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Abstract. In this paper we consider a general matrix factorization model which covers a large
class of existing models with many applications in areas such as machine learning and imaging
sciences. To solve this possibly nonconvex, nonsmooth, and non-Lipschitz problem, we develop a
nonmonotone alternating updating method based on a potential function. Our method essentially
updates two blocks of variables in turn by inexactly minimizing this potential function, and updates
another auxiliary block of variables using an explicit formula. The special structure of our potential
function allows us to take advantage of efficient computational strategies for nonnegative matrix
factorization to perform the alternating minimization over the two blocks of variables. A suitable
line search criterion is also incorporated to improve the numerical performance. Under some mild
conditions, we show that the line search criterion is well defined, and establish that the sequence
generated is bounded and any cluster point of the sequence is a stationary point. Finally, we conduct
some numerical experiments using real datasets to compare our method with some existing efficient
methods for nonnegative matrix factorization and matrix completion. The numerical results show
that our method can outperform these methods for these specific applications.
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1. Introduction. In this paper we consider a class of matrix factorization prob-
lems, which can be modeled as

min
X,Y

F(X,Y ) := Ψ(X) + Φ(Y ) +
1

2

∥∥A(XY >)− b
∥∥2
,(1.1)

where X ∈ Rm×r and Y ∈ Rn×r are decision variables with r ≤ min{m, n}, the
functions Ψ : Rm×r → R ∪ {∞} and Φ : Rn×r → R ∪ {∞} are proper closed but
possibly nonconvex, nonsmooth, and non-Lipschitz, b ∈ Rq is a given vector and
A : Rm×n → Rq is a linear map with q ≤ mn and AA∗ = Iq (Iq denotes the identity
map from Rq to Rq). Model (1.1) covers many existing widely studied models in
many application areas such as machine learning [35] and imaging sciences [44]. In
particular, Ψ(X) and Φ(Y ) can be various regularizers for inducing desired structures,
and A can be suitably chosen to model different scenarios. For example, when Ψ(X)
and Φ(Y ) are chosen as the indicator functions (see the next section for notation and
definitions) for X = {X ∈ Rm×r : X ≥ 0} and Y = {Y ∈ Rn×r : Y ≥ 0}, respectively,
and A is the identity map, (1.1) reduces to the nonnegative matrix factorization
(NMF) problem, which has been widely used in data mining applications to provide
interpretable decompositions of data. NMF was first introduced by Paatero and
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Tapper [25], and then popularized by Lee and Seung [17]. The basic task of NMF is
to find two nonnegative matrices X ∈ Rm×r+ and Y ∈ Rn×r+ such that M ≈ XY > for
a given nonnegative data matrix M ∈ Rm×n+ . We refer readers to [2, 9, 10, 18, 37]
for more information on NMF and its variants. Another example of (1.1) arises in
recent models of the matrix completion (MC) problem (see [30, 31, 32]), where Ψ(X)
and Φ(Y ) are chosen as the Schatten-p1 quasi norm and the Schatten-p2 quasi norm
for suitable p1, p2 > 0, respectively, and A is the sampling map. The MC problem
aims to recover an unknown low rank matrix from a sample of its entries and arises in
various applications (see, for example, [3, 22, 27, 33]). Many widely studied models for
MC are based on nuclear-norm minimization [5, 6, 26], or, more generally, Schatten-
p (0 < p ≤ 1) (quasi-)norm minimization [16, 23, 42]. Recently, models based on
low-rank matrix factorization such as (1.1) have become popular because singular
value decompositions or eigenvalue decompositions of huge (m× n) matrices are not
required for solving these models (see, for example, [15, 30, 31, 32, 34, 38]). More
examples of (1.1) can be found in recent surveys [35, 44].

Problem (1.1) is in general nonconvex (even when Ψ, Φ are convex) and NP-hard.1

Therefore, in this paper, we focus on finding a stationary point of the objective F in
(1.1). Note that F involves two blocks of variables. This kind of structure has been
widely studied in the literature; see, for example, [1, 4, 13, 14, 40, 41, 43]. One popular
class of methods for tackling this kind of problem is the alternating direction method
of multipliers (ADMM) (see, for example, [41, 43]), in which each iteration consists
of an alternating minimization of an augmented Lagrangian function that involves
X, Y , and some auxiliary variables, followed by updates of the associated multipli-
ers. However, the conditions presented in [41, 43] that guarantee convergence of the
ADMM are too restrictive. Moreover, updating the auxiliary variables and the multi-
pliers can be expensive for large-scale problems. Another class of methods for (1.1) is
the alternating-minimization-based (or block-coordinate-descent-type) methods (see
[1, 4, 8, 11, 20, 21, 40]), which alternately (exactly or inexactly) minimizes F(X,Y )
over each block of variables and converges under some mild conditions. When A is
not the identity map, the majorization technique can be used to simplify the subprob-
lems. Some representative algorithms of this class are proximal alternating linearized
minimization (PALM) [4], hierarchical alternating least squares (HALS) (for NMF
only; see [8, 11, 20, 21]), and block coordinate descent (BCD) [40]. It was reported in
[40] that BCD outperforms ADMM in both CPU time and solution quality for NMF.

PALM, HALS, and BCD are currently the state-of-the-art algorithms for solving
problems of the form (1.1). In this paper, we develop a new iterative method for (1.1),
which, according to our numerical experiments in section 6, outperforms HALS and
BCD for NMF, and PALM for MC. Our method is based on the following potential
function (specifically constructed for F in (1.1)):

Θα,β(X,Y, Z) := Ψ(X) + Φ(Y ) +
α

2
‖XY > − Z‖2F +

β

2
‖A(Z)− b‖2 ,(1.2)

where α and β are real numbers. Instead of alternately (exactly or inexactly) minimiz-
ing F(X,Y ) or the augmented Lagrangian function, our method alternately updates
X and Y by inexactly minimizing Θα,β(X,Y, Z) over X and Y , and then updates
Z by an explicit formula. Note that the coupled variables XY > are now separated
from A in our potential function. Thus, one can readily take advantage of efficient

1Problem (1.1) is NP-hard because it contains NMF as a special case, which is NP-hard in general
[36].
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computational strategies for NMF, such as those used in HALS (see the “hierarchical-
prox” updating strategy in section 4), for inexactly minimizing Θα,β(X,Y, Z) over
X or Y . Furthermore, our method can be implemented for NMF and MC without
explicitly forming the huge (m× n) matrix Z (see (6.3) and (6.5)) in each iteration.
This significantly reduces the computational cost per iteration. Finally, a suitable
nonmonotone line search criterion, which is motivated by recent studies on nonmono-
tone algorithms (see, for example, [7, 12, 39]), is also incorporated to improve the
numerical performance.

The rest of this paper is laid out as follows. We first present notation and pre-
liminaries in section 2. We then study the properties of our potential function Θα,β

in section 3. Specifically, if AA∗ = Iq and α, β are chosen such that αI + βA∗A � 0
and 1

α + 1
β = 1, then the problem minX,Y,Z {Θα,β(X,Y, Z)} is equivalent to (1.1)

(see Theorem 3.2). Furthermore, under the weaker conditions that AA∗ = Iq and
1
α + 1

β = 1, we can show that (i) a stationary point of Θα,β gives a stationary point

of F ; (ii) a stationary point of F can be used to construct a stationary point of Θα,β

(see Theorem 3.3). Thus, one can find a stationary point of F by finding a stationary
point of Θα,β . In section 4, we develop a nonmonotone alternating updating method
to find a stationary point of Θα,β , and hence of F . The convergence analysis of our
method is presented in section 5. We show that our nonmonotone line search crite-
rion is well defined and any cluster point of the sequence generated by our method
is a stationary point of F under some mild conditions. Section 6 gives numerical
experiments to evaluate the performance of our method for NMF and MC on real
datasets. Our computational results illustrate the efficiency of our method. Finally,
some concluding remarks are given in section 7.

2. Notation and preliminaries. In this paper, for a vector x ∈ Rm, xi de-
notes its ith entry, ‖x‖ denotes the Euclidean norm of x and Diag(x) denotes the
diagonal matrix whose ith diagonal element is xi. For a matrix X ∈ Rm×n, xij
denotes the ijth entry of X, xj denotes the jth column of X and tr(X) denotes
the trace of X. The Schatten-p (quasi) norm (0 < p < ∞) of X is defined as

‖X‖Sp = (
∑min(m,n)
i=1 ςpi (X))1/p, where ςi(X) is the ith singular value of X. For

p = 2, the Schatten-2 norm reduces to the Frobenius norm ‖X‖F , and for p = 1,
the Schatten-1 norm reduces to the nuclear norm ‖X‖∗. Moreover, the spectral
norm is denoted by ‖X‖, which is the largest singular value of X, and the `1-norm
and `p-quasi norm (0 < p < 1) of X are given by ‖X‖1 :=

∑m
i=1

∑n
j=1 |xij | and

‖X‖p := (
∑m
i=1

∑n
j=1 |xij |p)1/p, respectively. For two matrices X and Y of the same

size, we denote their trace inner product by 〈X, Y 〉 :=
∑m
i=1

∑n
j=1 xijyij . We also

use X ≤ Y (resp., X ≥ Y ) to denote xij ≤ yij (resp., xij ≥ yij) for all (i, j). Fur-
thermore, for a linear map A : Rm×n → Rq, A∗ denotes the adjoint linear map and
‖A‖ denotes the induced operator norm of A, i.e., ‖A‖ = sup{‖A(X)‖ : ‖X‖F ≤ 1}.
A linear self-map T is said to be symmetric if T = T ∗. For a symmetric linear self-
map T : Rm×n → Rm×n, we say that T is positive definite, denoted by T � 0, if
〈X, T (X)〉 > 0 for all X 6= 0. The identity map from Rm×n to Rm×n is denoted by I
and the identity map from Rq to Rq is denoted by Iq. Finally, for a nonempty closed
set C ⊆ Rm×n, its indicator function δC is defined by

δC(X) =

{
0 if X ∈ C,
+∞ otherwise.
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For an extended-real-valued function f : Rm×n → [−∞,∞], we say that it is
proper if f(X) > −∞ for all X ∈ Rm×n and its domain

domf := {X ∈ Rm×n : f(X) <∞}

is nonempty. A function f : Rm×n → [−∞,∞] is level-bounded [28, Definition 1.8]
if, for every α ∈ R, the set {X ∈ Rm×n : f(X) ≤ α} is bounded (possibly empty).
For a proper function f : Rm×n → (−∞,∞], we use the notation Y

f−→ X to denote
Y → X (i.e., ‖Y −X‖F → 0) and f(Y ) → f(X). The (limiting) subdifferential [28,
Definition 8.3] of f at X ∈ domf used in this paper, denoted by ∂f(X), is defined as

∂f(X) :=
{
D ∈ Rm×n : ∃Xk f−→ X and Dk → D with Dk ∈ ∂̂f(Xk) for all k

}
,

where ∂̂f(Ỹ ) denotes the Fréchet subdifferential of f at Ỹ ∈ domf , which is the set
of all D ∈ Rm×n satisfying

lim inf
Y 6=Ỹ ,Y→Ỹ

f(Y )− f(Ỹ )− 〈D, Y − Ỹ 〉
‖Y − Ỹ ‖F

≥ 0.

From the above definition, we can easily observe (see, for example, [28, Proposi-
tion 8.7]) that{

D ∈ Rm×n : ∃Xk f−→ X, Dk → D, Dk ∈ ∂f(Xk)
}
⊆ ∂f(X).(2.1)

When f is continuously differentiable or convex, the above subdifferential coincides
with the classical concept of derivative or convex subdifferential of f ; see, for example,
[28, Exercise 8.8] and [28, Proposition 8.12]. In this paper, we say that X∗ is a
stationary point of f if 0 ∈ ∂f(X∗).

For a proper closed function g : Rm → (−∞,∞], the proximal mapping Proxg :
Rm → Rm of g is defined by Proxg(z) := Argminx∈Rm{g(x) + 1

2‖x − z‖2}. For any
ν > 0, the matrix shrinkage operator Sν : Rm×n → Rm×n is defined by

Sν(X) := UDiag(s̄)V > with s̄i =

{
si − ν if si − ν > 0,
0 otherwise,

where U ∈ Rm×t, s ∈ Rt+, and V ∈ Rn×t are given by the singular value decomposition
of X, i.e., X = UDiag(s)V >.

We now present two propositions, which will be useful for developing our method
in section 4.

Proposition 2.1. Suppose that AA∗ = Iq and α(α+β) 6= 0. Then, αI +βA∗A
is invertible and its inverse is given by 1

αI −
β

α(α+β)A
∗A.

Proof. It is easy to check that 1
αI−

β
α(α+β)A

∗A is well defined since α(α+β) 6= 0,

and that

(αI + βA∗A)

(
1

α
I − β

α(α+ β)
A∗A

)
= I.

This completes the proof.

Proposition 2.2. Let ψ : Rm → (−∞,∞] and φ : Rn → (−∞,∞] be proper
closed functions. Given P,Q ∈ Rm×n and a ∈ Rn, b ∈ Rm with ‖a‖ 6= 0, ‖b‖ 6= 0,
the following statements hold.
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(i) The problem minx∈Rm
{
ψ(x) + 1

2‖xa
> − P‖2F

}
is equivalent to

min
x∈Rm

{
ψ(x) +

‖a‖2

2

∥∥∥∥x− Pa

‖a‖2

∥∥∥∥2
}
.

(ii) The problem miny∈Rn
{
φ(y) + 1

2‖by
> −Q‖2F

}
is equivalent to

min
y∈Rn

{
φ(y) +

‖b‖2

2

∥∥∥∥y − Q>b

‖b‖2

∥∥∥∥2
}
.

Proof. Statement (i) can be easily proved by noticing that

‖xa> − P‖2F = ‖xa>‖2F − 2〈xa>, P 〉+ ‖P‖2F = ‖a‖2‖x‖2 − 2〈x, Pa〉+ ‖P‖2F
= ‖a‖2

∥∥x− Pa/‖a‖2∥∥2 − ‖Pa‖2/‖a‖2 + ‖P‖2F .

Then, statement (ii) can be easily proved by using statement (i) and ‖by> −Q‖2F =
‖yb> −Q>‖2F .

Before ending this section, we discuss the first-order necessary conditions for (1.1).
First, from [28, Exercise 8.8] and [28, Proposition 10.5], we see that

∂F(X, Y ) =

(
∂Ψ(X) +A∗

(
A(XY >)− b

)
Y

∂Φ(Y ) +
(
A∗
(
A(XY >)− b

))>
X

)
.

Then, it follows from the generalized Fermat’s rule [28, Theorem 10.1] that any local

minimizer (X,Y ) of (1.1) satisfies 0 ∈ ∂F(X,Y ), i.e.,{
0 ∈ ∂Ψ(X) +A∗(A(XY >)− b)Y,

0 ∈ ∂Φ(Y ) + (A∗(A(XY >)− b))>X,
(2.2)

which implies that (X,Y ) is a stationary point of F . In this paper, we focus on finding

a stationary point (X∗, Y ∗) of F , i.e., (X∗, Y ∗) satisfies (2.2) in place of (X,Y ).

3. The potential function for F . In this section, we analyze the relation
between F and its potential function Θα,β defined in (1.2). Intuitively, Θα,β originates
from F by separating the coupled variables XY > from the linear mapping A via
introducing an auxiliary variable Z and penalizing XY > = Z. We will see later that
the stationary point of F can be characterized by the stationary point of Θα,β . Before
proceeding, we prove the following technical lemma.

Lemma 3.1. Suppose that AA∗ = Iq and 1
α + 1

β = 1. Then, for any (X,Y, Z)
satisfying

Z =
(
I − β

α+βA
∗A
) (
XY >

)
+ β

α+βA
∗(b),(3.1)

we have F(X,Y ) = Θα,β(X,Y, Z).
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Proof. First, from (3.1), we have

XY > − Z = β
α+βA

∗(A(XY >)− b)(3.2)

A(Z)− b = A
(
XY > − β

α+βA
∗A(XY >) + β

α+βA
∗(b)

)
− b

= A(XY >)− β
α+βAA

∗A(XY >) + β
α+βAA

∗(b)− b = α
α+β

(
A(XY >)− b

)
,

(3.3)

where the last equality follows from AA∗ = Iq. Then, we see that

α
2 ‖XY

> − Z‖2F + β
2 ‖A(Z)− b‖2

= α
2

∥∥∥ β
α+βA

∗(A(XY >)− b)
∥∥∥2

F
+ β

2

∥∥∥ α
α+β

(
A(XY >)− b

)∥∥∥2

= αβ2

(α+β)2 ·
1
2

∥∥A∗(A(XY >)− b)
∥∥2

F
+ α2β

(α+β)2 ·
1
2

∥∥A(XY >)− b
∥∥2

= αβ2

(α+β)2 ·
1
2

∥∥A(XY >)− b
∥∥2

+ α2β
(α+β)2 ·

1
2

∥∥A(XY >)− b
∥∥2

= αβ
α+β ·

1
2

∥∥A(XY >)− b
∥∥2
,

where the first equality follows from (3.2) and (3.3), and the third equality follows
from AA∗ = Iq. This, together with 1

α + 1
β = 1 and the definitions of F and Θα,β

completes the proof.

Based on the above lemma, we now establish the following property of Θα,β .

Theorem 3.2. Suppose that AA∗ = Iq. If α and β are chosen such that αI +
βA∗A�0 and 1

α + 1
β =1, then the problem minX,Y,Z{Θα,β(X,Y, Z)} is equivalent to

(1.1).

Proof. First, it is easy to see from αI + βA∗A � 0 that the function Z 7−→
Θα,β(X,Y, Z) is strongly convex. Thus, for any fixed X and Y , the optimal solution
Z∗ to the problem minZ {Θα,β(X,Y, Z)} exists and is unique, and can be obtained
explicitly. Indeed, from the optimality condition, we have

α(Z∗ −XY >) + βA∗(A(Z∗)− b) = 0.

Then, since αI + βA∗A is invertible (as αI + βA∗A � 0), we see that

Z∗ = (αI + βA∗A)
−1 [

αXY > + βA∗(b)
]

=
[

1
αI −

β
α(α+β)A

∗A
] [
αXY > + βA∗(b)

]
=
(
I − β

α+βA
∗A
)

(XY >) +
[
β
αA
∗(b)− β2

α(α+β)A
∗AA∗(b)

]
=
(
I − β

α+βA
∗A
)

(XY >) +
[
β
α −

β2

α(α+β)

]
A∗(b)

=
(
I − β

α+βA
∗A
)

(XY >) + β
α+βA

∗(b),

where the second equality follows from Proposition 2.1 and the fourth equality fol-
lows from AA∗ = Iq. This, together with Lemma 3.1, implies that F(X,Y ) =
Θα,β(X,Y, Z∗). Then, we have that

min
X,Y,Z

{Θα,β(X,Y, Z)} = min
X,Y

{
min
Z
{Θα,β(X,Y, Z)}

}
= min

X,Y
{Θα,β(X,Y, Z∗)}

= min
X,Y
{F(X,Y )} .

This completes the proof.

D
ow

nl
oa

de
d 

02
/1

7/
21

 to
 1

58
.1

32
.1

61
.1

85
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

3408 LEI YANG, TING KEI PONG, AND XIAOJUN CHEN

Remark 3.1. From the proof of Lemma 3.1, we see that if Φ and Ψ are the indi-
cator functions of some nonempty closed sets, then F(X,Y ) = ( 1

α + 1
β )Θα,β(X,Y, Z)

holds with the special choice of Z in (3.1) whenever AA∗ = Iq and 1
α + 1

β > 0. Thus,
the result in Theorem 3.2 remains valid whenever AA∗ = Iq and α, β are chosen such
that αI + βA∗A � 0 and 1

α + 1
β > 0.

We see from Theorem 3.2 that (1.1) is equivalent to minimizing Θα,β with some
suitable choices of α and β. On the other hand, we can also characterize the relation
between the stationary points of F and Θα,β under weaker conditions on α and β.

Theorem 3.3. Suppose that AA∗ = Iq and α, β are chosen such that 1
α + 1

β = 1.
Then, the following statements hold.
(i) If (X∗, Y ∗, Z∗) is a stationary point of Θα,β, then (X∗, Y ∗) is a stationary point

of F .
(ii) If (X∗, Y ∗) is a stationary point of F , then (X∗, Y ∗, Z∗) is a stationary point of

Θα,β, where Z∗ is given by

Z∗ =
(
I − β

α+βA
∗A
) (
X∗(Y ∗)>

)
+ β

α+βA
∗(b).(3.4)

Proof. First, if (X∗, Y ∗, Z∗) is a stationary point of Θα,β , then we have 0 ∈
∂Θα,β(X∗, Y ∗, Z∗), i.e.,

0 ∈ ∂Ψ(X∗) + α(X∗(Y ∗)> − Z∗)Y ∗,(3.5a)

0 ∈ ∂Φ(Y ∗) + α(X∗(Y ∗)> − Z∗)>X∗,(3.5b)

0 = α(Z∗ −X∗(Y ∗)>) + βA∗(A(Z∗)− b).(3.5c)

Since 1
α + 1

β = 1, we have α(α + β) 6= 0 and hence αI + βA∗A is invertible from
Lemma 2.1. Then, using the same arguments in the proof of Theorem 3.2, we see
from (3.5c) that (X∗, Y ∗, Z∗) satisfies (3.4). Moreover, using (3.4) and the same
arguments in (3.2) and (3.3), we have

X∗(Y ∗)> − Z∗ = β
α+βA

∗(A(X∗(Y ∗)>)− b),(3.6)

A(Z∗)− b = α
α+β

(
A(X∗(Y ∗)>)− b

)
.(3.7)

Thus, substituting (3.6) into (3.5a) and (3.5b), we see that0 ∈ ∂Ψ(X∗) + αβ
α+βA

∗(A(X∗(Y ∗)>)− b)Y ∗,

0 ∈ ∂Φ(Y ∗) + αβ
α+β

(
A∗(A(X∗(Y ∗)>)− b)

)>
X∗.

(3.8)

This together with 1
α + 1

β = 1 implies (X∗, Y ∗) is a stationary point of F . This proves
statement (i).

We now prove statement (ii). First, if (X∗, Y ∗) is a stationary point of F , then
invoking 1

α + 1
β = 1 and (2.2), we have (3.8). Next, we consider (X∗, Y ∗, Z∗) with Z∗

given by (3.4). Then, (X∗, Y ∗, Z∗) satisfies (3.6) and (3.7). Thus, substituting (3.6)
into (3.8), we obtain (3.5a) and (3.5b). Moreover, we have from (3.6) and (3.7) that

α(Z∗ −X∗(Y ∗)>) + βA∗(A(Z∗)− b)

= − αβ
α+βA

∗ (A(X∗(Y ∗)>)− b
)

+ βA∗
(

α
α+β

(
A(X∗(Y ∗)>)− b

))
= 0.

(3.9)

This together with (3.5a) and (3.5b) implies that (X∗, Y ∗, Z∗) is a stationary point
of Θα,β . This proves statement (ii).
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Remark 3.2. From the proof of Theorem 3.3, one can see that if ∂Ψ and ∂Φ are
cones, Theorem 3.3 remains valid under the weaker conditions that AA∗ = Iq and
1
α + 1

β > 0.

From Theorem 3.3, we see that a stationary point of F can be obtained from a
stationary point of Θα,β with a suitable choice of α and β, i.e., 1

α + 1
β = 1. Since the

linear map A is no longer associated with the coupled variables XY > in Θα,β , finding
a stationary point of Θα,β is conceivably easier. Thus, one can consider finding a
stationary point of Θα,β in order to find a stationary point of F . Note that some
existing alternating-minimization-based methods (see, for example, [1, 40]) can be
used to find a stationary point of Θα,β , and hence of F , under the conditions that
AA∗ = Iq and α, β are chosen so that αI + βA∗A � 0 and 1

α + 1
β = 1. These

conditions further imply that α > 1 and β = α
α−1 > 1. However, as we will see from

our numerical results in section 6, finding a stationary point of Θα,β with α > 1 can be
slow. In view of this, in the next section, we develop a new nonmonotone alternating
updating method for finding a stationary of Θα,β (and hence of F) under the weaker
conditions that AA∗ = Iq and 1

α + 1
β = 1. This allows more flexibilities in choosing

α and β.

4. Nonmonotone alternating updating method. In this section, we con-
sider a nonmonotone alternating updating method (NAUM) for finding a stationary
point of Θα,β with 1

α + 1
β = 1. Compared to existing alternating-minimization-based

methods [1, 40] applied to Θα,β , which update X, Y , Z by alternately solving sub-
problems related to Θα,β , NAUM updates Z by an explicit formula (see (4.5)) and
updates X, Y by solving subproblems related to Θα,β in a Gauss–Seidel manner.
Before presenting the complete algorithm, we first comment on the updates of X
and Y .

Let (Xk, Y k) denote the value of (X,Y ) after the (k−1)th iteration, and let (U, V )
denote the candidate for (Xk+1, Y k+1) at the kth iteration (we will set (Xk+1, Y k+1)
to be (U, V ) if a line search criterion is satisfied; more details can be found in Algo-
rithm 1). For notational simplicity, we also define

Hα(X,Y, Z) :=
α

2
‖XY > − Z‖2F

for any (X,Y, Z). Then, at the kth iteration, we first compute Zk by (4.5) and, in the
line search loop, we compute U in one of the following three ways for a given µk > 0.

• Proximal:

(4.1a) U ∈ Argmin
X

Ψ(X) +Hα(X,Y k, Zk) +
µk
2
‖X −Xk‖2F .

• Prox-linear:

(4.1b) U ∈ Argmin
X

Ψ(X)+〈∇XHα(Xk, Y k, Zk), X−Xk〉+ µk
2
‖X−Xk‖2F .

• Hierarchical-prox: If Ψ is columnwise separable, i.e., Ψ(X) =
∑r
i=1 ψi(xi) for

X = [x1, . . . ,xr] ∈ Rm×r, we can update U column by column. Specifically,
for i = 1, 2, . . . , r, compute

(4.1c) ui ∈ Argmin
xi

ψi(xi) +Hα(uj<i,xi,x
k
j>i, Y

k, Zk) +
µk
2
‖xi − xki ‖2,

where uj<i denotes (u1, . . . ,ui−1) and xkj>i denotes (xki+1, . . . ,x
k
r ).

D
ow

nl
oa

de
d 

02
/1

7/
21

 to
 1

58
.1

32
.1

61
.1

85
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

3410 LEI YANG, TING KEI PONG, AND XIAOJUN CHEN

After computing U , we compute V in one of the following three ways for a given
σk > 0.

• Proximal:

(4.2a) V ∈ Argmin
Y

Φ(Y ) +Hα(U, Y, Zk) +
σk
2
‖Y − Y k‖2F .

• Prox-linear:

(4.2b) V ∈ Argmin
Y

Φ(Y ) + 〈∇YHα(U, Y k, Zk), Y − Y k〉+
σk
2
‖Y − Y k‖2F .

• Hierarchical-prox: If Φ is columnwise separable, i.e., Φ(Y ) =
∑r
i=1 φi(yi) for

Y = [y1, . . . ,yr] ∈ Rn×r, we can update V column by column. Specifically,
for i = 1, 2, . . . , r, compute

(4.2c) vi ∈ Argmin
yi

φi(yi) +Hα(U,vj<i,yi,y
k
j>i, Z

k) +
σk
2
‖yi − yki ‖2,

where vj<i denotes (v1, . . . ,vi−1) and ykj>i denotes (yki+1, . . . ,y
k
r ).

For notational simplicity, we further let

ρ :=
∥∥∥I − β

α+βA
∗A
∥∥∥2

(4.3)

and let γ ≥ 0 be a nonnegative number satisfying

(α+ γ) I + βA∗A � 0.(4.4)

Remark 4.1 (comments on “hierarchical-prox”). The hierarchical-prox updating
scheme requires the columnwise separability of Ψ or Φ. This is satisfied for many
common regularizers, for example, ‖ · ‖2F , ‖ · ‖1, ‖ · ‖pp (0 < p < 1), and the indicator
function of the nonnegativity (or box) constraint.

Remark 4.2 (comments on ρ and γ). Since AA∗ = Iq, we see that the eigen-
values of A∗A are either 0 or 1. Then, the eigenvalues of I − β

α+βA
∗A must be

either 1 or α
α+β , and hence ρ = max

{
1, α2/(α+ β)2

}
. Similarly, the eigenvalues

of −(αI + βA∗A) are either −α or −(α + β). Then, (4.4) is satisfied whenever
γ ≥ max{0, −α, −(α+ β)}.

Now, we are ready to present NAUM as Algorithm 1.
In Algorithm 1, the update for Zk is given explicitly. This is motivated by the

condition on Z at a stationary point of Θα,β ; see (3.5c). In fact, following the
same arguments in (3.9), we see that (3.5c) always holds at (Xk, Y k, Zk) with Zk

given in (4.5) when AA∗ = Iq and 1
α + 1

β = 1. If, in addition, αI + βA∗A �
0 holds, one can show that Zk is actually the optimal solution to the problem
minZ

{
Θα,β(Xk, Y k, Z)

}
. In this case, our NAUM with N = 0 in (4.6) can be viewed

as an alternating-minimization-based method (see, for example, [1, 40]) applied to
the problem minX,Y,Z {Θα,β(X,Y, Z)}. However, if αI + βA∗A � 0,2 then the corre-
sponding infZ

{
Θα,β(Xk, Y k, Z)

}
= −∞ for all k, and Zk is only a stationary point

of Z 7→ Θα,β(Xk, Y k, Z). In this case, the function value of Θα,β may increase after
updating Z by (4.5). Fortunately, as we shall see later in (5.8) and (5.9), as long as

2This may happen when 0 < α < 1 so that β = α(α − 1)−1 < 0, or 0 < β < 1 so that
α = β(β − 1)−1 < 0.
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Algorithm 1 NAUM for finding a stationary point of F .

Input: (X0, Y 0), α, and β such that 1
α + 1

β = 1, ρ as in (4.3), γ ≥ 0 satisfying (4.4),

τ > 1, c > 0, µmin > 0, σmax > σmin > 0, and an integer N ≥ 0. Set k = 0.

while a termination criterion is not met, do
Step 1. Compute Zk by

(4.5) Zk =
(
I − β

α+βA
∗A
) (
Xk(Y k)>

)
+ β

α+βA
∗(b).

Step 2. Choose µ0
k ≥ µmin and σ0

k ∈ [σmin, σmax] arbitrarily. Set µ̃k = µ0
k,

σk = σ0
k, and µmax

k = (α+ 2γρ)‖Y k‖2 + c.
(2a) Set µk ← min {µ̃k, µmax

k }. Compute U by (4.1a), (4.1b), or (4.1c).
(2b) Compute V by (4.2a), (4.2b), or (4.2c).
(2c) If

F(U, V )− max
[k−N ]+≤i≤k

F(Xi, Y i) ≤ − c
2

(
‖U −Xk‖2F + ‖V − Y k‖2F

)
,(4.6)

then go to Step 3.
(2d) If µk = µmax

k , set

σmax
k = (α+ 2γρ)‖U‖2 + c, σk ← min {τσk, σmax

k }

and then go to step (2b); otherwise, set µ̃k ← τµk and σk ← τσk
and then go to step (2a).

Step 3. Set Xk+1 ← U , Y k+1 ← V , µ̄k ← µk, σ̄k ← σk, k ← k + 1 and go to
Step 1.

end while

Output: (Xk, Y k).

AA∗ = Iq and 1
α + 1

β = 1, we still have Θα,β(Xk+1, Y k+1, Zk) < Θα,β(Xk, Y k, Zk)

by updating Xk+1 and Y k+1 with properly chosen parameters µk and σk. Thus, if
the possible increase in Θα,β induced by the Z-update is not too large, one can still
ensure

Θα,β(Xk+1, Y k+1, Zk+1) < Θα,β(Xk, Y k, Zk).

Also, it can be seen from Lemma 3.1 and (4.5) that F(Xk, Y k) = Θα,β(Xk, Y k, Zk)
and hence the decrease of Θα,β translates to that of F (see Lemma 5.1 below). In
view of this, Θα,β is a valid potential function for minimizing F as long as AA∗ = Iq
and 1

α + 1
β = 1, even when β < 0 or α < 0. Allowing negative α or β makes our

NAUM (even withN = 0 in (4.6)) different from the classical alternating minimization
schemes.

Our NAUM also allows U and V to be updated in three different ways, respec-
tively, and hence there are nine possible combinations. Thus, one can choose suitable
updating schemes to fit different applications. In particular, if Ψ or Φ are columnwise
separable, taking advantage of the structure of Θα,β and the fact that XY > can be
written as

∑r
i=1 xiy

>
i with X = [x1, . . . ,xr] ∈ Rm×r and Y = [y1, . . . ,yr] ∈ Rn×r,

one can update X or Y columnwise even when A 6= I. The motivation for updating
X (or Y ) columnwise rather than updating the whole X (or Y ) is that the resulting
subproblems (4.1c) (or (4.2c)) can be reduced to the computation of the proximal
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mapping of ψi (or φi), which is easy for many commonly used ψi (or φi). Indeed,
from (4.1c) and (4.2c), ui and vi are given by

ui ∈ Argmin
xi

{
ψi(xi) +

α

2

∥∥xi(yki )> − P ki
∥∥2

F
+
µk
2
‖xi − xki ‖2

}
,

vi ∈ Argmin
yi

{
φi(yi) +

α

2

∥∥uiy>i −Qki ∥∥2

F
+
σk
2
‖yi − yki ‖2

}
,

(4.7)

where P ki and Qki are defined by

P ki := Zk −
∑i−1
j=1uj(y

k
j )> −

∑r
j=i+1x

k
j (ykj )>,

Qki := Zk −
∑i−1
j=1ujv

>
j −

∑r
j=i+1uj(y

k
j )>.

(4.8)

Then, from Proposition 2.2, we can reformulate the subproblems in (4.7) and obtain
the corresponding solutions by computing the proximal mappings of ψi and φi, which
can be computed efficiently when ψi and φi are some common regularizers used in
the literature. In particular, when ψi(·) and φi(·) are ‖ · ‖1, ‖ · ‖22 or the indicator
function of the box constraint, these subproblems have closed-form solutions. This
updating strategy has also been used for NMF; see, for example, [8, 20, 21]. However,
the methods used in [8, 20, 21] can only be applied for some specific problems with
A = I, while NAUM can be applied for more general problems with AA∗ = Iq.

Our NAUM adapts a nonmonotone line search criterion (see Step 2 in Algo-
rithm 1) to improve the numerical performance. This is motivated by recent studies
on nonmonotone algorithms with promising performances; see, for example, [7, 12, 39].
However, unlike the nonmonotone line search criteria used there, NAUM only includes
(U, V ) in the line search loop and checks the stopping criterion (4.6) after updating a
pair of (U, V ), rather than checking (4.6) immediately once U or V is updated. Thus,
we do not need to compute the function value after updating each block of variables.
This may reduce the cost of the line search and make NAUM more practical, especially
when computing the function value is relatively expensive.

Before moving to the convergence analysis of NAUM, we would like to point out
an interesting connection between NAUM and the low-rank matrix fitting algorithm,
LMaFit [38], for solving the following matrix completion model without regularizers:

min
X,Y

1

2

∥∥PΩ(XY > −M)
∥∥2

F
,

where Ω is the index set of the known entries of M , and PΩ(Z) keeps the entries of
Z in Ω and sets the remaining ones to zero. If we apply our NAUM with (4.1a) and
(4.2a), then at the kth iteration the iterates Zk, Xk+1, and Y k+1 are given by

Zk =
(
I − β

α+βPΩ

)
Xk(Y k)> + β

α+βPΩ(M),

Xk+1 =
(
µ̄kX

k + αZkY k
) (
µ̄kI + α(Y k)>Y k

)−1
,

Y k+1 =
(
σ̄kY

k + α(Zk)>Xk+1
) (
σ̄kI + α(Xk+1)>Xk+1

)−1
.

One can verify that the sequence {(Zk, Xk+1, Y k+1)} above can be equivalently
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generated by the following scheme with Z̃0 = PΩ(M) + PΩc(X
0(Y 0)>):

Zk = β
α+β Z̃

k +
(

1− β
α+β

)
Xk(Y k)>,

Xk+1 =
(
µ̄kX

k + αZkY k
) (
µ̄kI + α(Y k)>Y k

)−1
,

Y k+1 =
(
σ̄kY

k + α(Zk)>Xk+1
) (
σ̄kI + α(Xk+1)>Xk+1

)−1
,

Z̃k+1 = PΩ(M) + PΩc
(
Xk+1(Y k+1)>

)
,

where Ωc is the complement set of Ω. Surprisingly, when µ̄k = σ̄k = 0, this scheme is
exactly the successive-overrelaxation-like (SOR-like) scheme used in LMaFit (see [38,
Equation (2.11)]) with ω := β

α+β being an overrelaxation weight. With this connec-
tion, our NAUM, in some sense, can be viewed as an SOR-based algorithm. Moreover,
just like the classical SOR for solving a system of linear equations, LMaFit with ω > 1
also appears to be more efficient from the extensive numerical experiments reported
in [38]. Then, it is natural to consider β

α+β > 1 and hence 1
α > 1 (since 1

α + 1
β = 1) in

NAUM. This also gives some insights for the necessity of allowing more flexibilities in
choosing α and β, and the promising performance of NAUM with a relatively small
α ∈ (0, 1) as we shall see in section 6.

5. Convergence analysis of NAUM. In this section, we discuss the conver-
gence properties of Algorithm 1. First, we present the first-order optimality conditions
for the three different updating schemes in (2a) of Algorithm 1 as follows.

• Proximal:

(5.1a) 0 ∈ ∂Ψ(U) + α
(
U(Y k)> − Zk

)
Y k + µk(U −Xk).

• Prox-linear:

(5.1b) 0 ∈ ∂Ψ(U) + α
(
Xk(Y k)> − Zk

)
Y k + µk(U −Xk).

• Hierarchical-prox: For i = 1, 2, . . . , r,
(5.1c)

0 ∈ ∂ψi(ui) + α
(∑i

j=1uj(y
k
j )> +

∑r
j=i+1x

k
j (ykj )> − Zk

)
yki + µk(ui − xki ).

Similarly, the first-order optimality conditions for the three different updating schemes
in (2b) of Algorithm 1 are as follows.

• Proximal:

(5.2a) 0 ∈ ∂Φ(V ) + α
(
UV > − Zk

)>
U + σk(V − Y k).

• Prox-linear:

(5.2b) 0 ∈ ∂Φ(V ) + α
(
U(Y k)> − Zk

)>
U + σk(V − Y k).

• Hierarchical-prox: For i = 1, 2, . . . , r,
(5.2c)

0 ∈ ∂φi(vi) + α
(∑i

j=1ujv
>
j +

∑r
j=i+1uj(y

k
j )> − Zk

)>
ui + σk(vi − yki ).

We also need to make the following assumptions.
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Assumption 5.1.
(a1) Ψ, Φ are proper, closed, level-bounded functions and continuous on their

respective domains.
(a2) AA∗ = Iq.
(a3) 1

α + 1
β = 1.

Remark 5.1. (i) From (a1), one can see from [28, Theorem 1.9] that inf Ψ and
inf Φ are finite, i.e., Ψ and Φ are bounded from below. In particular, the iterates
(4.1a), (4.1b), (4.1c), (4.2a), (4.2b), and (4.2c) are well defined. (ii) The continuity
assumption in (a1) holds for many common regularizers, for example, `1-norm, nuclear
norm and the indicator function of a nonempty closed set. (iii) (a2) is satisfied for
some common linear maps, for example, the identity map and the sampling map.

We start our convergence analysis by proving the following auxiliary lemma.

Lemma 5.1 (sufficient descent of F). Suppose that Assumption 5.1 holds. Let
(Xk, Y k) be generated by Algorithm 1 at the kth iteration, and (U, V ) be the candidate
for (Xk+1, Y k+1) generated by steps (2a) and (2b). Then, for any integer k ≥ 0, we
have

F(U, V )−F(Xk, Y k)

≤ −µk − (α+ 2γρ)‖Y k‖2

2
‖U −Xk‖2F −

σk − (α+ 2γρ)‖U‖2

2
‖V − Y k‖2F .

(5.3)

Proof. From Lemma 3.1 and (4.5), we see that F(Xk, Y k) = Θα,β(Xk, Y k, Zk).
For any (U, V ), let

W =
(
I − β

α+βA
∗A
) (
UV >

)
+ β

α+βA
∗(b).(5.4)

Then, from Lemma 3.1, we have F(U, V ) = Θα,β(U, V,W ). Thus, to establish (5.3),
we only need to consider the difference Θα,β(U, V,W )−Θα,β(Xk, Y k, Zk).

We start by noting that

A∗A(W ) =
(
A∗A− β

α+βA
∗ (AA∗)A

) (
UV >

)
+ β

α+βA
∗ (AA∗) (b)

= α
α+βA

∗A
(
UV >

)
+ β

α+βA
∗(b),

(5.5)

where the last equality follows from (a2) in Assumption 5.1. Then, we obtain that

∇ZΘα,β(U, V,W ) = α(W − UV >) + βA∗A(W )− βA∗(b)

=α
[
− β
α+βA

∗A(UV >)+ β
α+βA

∗(b)
]
+β
[

α
α+βA

∗A
(
UV >

)
+ β
α+βA

∗(b)
]
−βA∗(b) = 0,

where the second equality follows from (5.4) and (5.5). Moreover, since γ is chosen
such that (α + γ)I + βA∗A � 0 (see (4.4)), we see that, for any k ≥ 0, the function
Z 7−→ Θα,β(U, V, Z) + γ

2 ‖Z − Z
k‖2F is convex and hence

Θα,β(U, V, Zk) +
γ

2
‖Zk − Zk‖2F︸ ︷︷ ︸

=0

≥ Θα,β(U, V,W ) +
γ

2
‖W − Zk‖2F + 〈∇ZΘα,β(U, V,W )︸ ︷︷ ︸

=0

+ γ(W − Zk), Zk −W 〉,
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which implies that

Θα,β(U, V,W )−Θα,β(U, V, Zk) ≤ γ

2
‖W − Zk‖2F .(5.6)

Then, substituting (4.5) and (5.4) into (5.6), we obtain

Θα,β(U, V,W )−Θα,β(U, V, Zk) ≤ γ
2

∥∥∥(I − β
α+βA

∗A
) (
UV > −Xk(Y k)>

)∥∥∥2

F

≤ γ
2

∥∥∥I − β
α+βA

∗A
∥∥∥2

·
∥∥UV > −Xk(Y k)>

∥∥2

F

= γρ
2

∥∥U(V − Y k)> + (U −Xk)(Y k)>
∥∥2

F

≤ γρ
2

(∥∥U(V − Y k)>
∥∥
F

+
∥∥(U −Xk)(Y k)>

∥∥
F

)2

(i)

≤ γρ
2

(
‖U‖‖V − Y k‖F + ‖Y k‖‖U −Xk‖F

)2

(ii)

≤ γρ
(
‖U‖2‖V − Y k‖2F + ‖Y k‖2‖U −Xk‖2F

)
,

(5.7)

where the equality follows from the definition of ρ in (4.3); (i) follows from the relation
‖AB‖F ≤ ‖A‖‖B‖F and (ii) follows from the relation ‖a+ b‖2 ≤ 2‖a‖2 + 2‖b‖2.

Next, we claim that

Θα,β(U, V, Zk)−Θα,β(U, Y k, Zk) ≤ α‖U‖2 − σk
2

‖V − Y k‖2F ,(5.8)

Θα,β(U, Y k, Zk)−Θα,β(Xk, Y k, Zk) ≤ α‖Y k‖2 − µk
2

‖U −Xk‖2F .(5.9)

Below, we will only prove (5.8). The proof for (5.9) can be done in a similar way.
To prove (5.8), we consider the following three cases.
• Proximal: In this case, we have

Θα,β(U, V, Zk)−Θα,β(U, Y k, Zk)

= Φ(V )+Hα(U, V, Zk)−Φ(Y k)−Hα(U, Y k, Zk)

=
[
Φ(V )+Hα(U, V, Zk)+

σk
2
‖V −Y k‖2F

]
−
[
Φ(Y k)+Hα(U, Y k, Zk)

]
− σk

2
‖V −Y k‖2F

≤ −σk
2
‖V − Y k‖2F ,

where the inequality follows from the definition of V as a minimizer of (4.2a).
This implies (5.8).

• Prox-linear: In this case, we have

Θα,β(U, V, Zk)−Θα,β(U, Y k, Zk)

= Φ(V )+Hα(U, V, Zk)−Φ(Y k)−Hα(U, Y k, Zk)

≤ Φ(V ) +Hα(U, Y k, Zk) + 〈∇YHα(U, Y k, Zk), V − Y k〉

+
α‖U‖2

2
‖V − Y k‖2F − Φ(Y k)−Hα(U, Y k, Zk)
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= Φ(V )+〈∇YHα(U, Y k, Zk), V −Y k〉+ σk
2
‖V −Y k‖2F−Φ(Y k)

+
α‖U‖2−σk

2
‖V −Y k‖2F

≤ α‖U‖2 − σk
2

‖V − Y k‖2F ,

where the first inequality follows from the fact that Y 7→ ∇YHα(X,Y, Z)
is Lipschitz with modulus α‖X‖2 and the last inequality follows from the
definition of V as a minimizer of (4.2b).

• Hierarchical-prox: In this case, for any 1 ≤ i ≤ r, we have

Θα,β(U,vj<i,vi,y
k
j>i, Z

k)−Θα,β(U,vj<i,y
k
i ,y

k
j>i, Z

k)

= φi(vi) +Hα(U,vj<i,vi,y
k
j>i, Z

k)− φi(yki )−Hα(U,vj<i,y
k
i ,y

k
j>i, Z

k)

=
[
φi(vi) +Hα(U,vj<i,vi,y

k
j>i, Z

k) +
σk
2
‖vi − yki ‖2

]
− σk

2
‖vi − yki ‖2

−
[
φi(y

k
i ) +Hα(U,vj<i,y

k
i ,y

k
j>i, Z

k)
]

≤ −σk
2
‖vi − yki ‖2,

where the inequality follows from the definition of vi as a minimizer of (4.2c).
Then, summing the above relation from i = r to i = 1 and simplifying the
resulting inequality, we obtain (5.8).

The inequality (5.9) can be obtained via a similar argument.
Now, summing (5.7), (5.8), and (5.9), and using F(U, V ) = Θα,β(U, V,W ) and

F(Xk, Y k) = Θα,β(Xk, Y k, Zk), we obtain (5.3). This completes the proof.

From Lemma 5.1, we see that the sufficient descent of F(X,Y ) can be guaranteed
as long as µk and σk are sufficiently large. Thus, based on this lemma, we can show in
the following proposition that our nonmonotone line search criterion in Algorithm 1
is well defined.

Proposition 5.2 (well-definedness of the nonmonotone line search criterion).
Suppose that Assumption 5.1 holds and Algorithm 1 is applied. Then, for each k ≥ 0,
the line search criterion (4.6) is satisfied after finitely many inner iterations.

Proof. We prove this proposition by contradiction. Assume that there exists a
k ≥ 0 such that the line search criterion (4.6) cannot be satisfied after finitely many
inner iterations. Note from (2a) and (2d) in Step 2 of Algorithm 1 that µk ≤ µmax

k =
(α+ 2γρ)‖Y k‖2 + c and hence µk = µmax

k must be satisfied after finitely many inner
iterations. Let nk denote the number of inner iterations when µk = µmax

k is satisfied
for the first time. If µ0

k ≥ µmax
k , then nk = 1; otherwise, we have

µminτnk−2 ≤ µ0
kτ
nk−2 < µmax

k ,

which implies that

nk ≤
⌊

log(µmax
k )− log(µmin)

log τ
+ 2

⌋
.(5.10)

Then, from (2d) in Algorithm 1, we have U ≡ Uµmax
k

and σmax
k = (α+2γρ)‖Uµmax

k
‖2+c

after at most nk + 1 inner iterations, where Uµmax
k

is computed by (4.1a), (4.1b), or
(4.1c) with µk = µmax

k . Moreover, we see that σk = σmax
k must be satisfied after
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finitely many inner iterations. Similarly, let n̂k denote the number of inner iterations
when σk = σmax

k is satisfied for the first time. If σ0
k > σmax

k , then n̂k = nk; if
σ0
k = σmax

k , then n̂k = 0; otherwise, we have

σminτ n̂k−1 ≤ σ0
kτ
n̂k−1 < σmax

k ,

which implies that

n̂k ≤
⌊

log(σmax
k )− log(σmin)

log τ
+ 1

⌋
.

Thus, after at most max{nk, n̂k}+1 inner iterations, we must have V ≡ Vσmax
k

, where
Vσmax

k
is computed by (4.2a), (4.2b), or (4.2c) with σk = σmax

k . Therefore, after at
most max{nk, n̂k}+ 1 inner iterations, we have

F(Uµmax
k

, Vσmax
k

)−F(Xk, Y k)

≤−µ
max
k −(α+2γρ)‖Y k‖2

2
‖Uµmax

k
−Xk‖2F−

σmax
k −(α+2γρ)‖Uµmax

k
‖2

2
‖Vσmax

k
−Y k‖2F

=− c
2

(
‖Uµmax

k
−Xk‖2F + ‖Vσmax

k
− Y k‖2F

)
,

where the inequality follows from (5.3) and the equality follows from

µmax
k = (α+ 2γρ)‖Y k‖2 + c and σmax

k = (α+ 2γρ)‖Uµmax
k
‖2 + c.

This together with

F(Xk, Y k) ≤ max
[k−N ]+≤i≤k

F(Xi, Y i)

implies that (4.6) must be satisfied after at most max{nk, n̂k} + 1 inner iterations,
which leads to a contradiction.

Now, we are ready to prove our main convergence result, which characterizes a
cluster point of the sequence generated by Algorithm 1. Our proof of statement (ii)
in the following theorem is similar to that of [39, Lemma 4]. However, the arguments
involved are more intricate since we have two blocks of variables in our line search
loop.

Theorem 5.3. Suppose that Assumption 5.1 holds. Let {(Xk, Y k)} be the se-
quence generated by Algorithm 1. Then

(i) {(Xk, Y k)}, {µ̄k}, and {σ̄k} are bounded (boundedness of sequence);
(ii) limk→∞ ‖Xk+1−Xk‖F +‖Y k+1−Y k‖F = 0 (diminishing successive changes);
(iii) any cluster point (X∗, Y ∗) of {(Xk, Y k)} is a stationary point of F(global

subsequential convergence).

Proof. (i) We first show that

F(Xk, Y k) ≤ F(X0, Y 0)(5.11)

for all k ≥ 1. We will prove it by induction. Indeed, for k = 1, it follows from
Proposition 5.2 that

F(X1, Y 1)−F(X0, Y 0) ≤ − c
2

(
‖X1 −X0‖2F + ‖Y 1 − Y 0‖2F

)
≤ 0
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is satisfied after finitely many inner iterations. Hence, (5.11) holds for k = 1. We now
suppose that (5.11) holds for all k ≤ K for some integer K ≥ 1. Then, we only need
to show that (5.11) also holds for k = K + 1. For k = K + 1, we have

F(XK+1, Y K+1)−F(X0, Y 0) ≤ F(XK+1, Y K+1)− max
[K−N ]+≤i≤K

F(Xk, Y k)

≤ − c
2

(
‖XK+1 −XK‖2F + ‖Y K+1 − Y K‖2F

)
≤ 0,

where the first inequality follows from the induction hypothesis and the second in-
equality follows from (4.6). Hence, (5.11) holds for k = K + 1. This completes the
induction. Then, from (5.11), we have that, for any k ≥ 0,

F(X0, Y 0) ≥ F(Xk, Y k) = Ψ(Xk) + Φ(Y k) +
1

2

∥∥A(Xk(Y k)>)− b
∥∥2
,

which, together with (a1) in Assumption 5.1, implies that the sequences {Xk}, {Y k}
and {‖A(Xk(Y k)>)−b‖} are bounded. Moreover, from Steps 2 and 3 in Algorithm 1,
it is easy to see µ̄k ≤ µmax

k = (α+2γρ)‖Y k‖2 +c for all k. Since {Y k} is bounded, the
sequences {µmax

k } and {µ̄k} are bounded. Next, we prove the boundedness of {σ̄k}.
Indeed, at the kth iteration, there are three possibilities.

• µ̄k < µmax
k : In this case, we have σ̄k ≤ σ0

kτ
ñk ≤ σmaxτ ñk , where ñk denotes

the number of inner iterations for the line search at the kth iteration and ñk ≤
max{1, b log(µmax

k )−log(µmin)
log τ +2c} (see (5.10) and the discussions preceding it).

• µ̄k = µmax
k and σ̄k > σmax

k : In this case, we have σ̄k ≤ σ0
kτ
ñk ≤ σmaxτ ñk ,

where ñk ≤ max{1, b log(µmax
k )−log(µmin)

log τ + 2c}.
• Otherwise, we have σ̄k ≤ σmax

k = (α+ 2γρ)‖Xk+1‖2 + c.
Note that {ñk} is bounded as {µmax

k } is bounded. Thus, {σ̄k} is bounded as the
sequences {Xk} and {ñk} are bounded. This proves statement (i).

(ii) We first claim that any cluster point of {(Xk, Y k)} is in domF . Since
{(Xk, Y k)} is bounded from statement (i), there exists at least one cluster point.
Suppose that (X∗, Y ∗) is a cluster point of {(Xk, Y k)} and let {(Xki ,Y ki)} be a con-
vergent subsequence such that limi→∞(Xki , Y ki) = (X∗, Y ∗). Then, from the lower
semicontinuity of F (since Ψ, Φ are closed by (a1) in Assumption 5.1) and (5.11), we
have

F(X∗, Y ∗) ≤ lim
i→∞
F(Xki , Y ki) ≤ F(X0, Y 0),

which implies that F(X∗, Y ∗) is finite and hence (X∗, Y ∗) ∈ domF .
For notational simplicity, from now on, we let ∆Xk := Xk+1 − Xk, ∆Y k :=

Y k+1 − Y k, ∆Zk := Zk+1 − Zk, and

`(k) = arg max
i
{F(Xi, Y i) : i = [k −N ]+, . . . , k }.(5.12)

Then, the line search criterion (4.6) can be rewritten as

F(Xk+1, Y k+1)−F(X`(k), Y `(k)) ≤ − c
2

(
‖∆Xk‖2F + ‖∆Y k‖2F

)
≤ 0.(5.13)
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Observe that

F(X`(k+1), Y `(k+1))

= max
[k+1−N ]+≤i≤k+1

F(Xi, Y i) = max

{
F(Xk+1, Y k+1), max

[k+1−N ]+≤i≤k
F(Xi, Y i)

}
(i)

≤ max

{
F(X`(k), Y `(k)), max

[k+1−N ]+≤i≤k
F(Xi, Y i)

}
≤ max

{
F(X`(k), Y `(k)), max

[k−N ]+≤i≤k
F(Xi, Y i)

}
(ii)
= max

{
F(X`(k), Y `(k)),F(X`(k), Y `(k))

}
= F(X`(k), Y `(k)),

where (i) follows from (5.13) and (ii) follows from (5.12). Therefore, the sequence
{F(X`(k), Y `(k))} is nonincreasing. Since F(X`(k), Y `(k)) is also bounded from below

(due to (a1) in Assumption 5.1), we conclude that there exists a number F̃ such that

lim
k→∞

F(X`(k), Y `(k)) = F̃ .(5.14)

We next prove by induction that, for all j ≥ 1,
lim
k→∞

∆X`(k)−j = lim
k→∞

∆Y `(k)−j = 0,(5.15a)

lim
k→∞

F(X`(k)−j , Y `(k)−j) = F̃ .(5.15b)

We first prove (5.15a) and (5.15b) for j = 1. Applying (5.13) with k replaced by
`(k)− 1, we obtain

F(X`(k), Y `(k))−F(X`(`(k)−1), Y `(`(k)−1)) ≤ − c
2

(
‖∆X`(k)−1‖2F + ‖∆Y `(k)−1‖2F

)
,

which, together with (5.14), implies that

lim
k→∞

∆X`(k)−1 = lim
k→∞

∆Y `(k)−1 = 0.(5.16)

Then, from (5.14) and (5.16), we have

F̃ = lim
k→∞

F(X`(k), Y `(k)) = lim
k→∞

F(X`(k)−1 + ∆X`(k)−1 , Y `(k)−1 + ∆Y `(k)−1)

= lim
k→∞

F(X`(k)−1, Y `(k)−1),

where the last equality follows because {(Xk, Y k)} is bounded, any cluster point of
{(Xk, Y k)} is in domF and F is uniformly continuous on any compact subset of
domF under (a1) in Assumption 5.1. Thus, (5.15a) and (5.15b) hold for j = 1.

We next suppose that (5.15a) and (5.15b) hold for j = J for some J ≥ 1. It
remains to show that they also hold for j = J + 1. Indeed, from (5.13) with k
replaced by `(k) − J − 1 (here, without loss of generality, we assume that k is large
enough such that `(k)− J − 1 is nonnegative), we have

F(X`(k)−J , Y `(k)−J)−F(X`(`(k)−J−1), Y `(`(k)−J−1))

≤− c
2

(
‖∆X`(k)−J−1‖2F +‖∆Y `(k)−J−1‖2F

)
,
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which implies that

‖∆X`(k)−J−1‖2F +‖∆Y `(k)−J−1‖2F ≤ 2
c

(
F(X`(`(k)−J−1), Y `(`(k)−J−1))−F(X`(k)−J , Y `(k)−J)

)
.

This together with (5.14) and the induction hypothesis implies that

lim
k→∞

∆X`(k)−(J+1) = lim
k→∞

∆Y `(k)−(J+1) = 0.

Thus, (5.15a) holds for j = J + 1. From this, we further have

lim
k→∞

F(X`(k)−(J+1), Y `(k)−(J+1))

= lim
k→∞

F(X`(k)−J−∆X`(k)−(J+1) , Y `(k)−J−∆Y `(k)−(J+1))

= lim
k→∞

F(X`(k)−J , Y `(k)−J) = F̃ ,

where the second equality follows because {(Xk, Y k)} is bounded, any cluster point
of {(Xk, Y k)} is in domF , and F is uniformly continuous on any compact subset of
domF under (a1) in Assumption 5.1. Hence, (5.15b) also holds for j = J + 1. This
completes the induction.

We are now ready to prove the main result in this statement. Indeed, from (5.12),
we can see k − N ≤ `(k) ≤ k (without loss of generality, we assume that k is large
enough such that k ≥ N). Thus, for any k, we must have k −N − 1 = `(k) − jk for
1 ≤ jk ≤ N + 1. Then, we have

‖∆Xk−N−1‖F = ‖∆X`(k)−jk ‖F ≤ max
1≤j≤N+1

‖∆X`(k)−j‖F ,

‖∆Y k−N−1‖F = ‖∆Y `(k)−jk ‖F ≤ max
1≤j≤N+1

‖∆Y `(k)−j‖F .

This together with (5.15a) implies that

lim
k→∞

∆Xk = lim
k→∞

∆Xk−N−1 = 0,

lim
k→∞

∆Y k = lim
k→∞

∆Y k−N−1 = 0.

This proves statement (ii).
(iii) Again, let (X∗, Y ∗) be a cluster point of {(Xk, Y k)} and let {(Xki ,Y ki)}

be a convergent subsequence such that limi→∞(Xki , Y ki) = (X∗, Y ∗). Recall that
(X∗, Y ∗) ∈ domF . On the other hand, it is easy to see from (4.5) that limi→∞ Zki =
Z∗, where Z∗ is given by (3.4). Thus, it can be shown as in (3.9) that

α(Z∗ −X∗(Y ∗)>) + βA∗(A(Z∗)− b) = 0.(5.17)

We next show that {
0 ∈ ∂Ψ(X∗) + α(X∗(Y ∗)> − Z∗)Y ∗,(5.18a)

0 ∈ ∂Φ(Y ∗) + α(X∗(Y ∗)> − Z∗)>X∗.(5.18b)

We start by showing (5.18a) in the following cases.
• Proximal and prox-linear : Passing to the limit along {(Xki , Y ki)} in (5.1a) or

(5.1b) with Xki+1 in place of U and µ̄ki in place of µk, and invoking (a1) in
Assumption 5.1, statements (i), (ii), (X∗, Y ∗) ∈ domF and (2.1), we obtain
(5.18a).
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• Hierarchical-prox : Passing to the limit along {(Xki , Y ki)} in (5.1c) with
Xki+1 in place of U and µ̄ki in place of µk, and invoking (a1) in Assump-
tion 5.1, statements (i), (ii), (X∗, Y ∗) ∈ domF and (2.1), we have

0 ∈ ∂ψi(x∗i ) + α(X∗(Y ∗)> − Z∗)y∗i
for any i = 1, 2, . . . , r. Then, stacking them up, we obtain (5.18a).

We can obtain (5.18b) similarly. Thus, combining (5.17), (5.18a), and (5.18b), we see
that (X∗, Y ∗, Z∗) is a stationary point of Θα,β , which further implies (X∗, Y ∗) is a
stationary point of F from Theorem 3.3. This proves statement (iii).

Remark 5.2 (comment on (a3) in Assumption 5.1). If Φ and Ψ are the indicator
functions of some nonempty closed sets, Theorem 5.3 can remain valid under the
weaker condition on α and β that 1

α + 1
β > 0 with a slight modification in (4.6) of

Algorithm 1. Indeed, when Φ and Ψ are the indicator functions, one can see from
Remark 3.1 and the proofs of Lemma 5.1 and Proposition 5.2 that if 1

α + 1
β > 0, then

F(U, V )−F(Xk, Y k) =
(

1
α + 1

β

) (
Θα,β(U, V,W )−Θα,β(Xk, Y k, Zk)

)
≤ −

(
1
α + 1

β

)(
µk−(α+2γρ)‖Y k‖2

2 · ‖U −Xk‖2F + σk−(α+2γρ)‖U‖2
2 · ‖V − Y k‖2F

)
,

and the line search criterion is well defined with c replaced by ( 1
α + 1

β )c. Moreover,
recalling [28, Exercise 8.14], we see that ∂Ψ and ∂Φ are normal cones. Thus, following
Remark 3.2 and the similar augments in Theorem 5.3, we can obtain the same results
when 1

α + 1
β > 0 with c replaced by ( 1

α + 1
β )c in (4.6) of Algorithm 1.

Remark 5.3 (comments on updating µmax
k and σmax

k ). In Algorithm 1, we need
to evaluate µmax

k = (α+2γρ)‖Y k‖2+c and σmax
k = (α+2γρ)‖U‖2+c in each iteration.

However, computing the spectral norms of Y k and U might be costly, especially when
r is large. Hence, in our experiments, instead of computing ‖Y k‖2 and ‖U‖2, we
compute ‖Y k‖2F and ‖U‖2F , and update µmax

k and σmax
k by µmax

k = (α+2γρ)‖Y k‖2F +c
and σmax

k = (α + 2γρ)‖U‖2F + c instead. Since ‖Y k‖ ≤ ‖Y k‖F and ‖U‖ ≤ ‖U‖F , it
follows from (5.3) that

F(U, V )−F(Xk, Y k)≤−µk−(α+2γρ)‖Y k‖2F
2 ‖U−Xk‖2F−

σk−(α+2γρ)‖U‖2F
2 ‖V −Y k‖2F .

Then, one can show that Proposition 5.2 and Theorem 5.3 remain valid. In addition,
we compute the quantities ‖U‖2F and ‖Y k‖2F by tr(U>U) and tr((Y k)>Y k), respec-
tively. For some cases, the matrices U>U and (Y k)>Y k can be used repeatedly in
updating the variables and evaluating the objective value and successive changes to
reduce the cost of line search; see a concrete example in section 6.1.

6. Numerical experiments. In this section, we conduct numerical experiments
to test our algorithm for NMF and MC on real datasets. All experiments are run in
MATLAB R2015b on a 64-bit PC with an Intel Core i7-4790 CPU (3.60 GHz) and
32 GB of RAM equipped with Windows 10 OS.

6.1. Nonnegative matrix factorization. We first consider NMF

min
X,Y

1

2

∥∥XY > −M∥∥2

F
s.t. X ≥ 0, Y ≥ 0,(6.1)

where X ∈ Rm×r and Y ∈ Rn×r are decision variables. Note that the feasible set of
(6.1) is unbounded. We hence focus on the following model:

min
X,Y

1

2

∥∥XY > −M∥∥2

F
s.t. 0 ≤ X ≤ Xmax, 0 ≤ Y ≤ Y max,(6.2)
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where Xmax ≥ 0 and Y max ≥ 0 are upper bound matrices. One can show that, when
Xmax
ij and Y max

ij are sufficiently large,3 solving (6.2) gives a solution of (6.1). In our

experiments, for simplicity, we set Xmax
ij = 1016 and Y max

ij = 1016 for all (i, j). Now,
we see that (6.2) corresponds to (1.1) with Ψ(X) = δX (X), Φ(Y ) = δY(Y ), and
A = I, where

X = {X ∈ Rm×r : 0 ≤ X ≤ Xmax} and Y = {Y ∈ Rn×r : 0 ≤ Y ≤ Y max}.

We apply NAUM to solving (6.2), and use (4.1c) and (4.2c) to update U and V . The
specific updates of Zk, ui, and vi are

Zk = α
α+βX

k(Y k)> + β
α+βM,

ui = max

{
0, min

{
xmax
i ,

αP ki y
k
i + µkx

k
i

α‖yki ‖2 + µk

}}
, i = 1, 2, . . . , r,

vi = max

{
0, min

{
ymax
i ,

α(Qki )>ui + σky
k
i

α‖ui‖2 + σk

}}
, i = 1, 2, . . . , r,

where P ki and Qki are defined in (4.8). Note that here it is not necessary to update
Zk explicitly. Indeed, we can directly compute P ki y

k
i and (Qki )>ui by substituting

Zk as below:

(6.3)
P ki y

k
i = α

α+βX
k(Y k)>yki + β

α+βMyki −
∑i−1
j=1uj(y

k
j )>yki −

∑r
j=i+1x

k
j (ykj )>yki ,

(Qki )>ui = α
α+βY

k(Xk)>ui+
β

α+βM
>ui−

∑i−1
j=1vju

>
jui−

∑r
j=i+1y

k
ju
>
jui.

When computing Xk(Y k)>yki and Y k(Xk)>ui in the above, we first compute (Y k)>yki
and (Xk)>ui to avoid forming the huge (m × n) matrix Xk(Y k)>. Moreover, the
matrices (Xk)>U , U>U , (Y k)>Y k, and M>U that have been computed in (6.3) can
be used again to evaluate the successive changes and the objective value as follows:

‖U −Xk‖2F = tr(U>U)− 2tr((Xk)>U) + tr((Xk)>Xk),

‖V − Y k‖2F = tr(V >V )− 2tr((Y k)>V ) + tr((Y k)>Y k),

‖UV > −M‖2F = tr((U>U)(V >V ))− 2tr((M>U)V >) + ‖M‖2F .

In the above relations, (Xk)>Xk and (Y k)>Y k can be obtained from U>U and V >V
in the previous iteration, respectively, and ‖M‖2F can be computed in advance. Ad-
ditionally, as we discussed in Remark 5.3, tr((Y k)>Y k) and tr(U>U) can also be
used in computing µmax

k and σmax
k , respectively. These techniques were also used in

many popular algorithms for NMF to reduce the computational cost (see, for example,
[2, 9, 10, 18, 37]).

The experiments are conducted on the face datasets (dense matrices) and the
text datasets (sparse matrices). For face datasets, we use CBCL,4 ORL,5 [29] and
the extended Yale Face Database B (e-YaleB)6 [19] for our test. CBCL contains 2429
images of faces with 19× 19 pixels, ORL contains 400 images of faces with 112× 92
pixels, and e-YaleB contains 2414 images of faces with 168 × 192 pixels. In our
experiments, for each face dataset, each image is vectorized and stacked as a column
of a data matrix M of size m× n. For text datasets, we use three datasets from the

3The estimations of Xmax
ij and Y max

ij have been discussed in [9, Page 67].
4Available at http://cbcl.mit.edu/cbcl/software-datasets/FaceData2.html.
5Available at http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html.
6Available at http://vision.ucsd.edu/∼iskwak/ExtYaleDatabase/ExtYaleB.html.
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CLUTO toolkit.7 The specific values of m and n for each dataset and the values of r
used for our tests are summarized in Table 1.

Table 1
Real data sets.

Face datasets (dense matrices) Text datasets (sparse matrices)
Data Pixels m n r Data Sparsity m n r
CBCL 19× 19 361 2429 30, 60 classic 99.92% 7094 41681 10, 20
ORL 112× 92 10304 400 30, 60 sports 99.14% 8580 14870 10, 20
e-YaleB 168× 192 32256 2414 30, 60 ohscal 99.47% 11162 11465 10, 20

The parameters in NAUM are set as follows: µmin = µ̄−1 = 1, σmin = σ̄−1 =
1, σmax = 106, τ = 4, c = 10−4, N = 3, µ0

k = max{0.1µ̄k−1, µ
min}, and σ0

k =
min{max{0.1σ̄k−1, σ

min}, σmax} for any k ≥ 0. Moreover, we set

β =
α

α− 1
, γ = max{0, −α, −(α+ β)}, and ρ = max{1, α2/(α+ β)2}

for some given α.
We then compare the performances of NAUM with different α. In our compar-

isons, we initialize NAUM with different α at the same random initialization (X0, Y 0)8

and terminate them if one of the following stopping criteria is satisfied:

• |F
k
nmf−F

k−1
nmf |

Fknmf+1
≤ 10−4 holds for three consecutive iterations;

• ‖X
k−Xk−1‖F+‖Y k−Y k−1‖F
‖Xk‖F+‖Y k‖F+1

≤ 10−4 holds,

where Fknmf := 1
2

∥∥Xk(Y k)> −M
∥∥2

F
denotes the objective value at (Xk, Y k). Table 2

presents the results of NAUM with different α for two face datasets (CBCL and
ORL) and r = 30, 60. In the table, “Iter” denotes the number of iterations; “RelErr”
denotes the relative error ‖X∗(Y ∗)>−M‖F /‖M‖F , where (X∗, Y ∗) is a terminating
point obtained by each NUAM in a trial; “Time” denotes the computational time (in
seconds). All the results presented are the average of 10 independent trials. From
Table 2, we can see that NAUM with a relatively small α (e.g., 0.6 and 0.8) has better
numerical performance. However, α cannot be too small. Observe that NAUM with
α = 0.5, 0.4, 0.2 are not competitive and, surprisingly, α = 0.5 leads to the worst
performance. In view of this, we do not choose α < 0.6 in our following experiments
for NMF.

We next compare NAUM with two existing efficient algorithms for NMF:9 The
hierarchical alternating least squares (HALS) method10 (see, for example, [8, 9, 10,

7Available at http://glaros.dtc.umn.edu/gkhome/cluto/cluto/download.
8We use the MATLAB commands X0 = max(0, randn(m, r)); Y0 = max(0, randn(n, r)); X0

= X0/norm(X0,’fro’)*sqrt(norm(M, ’fro’)); Y0 = Y0/norm(Y0,’fro’)*sqrt(norm(M, ’fro’));.
9Most existing algorithms are directly developed for (6.1). However, they need the assumption

that the sequence generated is bounded in their convergence analysis. Although this assumption is
uncheckable and may fail, these algorithms always work well in practice. Thus, we directly use these
algorithms in our comparisons, rather than modifying them for (6.2).

10HALS for (6.1) is given by

xk+1
i = max

{
0,

Myk
i −

∑i−1
j=1x

k+1
j (yk

j )>yk
i −

∑r
j=i+1x

k
j (yk

j )>yk
i

‖yk
i ‖2

}
, i = 1, . . . , r;

yk+1
i = max

{
0,

M>xk+1
i −

∑i−1
j=1y

k+1
j (xk+1

j )>xk+1
i −

∑r
j=i+1y

k
j (xk+1

j )>xk+1
i

‖xk+1
i ‖2

}
, i = 1, . . . , r.
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Table 2
Comparisons of NAUM with different α.

α Iter RelErr Time α Iter RelErr Time
CBCL, r = 30 CBCL, r = 60

2.0 488 1.0519e−01 1.72 2.0 626 7.4388e−02 4.94
1.1 381 1.0448e−01 1.35 1.1 555 7.3477e−02 4.38
0.8 315 1.0426e−01 1.09 0.8 511 7.2986e−02 4.09
0.6 268 1.0406e−01 0.94 0.6 419 7.2998e−02 3.32
0.5 833 1.0593e−01 4.74 0.5 1372 7.5864e−02 19.49
0.4 440 1.0489e−01 3.05 0.4 599 7.4568e−02 10.02
0.2 556 1.0674e−01 4.18 0.2 782 7.7654e−02 14.30

ORL, r = 30 ORL, r = 60
2.0 232 1.6673e−01 3.45 2.0 277 1.4078e−01 7.92
1.1 188 1.6619e−01 2.78 1.1 210 1.4042e−01 6.04
0.8 158 1.6603e−01 2.33 0.8 182 1.4017e−01 5.20
0.6 132 1.6578e−01 2.01 0.6 156 1.3996e−01 4.44
0.5 652 1.7216e−01 15.79 0.5 695 1.4583e−01 32.91
0.4 280 1.6615e−01 7.55 0.4 353 1.4061e−01 19.17
0.2 307 1.6753e−01 8.71 0.2 358 1.4272e−01 20.77

11, 20, 21]) and the block coordinate descent method for NMF (BCD-NMF)11 (see
Algorithm 2 in section 3.2 in [40]).

To better evaluate the performances of different algorithms, we follow [11] to use
an evolution of the objective function value. To define this evolution, we first define

e(k) :=
Fk −Fmin

F0 −Fmin
,

where Fk denotes the objective function value obtained by an algorithm at (Xk, Y k)
and Fmin denotes the minimum of the objective function values obtained among all
algorithms across all initializations. We also use T (k) to denote the total computa-
tional time after completing the kth iteration of an algorithm. Thus, T (0) = 0 and
T (k) is nondecreasing with respect to k. Then, the evolution of the function value
obtained from a particular algorithm with respect to time t is defined as

E(t) := min {e(k) : k ∈ {i : T (i) ≤ t}} .

One can see that 0 ≤ E(t) ≤ 1 (since 0 ≤ e(k) ≤ 1 for all k) and E(t) is nonincreasing
with respect to t. E(t) can be considered as a normalized measure of the reduction of
the function value with respect to time. For a given matrix M and a positive integer
r, one can take the average of E(t) over several independent trials with different
initializations, and plot the average E(t) within time t for a given algorithm.

In our experiments, we initialize all the algorithms at the same random initial
point (X0, Y 0) and terminate them only by the maximum running time Tmax. The
specific values of Tmax are given in Figures 1 and 2. Additionally, we use the default
settings for BCD-NMF. For NAUM, we choose α = 0.6, 0.8, 1.1, 2. We then plot the
average E(t) for each algorithm within time Tmax.

Figures 1 and 2 show the average E(t) of 30 independent trials for NMF on face
datasets and text datasets, respectively (see online version for color figures). From
the results, we can see that NAUM with α = 0.6 performs best in most cases, and
NAUM with α = 0.6 or 0.8 always performs better than NAUM with α > 1. This

11Available at http://www.math.ucla.edu/∼wotaoyin/papers/bcu/nmf/index.html.
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Fig. 1. Average E(t) of 30 independent trials for NMF on face datasets.

shows that choosing α and β under the weaker condition 1
α + 1

β = 1 (hence α can be

smaller than 1) can improve the numerical performance of NAUM.

6.2. Matrix completion. We next consider a recent model for MC:

min
X,Y

η

2
‖X‖∗ +

η

2
‖Y ‖∗ +

1

2

∥∥PΩ(XY > −M)
∥∥2

F
,(6.4)
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(f) Tmax = 6

Fig. 2. Average E(t) of 30 independent trials for NMF on text datasets.

where η > 0 is a penalty parameter, Ω is the index set of the known entries of M ,
and PΩ(Z) keeps the entries of Z in Ω and sets the remaining ones to zero. This
model was first considered in [30, 31] and was shown to be equivalent to Schatten- 1

2
quasi-norm minimization. Encouraging numerical performance of this model has also
been reported in [30, 31]. Note that (6.4) corresponds to (1.1) with Ψ(X) = η

2‖X‖∗,
Φ(Y ) = η

2‖Y ‖∗, and A = PΩ. Thus, we can apply NAUM with (4.1b) and (4.2b) to
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solving (6.4). The updates of Zk, U , and V are

Zk = Xk(Y k)> + β
α+βPΩ

(
M −Xk(Y k)>

)
,

U = Sη/(2µk)

(
Xk − α

µk
(Xk(Y k)> − Zk)Y k

)
,

V = Sη/(2σk)

(
Y k − α

σk
(U(Y k)> − Zk)>U

)
.

Substituting Zk into U and V and using 1
α + 1

β = 1 gives

U = Sη/(2µk)

(
Xk− 1

µk

[
PΩ(Xk(Y k)>−M)

]
Y k
)
,

V = Sη/(2σk)

(
Y k− α

σk
Y k(U−Xk)>U− 1

σk

[
PΩ(Xk(Y k)>−M)

]>
U
)
.

(6.5)

Thus, similar to NAUM for NMF, we do not need to update Zk explicitly for MC.
We compare NAUM with proximal alternating linearized minimization (PALM),

which was proposed in [4] and was used to solve (6.4) in [30, 31]. For ease of future
reference, we recall that the PALM for solving (6.4) is given by

Xk+1 = S η

2‖Y k‖2

(
Xk − 1

‖Y k‖2
[
PΩ(Xk(Y k)> −M)

]
Y k
)
,

Y k+1 = S η

2‖Xk+1‖2

(
Y k − 1

‖Xk+1‖2
[
PΩ(Xk+1(Y k)> −M)

]>
Xk+1

)
.

For NAUM, we use the same parameter settings as in section 6.1, but choose α =
0.4, 0.6, 1.1. All the algorithms are initialized at the same random initialization
(X0, Y 0)12 and terminated if one of the following stopping criteria is satisfied:

• |F
k
mc−F

k−1
mc |

Fkmc+1
≤ 10−4 holds for three consecutive iterations;

• ‖X
k−Xk−1‖F+‖Y k−Y k−1‖F
‖Xk‖F+‖Y k‖F+1

≤ 10−4 holds;

• the running time is more than 300 seconds,

where Fkmc := η
2‖X

k‖∗ + η
2‖Y

k‖∗ + 1
2

∥∥PΩ(Xk(Y k)> −M)
∥∥2

F
denotes the objective

function value obtained by each algorithm at (Xk, Y k).
Table 3 presents the numerical results of different algorithms for different prob-

lems, where two face datasets (CBCL and ORL) are used as our test matrices M and
a subset Ω of entries is sampled uniformly at random. In the table, sr denotes the
sampling ratio, i.e., a subset Ω of (rounded) mn × sr entries is sampled; r denotes
the rank used for test; “Iter” denotes the number of iterations; “Normalized fval”

denotes the normalized function value F(X∗, Y ∗)−Fmin

Fmax−Fmin
, where (X∗, Y ∗) is obtained

by each algorithm, F(X∗, Y ∗) is the function value at (X∗, Y ∗) for each algorithm,
and Fmax (resp., Fmin) denotes the maximum (resp., minimum) of the terminating
function values obtained from all algorithms in a trial (one random initialization and

Ω); “RecErr” denotes the recovery error ‖X
∗(Y ∗)>−M‖F
‖M‖F . All the results presented are

the average of 10 independent trials. Instances with smallest Normalized fval, CPU
time, and RecErr are marked in bold.

From Table 3, we can see that NAUM with α = 0.4 gives the smallest function
values and the smallest recovery error within the smallest CPU time in most cases.
Moreover, NAUM with α = 0.6 also performs better than NAUM with α = 1.1 and

12We use the MATLAB commands X0 = randn(m, r); Y0 = randn(n, r);.
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Table 3
Numerical results for MC on face datasets.

η Data sr r α = 0.4 α = 0.6 α = 1.1 PALM α = 0.4 α = 0.6 α = 1.1 PALM

Iter Normalized fval

5

CBCL

0.5 30 780 1189 3320 3306 1.13e−01 7.50e−02 4.52e−01 1
0.5 60 921 1218 3850 4654 3.24e−02 5.10e−02 3.85e−01 1
0.2 30 1174 2366 4767 3573 8.01e−03 2.21e−01 6.87e−01 9.60e−01
0.2 60 1577 1919 5360 5037 1.03e−02 8.95e−02 8.08e−01 8.86e−01

ORL

0.5 30 1218 1243 1241 1468 0 2.94e−01 5.06e−01 1
0.5 60 1049 1051 1051 1327 0 1 4.00e−01 7.73e−01
0.2 30 2074 325 385 2691 2.59e−03 7.01e−01 1 1.31e−01
0.2 60 1551 1551 356 2222 0 3.82e−01 1 2.12e−01

10

CBCL

0.5 30 457 654 1793 1935 2.20e−02 1.29e−01 3.60e−01 9.81e−01
0.5 60 514 594 1950 2559 2.65e−01 1.15e−01 3.79e−01 8.71e−01
0.2 30 627 1313 2513 2116 1.91e−02 3.75e−02 8.35e−01 7.79e−01
0.2 60 866 1095 2713 2889 2.07e−02 2.89e−02 9.22e−01 4.86e−01

ORL

0.5 30 1003 1186 1192 1402 3.30e−02 1.47e−01 4.30e−01 1
0.5 60 975 1009 1012 1276 0 8.58e−01 6.11e−01 9.99e−01
0.2 30 1409 364 411 2646 0 7.16e−01 1 8.10e−02
0.2 60 1241 1504 376 2185 4.05e−06 3.97e−02 1 2.21e−01

CPU time RecErr

5

CBCL

0.5 30 35.56 54.14 151.23 119.05 1.05e−01 1.05e−01 1.06e−01 1.08e−01
0.5 60 57.66 76.09 240.19 206.47 8.81e−02 9.02e−02 9.04e−02 8.99e−02
0.2 30 34.04 68.57 137.97 75.56 1.37e−01 1.37e−01 1.38e−01 1.43e−01
0.2 60 72.01 87.82 245.21 147.08 1.34e−01 1.35e−01 1.35e−01 1.36e−01

ORL

0.5 30 294.20 300 300 300 1.72e−01 1.84e−01 2.01e−01 2.12e−01
0.5 60 300 300 300 300 1.66e−01 2.11e−01 2.05e−01 2.11e−01
0.2 30 300 47.35 55.86 300 2.08e−01 3.04e−01 3.81e−01 2.24e−01
0.2 60 300 300 69.21 300 2.16e−01 2.35e−01 3.49e−01 2.61e−01

10

CBCL

0.5 30 21.01 30.12 82.45 70.32 1.16e−01 1.19e−01 1.18e−01 1.17e−01
0.5 60 32.40 37.38 122.51 113.80 1.09e−01 1.11e−01 1.14e−01 1.11e−01
0.2 30 18.15 38.01 72.84 44.62 1.60e−01 1.61e−01 1.62e−01 1.60e−01
0.2 60 39.13 49.37 123.74 83.52 1.57e−01 1.57e−01 1.58e−01 1.56e−01

ORL

0.5 30 252.15 300 300 300 1.71e−01 1.77e−01 1.95e−01 2.08e−01
0.5 60 289.57 300 300 300 1.53e−01 2.01e−01 2.03e−01 2.09e−01
0.2 30 207.22 53.08 60.54 300 1.95e−01 3.06e−01 3.83e−01 2.14e−01
0.2 60 243.45 295.60 74.09 300 1.87e−01 1.95e−01 3.60e−01 2.36e−01

PALM with respect to the function value and the recovery error in most cases. This
again shows that a flexible choice of α and β can lead to better numerical performances
and the choice of α = 0.4 performs best for MC from our experiments.

7. Concluding remarks. In this paper, we considered a class of matrix fac-
torization problems involving two blocks of variables. To solve this kind of possibly
nonconvex, nonsmooth, and non-Lipschitz problem, we introduced a specially con-
structed potential function Θα,β , defined in (1.2), which contains one auxiliary block
of variables. We then developed a nonmonotone alternating updating method with a
suitable line search criterion based on this potential function. Unlike existing meth-
ods such as those based on alternating minimization, our method essentially updates
the two blocks of variables alternately by solving subproblems related to Θα,β , and
then updates the auxiliary block of variables by an explicit formula (see (4.5)). Us-
ing the special structure of Θα,β , we demonstrated how some efficient computational
strategies for NMF can be used to solve the associated subproblems in our method.
Moreover, under some mild conditions, we established that the sequence generated
by our method is bounded, and any cluster point of the sequence gives a stationary
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point of our problem. Finally, we conducted some numerical experiments for NMF
and MC on real datasets to illustrate the efficiency of our method.

Note that the parameter α (and β = α/(α − 1)) plays a significant role in our
NAUM. Although it was observed in our experiments that a relatively small α (e.g.,
0.6, 0.8) can improve the numerical performance of NAUM, how to choose an optimal
α remains unknown. In view of the recent work [24] on adaptively choosing the
extrapolation parameter in FISTA for solving a class of possibly nonconvex problems,
it may be possible to derive a strategy to adaptively update α in our NAUM. This is
a possible future research topic.

Acknowledgments. The authors are grateful to Nicolas Gillis for his helpful
comments. The authors are also grateful to the editor and the anonymous referees
for their valuable suggestions and comments, which helped improve this paper.
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