Az® —n’||
and pass to the limit, we obtain A”¢* = 0. This together with ¢* € Np(Az*) and
(19) gives ¢* = 0, which is a contradiction. This proves (i).

We now prove (ii). Suppose to the contrary that (ii) does not hold. Then there
exist {z'} C C, {44}, {n'} and {v'} satisfying 2! — z*, 74 1+ 1, n' € Projp(Az?),
v' € No(x') and

T
ot AT (At — ) < —A4)|AT (Azt —h)||l"| (24)

for all ¢ > 1. This implies in particular that AT (Az' —n') # 0 and v # 0 for all
t > 1. Also, observe from (i) that for all sufficiently large ¢, we have

AT (Az" —n")|| >yl Az’ —n"]l.

Thus, by passing to subsequences if necessary, we may assume without loss of
generality that

Azt — . ot i}
- — > p and —— —¢q 25
[T (4zf — )] ol 25)
for some p* and ¢* so that |[ATp*|| = |l¢*| = 1.

Next, observe from 7' € Projp(Az'), ' — 2* and Az* € D that

limsup ||n" — Az®|| < limsup ||Az" — Az*|| = 0.
t—o0 t—o00

Hence, n* — Az*. In addition, the relation " € Proj,(Az") together with (1) shows
that for all t > 1,

Az —n' € Np(n').

This together with (25), the fact that n° — Az* and the closedness of the normal
cone mapping gives p* € Np(Az*). Similarly, the relation v* € No(z!), (25), the
fact that ' — 2* and the closedness of normal cone mapping imply ¢* € No(z*).
Now, divide both sides of (24) by ||AT (Az! — n')|||v!|| and pass to the limit, we
see that (ATp*)T¢* < —1. Hence

AT D" + "> = |ATD" > + ll¢*1* + 2(ATp") T¢* =2+ 2(ATp")¢* <0,

where the second equality holds because of (25). The above display shows that
ATp* 4 ¢* = 0. This together with p* € Np(Az*), ¢* € Ng(z*) and (19) gives
ATp* = ¢* = 0, which is a contradiction. This completes the proof. O

We are now ready to show that under (19), the function F' defined in (4) has
the alleged KL property.

Theorem 5 (KL exponent under linear regularity) Consider the split feasibility
problem (2). Let £* € C N A™'D and suppose that the pair of sets {C, A" D} has a
linearly regular intersection with respect to A at z*, i.e., (19) holds. Then the function
F' defined in (4) has the KL property with ezponent 5 at z*.
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Proof Let e = min{e1, e2}, where €1 and €2 are as in Lemma 3(i) and (ii) respectively.
When z € B(z*,¢) N C, n € Projp(Az) and v € N¢(z), we have
AT (Az = n) +o|* = |47 (Az = n)|* + []v]]* + 20" AT (Az — )
> | AT (Az —n)[* + [[v]* = 272 AT (Az = n)|[]}0]| (26)
> (1= ) (A7 (Az = )l +[lv]]?),

where the first inequality follows from Lemma 3(ii). Thus, whenever x € B(z*, e)NC,
we have

4(0,0F (z)) > VIAT (Az = ) + ol

inf
n€Projp(Ax), vENc (x)

(b)

> VT— in VIAT (Az = )2 + o]

n€Projp (Az), vENG (2)

(c)
>\/1-7  inf )IIAT(Aw—n)HZm/l—w inf || Az — ]|
n

neProjp (Ax €Projp (Ax)
=NV2(1 = 72)(F(z) - F(z"))*,

where (a) follows from Proposition 1, (b) follows from (26) and (c) follows from
Lemma 3(i). This completes the proof. O

6 Factorizing completely positive matrices

In this section, we consider the problem of factorizing completely positive matrices.
Recall that a symmetric matrix G € R"*"™ is completely positive if there exists
a B¢ Riw for some r > 1 such that G = BBT. It is known that determining
whether a given matrix is completely positive is NP-hard; see, for example, [14]
and references therein.
Given a completely positive matrix G, the factorization problem aims at finding
a B € R™" for some r > 1 so that G = BBT. In [17], this factorization problem
was reformulated as a feasibility problem. Precisely, given a completely positive
matrix G € R"*", the authors in [17] started with an initial factorization G = BBT
for some B € R™*"; here, B may not be entrywise nonnegative and r > n. They
then rewrite the factorization as G = (BQ)(BQ)” for some orthogonal matrix
Q € R™". If r is chosen to be at least as large as the completely positive rank
of G (see [17, Definition 2.2]), then the completely positive matrix factorization
problem is equivalent to finding an orthogonal matrix @ so that BQ is entrywise
nonnegative, i.e.,
Find Qe R™" s.t. Q€ P and Q € C, (27)

where C is the set of r x r orthogonal matrices, and P := {Q € R"™*" : BQ € R,*"}.
We would like to point out that the completely positive rank of G is generally hard
to compute (see [7]) and we refer the readers to [9, Theorem 4.1] for upper bounds
of completely positive rank. These upper bounds are in the order of n? for large n.
Instead of using these bounds as r, in our experiments, as a heuristic, we choose r
in the order of n and we will specify our choices later.

In [17], the authors considered two algorithms for solving (27):
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1. the classical alternating projection method, which can be inefficient because
Projp is in general difficult to compute;

2. the modified alternating projection algorithm (see [17, Algorithm 2]), which only
requires computing projections onto C and the nonnegative orthant Rf‘rxr, as
well as multiplications by B and its Moore-Penrose inverse Bf. This algorithm
is described in Algorithm 3 below.

It was discussed in [17, Section 5] that the modified alternating projection algorithm
is more efficient empirically than the classical alternating projection algorithm for
solving (27).

Algorithm 3 The modified alternating projection algorithm in [17]

Step 0. Choose 7 > n and B € R"*" so that G = BBT. Then select a Q° € C. Set ¢t = 0.
Step 1. Compute Wt = ProjRnxT(BQt) and find
+

Q' e Projo[BIW! + (I — BT B)QY].

Step 2. If a termination criterion is not met, set t =t + 1. Go to Step 1.

Here, we consider an alternative approach for solving (27). Indeed, one can
observe immediately that (27) can be reformulated as the following split feasibility
problem:

Find Q e R"*" s.t. BQ € D and Q € C, (28)

where D = Riw and C is the set of » x r orthogonal matrices. Note that the pro-
jections onto C and D have closed form solutions; see, for example, [17, Lemma 4.1]
for the closed form formula of Proj.. Moreover, we have C° = {0} because the set
of 7 x r orthogonal matrices is bounded. Thus, we can apply SpFeaspc, to solving
(28), and any accumulation point of the sequence generated is a stationary point
of the split feasibility problem (28) according to Theorem 1.2

6.1 Numerical experiments for completely positive matrix factorization

In this section, we compare SpFeasp, and the modified alternating projection
algorithm (i.e., Algorithm 3) for solving (28) (or equivalently, (27)). All codes are
written in Matlab, and the experiments are performed in Matlab 2019b on a 64-bit
PC with an Intel(R) Core(TM) i7-6700 CPU (3.40GHz) and 32GB of RAM.

We first discuss the implementation details of the algorithms. In SpFeasp ¢,
weset M =4, 7 =2, ¢ =10"%, Linax = 10® and Lmin = 1078, Moreover, we set
LY =1, and when ¢ > 1:

_ IstI%

70 min{max{w, Limin}, Lmax} if tr([YYTs%) > 10716
9=
min{max{ th,_ll ) Lmin}, Lmax} otherwise.

2 We note that in this case D is convex and hence Q %dQ(BQ7 D) is smooth. Our algorithm
SpFeasDCIs reduces to the standard gradient projection algorithm with nonmonotone linesearch.
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where ' = Q' — Q'™! and Y' = BT[BQ' — n'] — BT[BQ!"™! — '], with ' ¢
Proj,(BQ") chosen in Step 1a) of SpFeasp, . We terminate it when iter > 5000 or
min{BQ"};; > —107% or L; > 10'°. On the other hand, for the modified alternating
projection algorithm (i.e., Algorithm 3), we terminate it when iter > 5000 or
min{BQ"};; > —107'%. We will describe their initializations later.

Both algorithms require a choice of » > n and an initial factorization G = BBT.
In our experiments below, we follow the approach in [17, Section 3] to generate
the B. Specifically, given a completely positive matrix G € R"*™ we compute the
Cholesky decomposition of @ such that G = LLT for some lower triangular matrix
L, if successful, and set B = L. On the other hand, if the Cholesky decomposition
fails, we compute the eigenvalue decomposition of G such that G = UXcUT for

_ 1
some orthogonal matrix U and diagonal matrix Y, and set B = UXAU T Then
we define B as follows:
= -~ -~ 1 - 1
B:= |bi,...,b;_ .sbn,—bj,..., —
1, sy D5 —1, s Pn, \/ﬁ VRl ) \/H

m—1 columns

1 - - _
ﬁbj’ijrl’“ bj ’ (29)

where b; is the column of B with the least number of negative entries, and
m=r—n-+1.

We perform two experiments comparing SpFeasp,c, and Algorithm 3. In our
first experiment, we consider randomly generated completely positive matrices as
n [17, Section 7.8]. We generate a random n x n completely positive matrix G
using the following MATLAB code:

G_0 = abs(randn(n,2*n)); G = G_0*G_0’;

We set (n,r) = (n,1.5n) = (104, 15¢) for + = 1,2, 3,4, 10,20, 30,40 in Table 1 and
2, and set (n,r) = (n,3n 4+ 1) = (104,30¢ + 1) for : = 1,2,3,4,10,20 in Table 3.
For each ¢, we randomly generate 50 completely positive matrices G as described
above. We generate B as in (29) and consider two possible ways of initializing the
algorithms:

(a) We initialize both algorithms at Q° = I for solving the corresponding (28).

(b) We initialize both algorithms at the same random initial point, where we first
generate an 7 x r matrix @ with i.i.d. standard Gaussian entries and then pick
any Q° € Proj-(Q).

We first present the computational results with Q° = I in Table 1, where we report
the largest and smallest function values (2d?(BQ", D)) at termination, the average
number of iterations among successful instances (iters) and the average number of
iterations among failed instances (iter;).> We also report the average CPU time
(in seconds) among successful instances (CPUs) and the average CPU time among
failed instances (CPUyg). The success rate is also listed. We can see from Table 1
that SpFeasp(, significantly outperforms Algorithm 3, with SpFeasy, being able
to solve all instances and being much faster.

3 We say that the instance is solved by the algorithm successfully if the algorithm is
terminated with the desired accuracy achieved, i.e, min{BQt}ij > —10716 for SpFeasDCls, and

min{BQ*};; > —10715 for Algorithm 3.
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Table 1 Comparing SpFeasDCIs and Algorithm 3 on factorizing random completely positive
matrices when Q0 = 1I.

SpFeaspc,

n r success (%) | fvalmax | fvalpin | iters | iterg CPUg CPU¢
10 15 100 2e-33 0e+00 5 - 0.0010 -

20 30 100 0e+00 0e+00 8 - 0.0014 -

30 45 100 0e+-00 0e+00 10 - 0.0050 -

40 60 100 4e-33 0e+00 11 - 0.0077 -
100 | 150 100 0e+4-00 0e+00 18 - 0.0622 -
200 | 300 100 3e-33 0e+00 190 - 2.2804 -
300 | 450 100 5e-33 0e+00 486 - 14.0715 -
400 | 600 100 le-34 0e+-00 731 - 43.5873 -

Algorithm 3

n r success (%) | fvalmax | fvalpin | iters | iterg CPUg CPU;
10 15 0 1le4+00 9e-03 - 5001 - 0.1195
20 30 0 4e+00 le-01 - 5001 - 0.5320
30 45 0 6e+00 2e-01 - 5001 - 1.6316
40 60 0 6e+00 6e-01 - 5001 - 2.3411
100 150 0 le+01 2e4-00 - 5001 - 13.9835
200 | 300 0 3e+01 le+01 - 5001 - 57.6484
300 | 450 0 3e+02 4e+4-01 - 5001 - 147.4416
400 | 600 0 3e+02 9e+01 - 5001 - 293.6904

Then, in Table 2 and Table 3, we present the computational results with
random initial points, and set r = 1.5n and r = 3n + 1 respectively.* Here,
for each random instance, we run the algorithms on the same set of random
initial points, where we use at most 100 initial points when n < 50, and at most
10 initial points otherwise,® and declare a success once the random instance is
solved by the algorithm successfully.® We report the largest and smallest function
values (3d?(BQ", D)) at termination, the average total number of iterations among
successful instances (iters) and failed instances (iters), the average total CPU time
(in seconds) among successful instances (CPUs) and failed instances (CPUys), and
the success rate. We also report the average number of random initial points used
among instances that are successfully solved (InitNos). We can see from Table 2
and Table 3 that SpFeasp, significantly outperforms Algorithm 3, with SpFeaspc,
being able to solve all instances using only one random initial point, and being
much faster. Moreover, by comparing these two tables, we can see that SpFeaspc,
performs similarly for the two choices of r, while the performance of Algorithm 3
is sensitive to the choice of r.

Next, as in [17, Section 7.6], we perform a second experiment to study the
performance of the algorithms in factorizing completely positive matrices that
are close to the boundary of the completely positive cone. Specifically, as in [17,

4 We do not present results with (n,3n 4+ 1) = (10i,30i + 1) for i = 30,40 because they take
too much CPU time.

5 This choice follows the one used in [17, Table 2].
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Table 2 Comparing SpFeasDCIs and Algorithm 3 on factorizing random completely positive
matrices with » = 1.5n and random initializations.

SpFeaspc,
n r success (%) | fvalmax | fvalmin iterg iters CPUg CPU; InitNog
10 15 100 0e+4-00 0e+00 14 - 0.0013 - 1.0
20 30 100 0e+00 0e+00 18 - 0.0026 - 1.0
30 45 100 0e4-00 0e+00 25 - 0.0114 - 1.0
40 60 100 0e+00 0e+00 37 - 0.0212 - 1.0
100 | 150 100 0e+00 0e+00 112 - 0.3440 - 1.0
200 | 300 100 4e-33 0e+00 243 - 3.0006 - 1.0
300 | 450 100 4e-33 0e+00 463 - 14.7035 - 1.0
400 | 600 100 3e-33 0e+00 711 - 44.6827 - 1.0
Algorithm 3

n r success (%) | fvalmax | fvalpin iterg iters CPUg CPU; InitNog
10 15 100 2e-30 2e-33 5232 - 0.1474 - 1.9
20 30 100 3e-30 9e-32 4468 - 0.4483 - 1.5
30 45 100 2e-30 2e-33 5496 - 2.0830 - 1.7
40 60 100 2e-30 2e-32 7497 - 3.4731 - 1.9
100 | 150 2 2e-06 le-31 44693 | 50010 | 99.1045 117.2377 9.0
200 | 300 0 4e-05 2e-28 - 50010 - 546.9136 -

300 | 450 0 2e-07 2e-28 - 50010 - 1413.3341 -

400 | 600 0 Te-04 le-27 - 50010 - 2809.6050 -

Table 3 Comparing SpFeasDCIs and Algorithm 3 on factorizing random completely positive
matrices with » = 3n + 1 and random initializations.

SpFeasp ¢
n r success (%) | fvalmax | fvalpin | iters iterg CPUg CPU¢ InitNog
10 31 100 4e-35 0e+00 13 - 0.0030 - 1.0
20 61 100 0e4-00 0e+00 14 - 0.0070 - 1.0
30 91 100 0e+00 0e+00 16 - 0.0168 - 1.0
40 121 100 0e+00 0e+00 19 - 0.0303 - 1.0
100 | 301 100 le-35 0e+4-00 93 - 1.0123 - 1.0
200 | 601 100 5e-33 0e+00 209 - 11.0123 - 1.0
Algorithm 3
n r success (%) | fvalmax | fvalmin | iters iters CPUgsg CPU; InitNog
10 31 100 4e-30 3e-31 1237 - 0.1126 - 1.1
20 61 100 3e-30 2e-32 753 - 0.2883 - 1.0
30 91 100 4e-30 2e-31 2065 - 1.6742 - 1.0
40 121 100 5e-30 2e-31 4739 - 6.0358 - 1.4
100 | 301 0 3e-27 2e-29 - 50010 - 458.5531 -
200 | 601 0 6e-27 2e-28 - 50010 - 2300.6188 -
Example 7.3], we consider
85115 21111
58511 12111
G:=115851|, P:=(11211{,
11585 11121
51158 11112
and define
Gy=XG+(1-)NP. (30)

We apply the two algorithms to factorizing G with different values of . Moreover,
for the two algorithms, we consider random initializations: we first generate an r x
matrix @ with i.i.d. standard Gaussian entries and then pick any Q° € Proj-(Q).
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In our experiments below, we consider \ as listed in Table 4 and set » = 12: This
choice of r was also used in [17, Section 7.6]. For each A, we consider 100 random
initializations as described above, and apply the two algorithms to factorizing G
from these initial points. Our computational results are presented in Table 4, where
we report the largest and smallest function values (%dQ(BQt, D)) at termination,
the average number of iterations among successful instances (iters) and the average
number of iterations among failed instances (iter¢). We also report the average
CPU time (in seconds) among successful instances (CPUs) as well as the average
CPU time among failed instances (CPUy). We can see from Table 4 that SpFeasp ¢,
again significantly outperforms Algorithm 3. Moreover, the success rates for both
algorithms decrease when )\ increases.

Table 4 Comparing SpFeasDCIS and Algorithm 3 on factorizing G in (30).

SpFeasp,

A r | success (%) | fvalmax | fvalmin | iters | itery | CPUg CPU;
0.00 | 12 100 0e4-00 0e+00 8 - 0.0011 -
0.20 12 100 0e+00 0e+00 27 - 0.0011 -
0.40 | 12 100 0e+00 0e+00 87 - 0.0031 -
0.60 | 12 100 0e+4-00 0e+00 333 - 0.0116 -
0.80 | 12 99 3e-21 0e+00 1229 | 5001 | 0.0399 | 0.1510
0.90 | 12 82 2e-17 0e+00 2547 | 5001 | 0.0786 | 0.1529
0.95 12 29 Te-13 0e+00 2897 | 5001 0.0907 | 0.1611
0.96 | 12 9 4e-11 0e+00 2994 | 5001 | 0.0951 | 0.1656
0.97 | 12 4 Te-12 0e+00 2892 | 5001 | 0.0911 | 0.1709
0.98 | 12 5 2e-10 0e+00 3356 | 5001 | 0.1057 | 0.1814
0.99 | 12 1 8e-07 0e+00 3421 | 5001 | 0.1243 | 0.2047

Algorithm 3
A r | success (%) | fvalmax | fvalpin | iters | itery | CPUg CPU;

0.00 | 12 99 5e-17 2e-31 155 5001 | 0.0047 | 0.1158
0.20 | 12 91 2e-10 2e-32 476 5001 | 0.0114 | 0.0955
0.40 | 12 77 5e-02 2e-31 703 | 5001 | 0.0161 | 0.0937
0.60 | 12 45 2e-01 3e-32 871 5001 | 0.0198 | 0.0877
0.80 | 12 36 4e-01 Te-32 1240 | 5001 | 0.0268 | 0.0889
0.90 | 12 16 5e-01 4e-31 2899 | 5001 | 0.0558 | 0.0893
0.95 | 12 26 6e-01 4e-31 3106 | 5001 | 0.0590 | 0.0879
0.96 | 12 31 6e-01 2e-31 2842 | 5001 | 0.0547 | 0.0895
0.97 | 12 36 6e-01 2e-31 2980 | 5001 | 0.0577 | 0.0870
0.98 | 12 0 7e-01 8e-17 - 5001 - 0.0921
0.99 | 12 0 7e-01 le-04 - 5001 - 0.0922

7 Sparse matrix factorization

Given a matrix G, the sparse matrix factorization problem consists in factorizing G
(approximately) as the product of several sparse matrices. This problem is closely
related to deep learning, sparse encoding and dictionary learning; see [26] and
references therein. In this section, we consider a special instance of the sparse

6 As in the previous experiment, we say that the instance is solved by the algorithm
successfully if the algorithm is terminated with the desired accuracy achieved, i.e, min{BQ*};; >
—1071'¢ for SpFeaspc, , and min{BQ'};; > —1071!5 for Algorithm 3.
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matrix factorization problem. Specifically, given a positive semidefinite matrix
G € R™*", we would like to find a sparse matrix P € R™*" so that G = PPT. In
addition, we require the columns of P to be uniformly sparse: this ensures the cost
of the multiplication p?ac remains more or less the same for each j, where p; is
the jth column of P and z is an n-dimensional vector. More precisely, our problem
is described as follows:

Find P € R™" s.t. max lpjllo <sand G = ppPT, (31)
j=1,...,n

where G € R™*" is a given positive semidefinite matrix, and |[v||o is the number of
nonzero entries of the vector v.

To solve (31), we mimic the approach described in Section 6 and reformulate it as
a split feasibility problem. In detail, starting with an initial factorization G = BBT
for some B € R"*™ one can see that (31) can be equivalently reformulated as the
following split feasibility problem:

Find Q e R"*" st. BQe D and Q € C, (32)

where C' is the set of n x n orthogonal matrices and D = {U € R™*" : |lujllo <
s for each i = 1,...,n}, with u; being the jth column of U € R"*". It is easy to
see that if Q" is a solution of (32), then BQ* solves (31).

Note that the projections onto C' and D have closed form solutions; see [17,
Lemma 4.1] and [24, Proposition 3.1] for the closed form formula of Proj- and
Projp, respectively. In addition, the boundedness of C implies that C*° = {0}.
Therefore, we can employ SpFeasp, and SpFeasp to solve (32) according to the
discussions in Section 3, and it follows from Theorem 1 and Corollary 1 that any
accumulation point of the sequence generated is a stationary point of the split
feasibility problem (32).

7.1 Numerical experiments for sparse matrix factorization

In this section, we perform numerical experiments to compare the performances
of SpFeasp,, and SpFeasp on solving (32). All codes are written in Matlab, and
the experiments are performed in Matlab 2019b on a 64-bit PC with an Intel(R)
Core(TM) i7-6700 CPU (3.40GHz) and 32GB of RAM.

We first discuss the implementation details of the algorithms. In SpFeaspq , we
set M =4, 7=2, ¢c=10"%, Lmax = 10%, Lmin = 1078, Moreover, we set L8 =1,
and when ¢ > 1:

70 min{max{%, Limin}, Lmax} if tr([YYTS%) > 10712
t = _ F
min{maX{ L2t:51 ’ Lmin}, Lmax} otherwise.

where ' = Q' — Q'"! and Y! = BT[BQ! — ] — BT[BQ'"™! — '], with '
Proj,(BQ") chosen in Step 1a) of SpFeaspc, . On the other hand, for SpFeaspc,
we set L = Amax (BT B) +10~%. We initialize both algorithms at the identity matrix.
We terminate SpFeasp, when d(BQ',D) < 107?, or iter > 10000, or L; > 10'°,
while SpFeasp is terminated when d(BQ?, D) < 10~? or iter > 10000.

We compare the above algorithms on randomly generated positive semidefinite
matrices that admit uniformly sparse factorizations. We first generate a random
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matrix Py € R™*" with i.i.d. standard Gaussian entries. We then project Py onto
D to obtain Py and form a positive semidefinite matrix G by G = PyP{. We then
use the above algorithms to solve the corresponding (32) with B := G z.

In our experiment below, we set (n,r) = (100i,0.15) for ¢ = 1,2,3,4 and
j=6,7,8,9 and set s = nr. For each ¢ and j, we generate 20 random instances
as described above. We present the computational results in Table 5, where we
report the value d(BQ', D) at termination, the number of iterations (iter), and the
CPU time in seconds (CPU), averaged over the 20 random instances. One can see
that SpFeasp, notably outperforms SpFeasp in terms of both CPU times and
the terminating function values. Moreover, both algorithms become faster when s
increases.

Table 5 Comparing SpFeasp, and SpFeasp on solving (32) with s = nr.

SpFeaspc, SpFeasp

n r | d(BQY,D) | iter | CPU | d(BQ?, D) iter CPU
100 | 0.6 le-09 4014 14.7 3e-04 10001 17.8
100 | 0.7 le-09 774 2.7 1le-09 7270 12.5
100 | 0.8 9e-10 245 0.8 le-09 2940 5.0
100 | 0.9 7e-10 141 0.4 le-09 1381 2.4
200 | 0.6 le-09 3800 54.0 3e-04 10001 70.1
200 | 0.7 1e-09 761 10.4 1le-09 7526 50.7
200 | 0.8 9e-10 241 3.0 le-09 3122 21.0
200 | 0.9 7e-10 146 1.8 1le-09 1477 9.9
300 | 0.6 le-09 4067 | 136.4 4e-04 10001 | 155.2
300 | 0.7 le-09 734 22.8 le-09 7636 116.6
300 | 0.8 9e-10 274 8.2 1le-09 3168 48.6
300 | 0.9 7e-10 149 4.1 1le-09 1509 22.2
400 | 0.6 le-09 3736 | 231.8 6e-04 10001 | 295.9
400 | 0.7 le-09 626 37.1 le-09 7711 222.5
400 | 0.8 9e-10 246 13.8 1le-09 3201 92.4
400 | 0.9 Te-10 145 7.7 le-09 1528 43.9

8 An outlier detection problem

In this section, we look at an outlier detection problem. Specifically, we consider
the problem of finding an s-sparse solution of a linear system Az = b where
some of the b;’s are wrongly recorded. This class of problem arises in applications
such as compressed sensing, where signals may be contaminated by the so-called
electromyographic noise, resulting in extreme measurements [27].

Here, we approach this problem by considering the following split feasibility
problem, which assumes prior knowledge of s and the number of incorrect b;’s:

Find z e R" s.t. z € C, Az € D, (33)

where A € R™*" b€ R™, C = {z € R" : ||zo < s,||z]loc < 108}, and D = {y €
R™ :|lyllo < 7} + b, with r being an upper estimate of the number of incorrect b;’s
(outliers).

Note that the projections onto C' and D have closed form solutions; see, for
example, [24, Proposition 3.1]. Moreover, since C' is bounded, we have C*° = {0}.
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Thus, we can apply SpFeaspc, and SpFeaspg to solving (33) according to the
discussions in Section 3. Moreover, any accumulation point of the sequence generated
is a stationary point of the split feasibility problem (33).

8.1 Numerical experiments for outlier detection

In this section, we perform numerical experiments to study the behavior of
SpFeasp, and SpFeaspc on the outlier detection problem (33). All codes are
written in Matlab, and the experiments are performed in Matlab 2019b on a 64-bit
PC with an Intel(R) Core(TM) i7-6700 CPU (3.40GHz) and 32GB of RAM.

We first discuss the implementation details of the algorithms. In SpFeasp,, we
set M =4, 7=2,¢c=10"%, Lmax = 10% and Ly = 1078, We also set L8 =1, and
when ¢t > 1,

. tT ¢ . T —
70— mln{max{ﬁ,Lmin},Lmax} if syt > 10712
P =
min{max{%, Luin}, Lmax}  otherwise.

where st = 2! — 2!71 ¢t = AT[Az! — nf] — AT[AL?™1 — 9'71], with ' defined in
Step 1a) of the algorithm. We initialize SpFeasp, at z° = 0 and terminate it
when

— 2
\/ (VAmax(ATA) At = at=1) | + Le—aflat = at=1]) "+ [lat — a1 2

max{1, [lz*]}

< 1078;

following the discussions in [21, Section 6], this guarantees d(0,0= (z!,n'™1)) <
10~ 8max{1, ||z'||}, where Z(x,n) := h(z) + P(z) — nTx + g*(n), with h, P and g
given in (5), and g* is the convex conjugate of g.” On the other hand, for SpFeasp,
we set L = Amax (AT A) +10~%. We initialize this algorithm at z° = 0 and terminate
it when

2
\/ (VAmax(ATA) | At = at=1) | + Lljat —at=1) " + flat — at=12

max{1, [[z*]|}

<1078,

or when the number of iterations reaches 3000.

We compare the above algorithms on randomly generated instances. We first
generate an m X n matrix A with i.i.d. standard Gaussian entries, and normalize it
to have unit column norms. We next generate an s-sparse vector w € R with i.i.d.
standard Gaussian entries at uniformly randomly chosen positions. We then set

by = (Aw)z-
" (Aw); 4 10 - sign(fi—pmyy) i=m—7r4+1,...,m.

where n € R” has i.i.d. standard Gaussian entries.
In our experiment below, we set (n,m,s,r) as listed in Table 6. For each
quadruple (n,m,s,r), we generate 20 random instances as described above. Our

7 As discussed in [21, Section 6], this termination criterion is motivated by the fact that (8)
holds if and only if 0 € 8=(z, 1) for some 7.
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computational results are presented in Table 6, where we report the value d(Aact7 D)
at termination, the number of iterations (iter), and the CPU time in seconds
(CPU), averaged over the 20 random instances. One can observe that SpFeaspc,
significantly outperforms SpFeasp in terms of both CPU times and the terminating
function values.

Table 6 Comparing SpFeasp, and SpFeasp on solving (33).

SpFeaspc, SpFeasp

n m s r | d(Az?, D) | iter | CPU | d(Az%,D) | iter | CPU
10000 | 2000 500 100 2e-08 94 1.3 2e-01 1876 24.9
12000 | 2400 600 120 3e-08 103 2.3 Te-04 1894 38.3
14000 | 2800 700 140 2e-08 97 2.8 2e-01 1799 49.0
16000 | 3200 800 160 3e-08 104 4.0 5e-07 1866 65.4
18000 | 3600 900 180 4e-08 107 5.4 5e-07 1896 85.7
20000 | 4000 | 1000 | 200 3e-08 100 5.9 6e-04 1937 | 106.1
22000 | 4400 | 1100 | 220 4e-08 93 6.3 5e-07 1847 | 122.4
24000 | 4800 | 1200 | 240 2e-08 93 7.5 6e-07 1845 | 145.0
26000 | 5200 | 1300 | 260 4e-08 92 8.8 6e-07 1863 | 172.5
28000 | 5600 | 1400 | 280 5e-08 96 10.7 6e-07 1941 | 208.7
30000 | 6000 | 1500 | 300 4e-08 91 11.5 6e-07 1828 | 223.2

9 Conclusion and future work

In this paper, we considered the split feasibility problem, which is to find an element
in the intersection of a closed set C' and the linear preimage of another closed set
D. We reformulated this problem as an optimization problem with a DC objective,
and applied the nonmonotone proximal gradient algorithm with majorization
in [22, Appendix A] for solving it. We established global convergence and studied
local convergence rate of the sequence generated by our algorithm, under mild
assumptions. Our numerical experiments demonstrate that our algorithm performs
well on solving split feasibility problems that arise from completely positive matrix
factorization, sparse matrix factorization and outlier detection.

There are several avenues for future research. For instance, as suggested by
one of the referees, a possible future research direction is to extend our approach
in Section 7 to find sparse matrix factorization for rectangular matrices. In this
case, the matrix to be factorized is not necessarily symmetric, and hence, one
cannot apply [17, Lemma 2.5] to reformulate this factorization problem into a
split feasibility problem involving the set of orthogonal matrices, as in Section 7.
However, note that one can prove the following analogue of [17, Lemma 2.5]:

Lemma 4 If X, X e R™7 and Y, Y € R™*" are matrices of full rank and satisfy
XY = XY, then there exists an invertible matriz Q € R™*" so that

X=XQ and Y =Q V.

Thus, if a matrix G € R"*™ can be factorized as the product of two full-rank
matrices A € R™*" and B € R"*", other possible factorizations of G into full-rank
matrices of the same sizes can be obtained by multiplying A from the right by an
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invertible matrix @, and multiplying B from the left by Q~'. Now, given an initial
factorization AB of G with A € R™*" and B € R™*™ having full rank, we can
reformulate the sparse factorization problem on G as the following split feasibility
problem:

Find Q,P € R™*" s.t. (AQ,PB) € D := D" x DY and (Q, P) € C, (34)
where C := {(Q,P): QP =1},

DY = {U €R™": Jlujllo < s for each i =1,--- ,r}7

Dy = {VGR”"I lvjllo < s for each j=1,--- ’r}’

with u;, v; being the ith column and the jth row of U and V, respectively. One
difficulty in using this formulation is that the projection onto the set C may not be
easy to compute. Finding efficient ways to project onto C is an interesting future
research question.

A Proof of Theorem 2

Proof The boundedness of {z!} follows from Theorem 1(i). We now prove convergence of the
whole sequence. By assumption, z* is an accumulation point of {z'} so that the function

K(u) = %dz(u, D)

is continuously differentiable at Axz* with locally Lipschitz gradient. Then we have from [30,
Example 8.53], [25, Theorem 1.110(ii)] and the chain rule that

V(ko A)(z*) = AT (Az* — Projp (Az*)).

Using this and the fact that z* is a stationary point of the split feasibility problem (2) (see
Theorem 1(ii)), we deduce further that

0 € AT (Az* — Projp(Az*)) + No(z*)
=V(ko A)(z") + No(z*) = OF (z7),

where the last equality follows from [30, Exercise 8.8(c)]. In particular, it holds that z* € domdF.
Since F' is a KL function and z* € domdF, there exist ¢ > 0 and a continuous concave
function v as in Definition 1 so that

¥ (F(z) — F(z")) - d(0,0F (x)) > 1 (35)

whenever ||z —z*|| < € and F(z*) < F(z) < F(z*) + e. Moreover, by shrinking e if necessary,
we may assume without loss of generality that Vk is globally Lipschitz in {Az : « € B(z*,¢)}
with Lipschitz modulus 7.

Next, observe from (7) with M = 0 that {F(x!)} is nonincreasing. Since F' is also non-
negative, we deduce that the limit tl;rgo F(z!) exists. In addition, notice that F' is continu-

ous in its closed domain and z* is an accumulation point of {z'}. Thus, we conclude that
tlim F(zt) = F(z*).
— 00

Now, if F'(z%0) = F(z*) for some to > 0, then we see from (7) with M = 0 and tlim F(zt) =
— o0

F(z*) that zt+! = 2? for all t > to, which implies that the sequence {x*} converges (finitely).
Thus, from now on, we focus on the case that F(z?) > F(z*) for all ¢t > 0.

In this case, note from Lemma 2 that there exists No > 1 so that [z’ — z'~1| < §
whenever t > Ng. Also, using Lemma 2, the definition of accumulation point and the fact that
tgr& F(zt) = F(z*), there exists N1 > Ny so that



28 Chen Chen et al.

() JlzNr —z*|| < 5 and F(z*) < F(zMN) < F(z*) + e
(i) [N —a*| + laN — 2N 4 Crp(F(aN) - F(z*)) < 5,
T
where C := M, cis as in (7), 7 is the Lipschitz continuity modulus of Vk on
{Az : = € B(z*,¢)}, B = sup, L+ with L; defined in Step 2 of SpFeaspc,, and 3 is finite
according to Lemma 2.
We claim that if ¢ > Ny and ||z — z*| < €/2, then

20ttt —af|| < ot — 2t + O1 [R(F () = F(z*)) = (F ™) = F(z*))] . (36)

To this end, note that since z* € B(z*,€/2) and t > N1 > No, we have [|z! — 2!~ < £ and
hence ||zt~! — 2*|| < e. Thus, & is continuously differentiable at Az*~! and Azt. Moreover, we
see from [30, Example 8.53] and [25, Theorem 1.110(ii)] (see also (10)) that V(x o A)(zt~1) =
AT (Azt=1 — Projp(A2t~1)). Using this and the definition of zf, we deduce that

x! € Projg (It_l _ Vo AT A)(xt_l)) .

Et—l

Thus, according to (1),

Moreover, using the definition of v?, we have

[0 + V(x50 A) (@) < [|V(r 0 A)(z") = V(ko A) (@' )| + Le—a ||z’ — 2|

37
< (TAmax (AT A) + B) ||zt — =t 1|, 37)

where the second inequality holds because 8 = sup, L. and V& is globally Lipschitz in {Az : z €
B(z*, €)} with Lipschitz modulus 7. Since v* + V (ko0 A)(z?) € N (2t) + V(ko A)(z!) = OF (zh),
we obtain from (37) that

d(0,0F (1)) < (T)\max(ATA) + 5) [zt — zt1.
Making use of this, the concavity of ¢ and (7) with M = 0, we see further that

(PAmax(AT4) + 8) ]2t = 1| [@(P(at) — F(a*)) — 9(F( 1) - F(a)))
> d(0,0F (x)) - [$(F(a") — F(z*)) = $(F @t — F(a")]
> d(0,0F (x) -/ (F(a') = F(a") - [F(a") — F(a )]

2

> et — ot

)
)

where the last inequality follows from (7) with M = 0, (35), and the facts that ||zt — z*|| < €/2
and that F(z*) < F(2?) < F(2™M) < F(2*) + € (since t > Np). Dividing both sides of the
above inequality by %, taking square root, using the relation vab < ‘%Lb for any nonnegative
numbers a and b and invoking the definition of C7, we obtain further that

1
[la* — 2|

IN

— T

\/III‘ — a7 CL[Y(F(2t) = F(z*)) = ¢(F(at+h) = F(z7))]

é (Il* = 2"+ C1 [W(F(a") = F(a*)) = w(F(="™) = F(z*)]) ,

IN

from which (36) follows immediately.
Next, we show by induction that z* € B(z*,€/2) whenever ¢t > Nj. The case t = N; follows
from construction. Suppose that z* € B(z*,€/2) whenever t = Ni,..., N1 +k — 1 for some
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k > 1. Then

Ni+k—1

2™ — || < ™ — 2t + D [l -2t

t=N

(a)
< Jla™ — o]

Nyi+k—1

+ D (e =2 =l = et + Cr [(F (') — (")) — o (F(") = F(z*))])

t=N
(b)

< o™ =™ + 2™ =2+ CLu(FEM) - F@) < 5,

where (a) follows from the induction hypothesis and (36), and (b) follows from the definition of
Ni. Thus, 2t € B(z*,€/2) whenever t > N by induction.

Since x* € B(z*,€/2) whenever t > Np, we can sum both sides of (36) from Ny to oo and

obtain

o0
Do ettt =gt

t=N;

oo

<> (th —at T =l =2t + C1 [W(F () - F(2¥) = »(F(a"™) — F(a*))] )

t=N

< et — 2™ Cryp(F (@) - F(z")) < oo

Thus, the sequence {z'} is Cauchy and is hence convergent. 0O
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