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Abstract We consider a class of nonconvex nonsmooth optimization problems
whose objective is the sum of a smooth function and a finite number of nonneg-
ative proper closed possibly nonsmooth functions (whose proximal mappings are
easy to compute), some of which are further composed with linear maps. This
kind of problems arises naturally in various applications when different regulariz-
ers are introduced for inducing simultaneous structures in the solutions. Solving
these problems, however, can be challenging because of the coupled nonsmooth
functions: the corresponding proximal mapping can be hard to compute so that
standard first-order methods such as the proximal gradient algorithm cannot be
applied efficiently. In this paper, we propose a successive difference-of-convex ap-
proximation method for solving this kind of problems. In this algorithm, we ap-
proximate the nonsmooth functions by their Moreau envelopes in each iteration.
Making use of the simple observation that Moreau envelopes of nonnegative proper
closed functions are continuous difference-of-convex functions, we can then approx-
imately minimize the approximation function by first-order methods with suitable
majorization techniques. These first-order methods can be implemented efficiently
thanks to the fact that the proximal mapping of each nonsmooth function is easy
to compute. Under suitable assumptions, we prove that the sequence generated by
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our method is bounded and any accumulation point is a stationary point of the
objective. We also discuss how our method can be applied to concrete applications
such as nonconvex fused regularized optimization problems and simultaneously
structured matrix optimization problems, and illustrate the performance numeri-
cally for these two specific applications.

Keywords Moreau envelope · difference-of-convex approximation · proximal
mapping · simultaneous structures

1 Introduction

In this paper, we consider the following possibly nonconvex nonsmooth optimiza-
tion problem:

minimize
x

F (x) := f(x) + P0(x) +
m∑
i=1

Pi(Aix), (1)

with the objective satisfying the following assumptions (see the next section for
notation and definitions):

A1. f : Rn → R is an L-smooth function i.e., there exists a constant L > 0 so
that

‖∇f(x)−∇f(v)‖ ≤ L‖x− v‖

for any x, v ∈ Rn.
A2. Ai : Rn → Rni , i = 1, . . . ,m, are linear mappings and Pi : Rni → R+ ∪ {∞},

i = 0, . . . ,m, are proper closed functions. The functions Pi, i = 0, . . . ,m, are
continuous in their respective domains, and

domP0 ∩
m⋂
i=1

A−1
i (domPi) 6= ∅.

Moreover, the proximal mapping of γPi is easy to compute for every γ > 0
and for each i = 0, . . . ,m. The sets domPi, i = 1, . . . ,m, are closed.

A3. The function f + P0 is level-bounded, i.e., for each r ∈ R, the set {x ∈ Rn :
f(x) + P0(x) ≤ r} is bounded.

Problem (1) arises in many contemporary applications such as structured low
rank matrix recovery problems (see, for example, [18]), nonconvex fused regular-
ized optimization problems (see, for example, [21] and Example 2 in Section 4)
and simultaneously structured matrix optimization problems (see, for example,
[23] and Example 5 in Section 4). In these applications, the Pi’s are used for in-
ducing desirable structures in the solutions and they are typically functions whose
proximal mappings are easy to compute. If only one such function appears in (1),
i.e., m = 0, then some standard first-order methods such as the proximal gradient
algorithm or its variants can be applied to solving (1) efficiently, because these
algorithms only require the computation of ∇f and the proximal mapping of γP0

(γ > 0) in each iteration. However, in all the aforementioned applications, there
are always more than one such structure-inducing functions in (1) (i.e., m ≥ 1)
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and the Ai’s might not always be identity mappings. Then the proximal gradi-
ent algorithm and its variants cannot be applied efficiently, because the proximal
mapping of x 7→ P0(x) +

∑m
i=1 Pi(Aix) can be hard to compute in general.

When the function f and the Pi’s are all convex functions, one alternative ap-
proach for solving (1) is the alternating direction method of multipliers (ADMM);
see, for example, [9, 10]. This method can be applied to (1) by suitably introduc-
ing slack variables that transform the problem into a linearly constrained problem,
and each iteration only requires computing the proximal mappings of f and γPi’s,
as well as an update of an auxiliary (dual) variable. However, it is known that
the ADMM does not necessarily converge if the Pi’s are nonconvex and m ≥ 1;
see, for example, [13, Example 7]. In the case when Pi’s are nonconvex but glob-
ally Lipschitz for i = 0, . . . ,m , and Ai is the identity mapping for all i, a new
method for solving (1) was introduced in a series of work [32, 33]. Their method
is based on the so-called proximal average of Pi’s, and each iteration involves only
the computations of ∇f and the proximal mappings of γPi’s. However, it was only
shown that any accumulation point of the sequence generated by their method is a
stationary point of a certain smooth approximation of (1). Moreover, their method
was designed for the case when Pi’s are globally Lipschitz, and the convergence
behavior of their method is unknown when some non-Lipschitz functions such as
the `p quasi-norm or the indicator function of some closed sets (such as the set of
all k-sparse vectors) are present in (1).

In this paper, we propose a new method for solving (1) that is ready to take
advantage of the ease of proximal mapping computations and has convergence
guarantee under suitable assumptions, without imposing convexity nor globally
Lipschitz continuity on Pi’s. We call our method the successive difference-of-convex
approximation method (SDCAM). In this method, we construct an approximation
to the objective of (1) in each iteration using the Moreau envelopes of the λi,tPi,
i = 1, . . . ,m, where t is the number of iteration and {λi,t} are nonincreasing posi-
tive sequences satisfying limt→∞ λi,t = 0; a suitable approximate stationary point
of this approximation function is then taken to be the next iterate xt+1 of our
algorithm. The point xt+1 can be found efficiently by recalling that the Moreau
envelopes involved, despite being nonsmooth in general due to the possible non-
convexity of the Pi’s, are continuous difference-of-convex functions. Thus, one can
incorporate majorization techniques in some standard first-order methods such
as the proximal gradient algorithm for finding xt+1 in each iteration. Moreover,
when such first-order methods are applied, the main computational cost per in-
ner iteration typically only depends on the computations of ∇f and the proximal
mappings of γPi, i = 0, . . . ,m, γ > 0, which are inexpensive in many applications.
This suggests that the SDCAM can be applied efficiently for solving (1). More de-
tails of this algorithm will be discussed in Section 3, where we also prove that the
sequence {xt} generated is bounded and any accumulation point is a stationary
point of (1) under suitable assumptions.

The rest of the paper is organized as follows. In Section 2, we introduce notation
and some preliminary results. Our SDCAM is presented and its convergence is
analyzed under suitable assumptions in Section 3. We then discuss how our method
can be applied to various kinds of structured optimization problems including some
nonconvex fused regularized optimization problems, some simultaneously sparse
and low rank matrix optimization problems, and the low rank nearest correlation
matrix problem, in Section 4. We also perform numerical experiments on some
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of these applications to demonstrate the efficiency of our algorithm in Section 5.
Finally, we present some concluding remarks in Section 6.

2 Notation and preliminaries

In this paper, vectors and matrices are represented in bold lower case letters and
upper case letters, respectively. The inner product of two vectors a and b ∈ Rn
are denoted by a>b or b>a, and we use ‖a‖0, ‖a‖1 and ‖a‖ to denote the number
of nonzero entries, the `1 norm and the `2 norm of a, respectively. Moreover, we
use Diag(a) to denote the diagonal matrix whose diagonal is a. For two matrices
A and B ∈ Rm×n, their Hadamard (entrywise) product is denoted by A ◦B. We
also use ‖A‖∗ and ‖A‖F to denote the nuclear norm and the Fröbenius norm of
A, respectively, and let vec(A) ∈ Rmn×1 denote the vectorization of A, which is
obtained by stacking the columns of A on top of one another. Furthermore, we use
σmax(A) to denote the largest singular value of A. The space of symmetric n× n
matrices is denoted by Sn. For a matrix X ∈ Sn, we use diag(X) ∈ Rn to denote
its diagonal and λmax(X) to denote its largest eigenvalue. We write X � 0 if X is
positive semidefinite. For a linear operator A, we let A∗ denote its adjoint.

A function h : Rn → R∪{∞} is said to be proper if domh := {x : h(x) <∞} 6=
∅. Such a function is said to be closed if it is lower semicontinuous. Following [25,
Definition 8.3], for a proper function h, the limiting and horizon subdifferentials
at x ∈ domh are defined respectively as

∂h(x) =
{
u : ∃ut → u,xt

h→ x with ut ∈ ∂̂h(xt) for each t
}
,

∂∞h(x) =
{
u : ∃αt ↓ 0, αtu

t → u,xt
h→ x with ut ∈ ∂̂h(xt) for each t

}
,

where ∂̂h(w) :=

{
u : lim inf

y→w,y 6=w
h(y)−h(w)−u>(y−w)

‖y−w‖ ≥ 0

}
, and the notation xt

h→

x means xt → x and h(xt) → h(x). We also define ∂h(x) = ∂∞h(x) := ∅ when
x /∈ domh. It is easy to show that at any x ∈ domh, the limiting and horizon
subdifferentials have the following robustness property:

{u : ∃ut → u,xt
h→ x with ut ∈ ∂h(xt) for each t} ⊆ ∂h(x),

{u : ∃αt ↓ 0, αtu
t → u,xt

h→ x with ut ∈ ∂h(xt) for each t} ⊆ ∂∞h(x).
(2)

The limiting subdifferential at x reduces to {∇h(x)} if h is continuously differen-
tiable at x [25, Exercise 8.8(b)], and reduces to the convex subdifferential if h is
proper convex [25, Proposition 8.12].

For a proper closed function h with inf h > −∞, we will also need its Moreau
envelope for any given λ > 0, which is defined as

eλh(x) := inf
y

{
1

2λ
‖x− y‖2 + h(y)

}
.

This function is finite everywhere [25, Theorem 1.25]. It is not hard to see that

eλh(x) ≤ h(x) (3)
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for all x. The infimum in the definition of Moreau envelope is attained at the
so-called proximal mapping of λh at x, which is defined as

proxλh(x) := Argmin
u∈Rn

{
1

2λ
‖x− u‖2 + h(u)

}
.

This set is always nonempty because h is proper closed and bounded below [25,
Theorem 1.25]. Let ζλ ∈ proxλh(x). Then we have from [25, Theorem 10.1] and
[25, Exercise 8.8(c)] that

1

λ
(x− ζλ) ∈ ∂h(ζλ). (4)

Furthermore, we have the following simple lemma, which should be well known.
We provide a short proof for self-containedness.

Lemma 1 Let h be a proper closed function with inf h > −∞ and let x∗ ∈ domh.

Suppose that xt → x∗, λt ↓ 0 and pick any ζt ∈ proxλth(xt) for each t. Then it holds

that ζt ∈ domh for all t and ζt → x∗.

Proof Under the assumptions, we have the following inequality:

1

2λt
‖xt−ζt‖2 +inf h ≤ 1

2λt
‖xt−ζt‖2 +h(ζt) = eλth(xt) ≤ 1

2λt
‖xt−x∗‖2 +h(x∗).

Hence, we have ζt ∈ domh for all t and

‖ζt−x∗‖ ≤ ‖ζt−xt‖+‖xt−x∗‖ ≤
√

2λt(h(x∗)− inf h) + ‖xt − x∗‖2+‖xt−x∗‖ → 0.

�

Finally, recall that for a nonempty closed set C, the indicator function is defined
as

δC(x) =

{
0 if x ∈ C,
∞ else.

We define the (limiting) normal cone at any x ∈ C as NC(x) := ∂δC(x). We let
dist(x, C) := infy∈C ‖y−x‖. The set of points in the nonempty closed set C that are
closest to a given x is denoted by projC(x). One can observe that projC = proxδC .
The set projC(x) at a given x is always nonempty for a nonempty closed set C,
and is a singleton when C is in addition convex.

3 Solution method for nonconvex nonsmooth optimization problems

3.1 Successive difference-of-convex approximation method

In this paper, we consider problem (1) and assume that its objective satisfies
the assumptions A1, A2 and A3 in Section 1. We will discuss some concrete
applications of (1) in more details in Section 4. In this section, we present an
algorithm for solving (1).

Notice that (1) is in general a nonsmooth nonconvex optimization problem. The
nonsmooth nonconvex function P0+

∑m
i=1 Pi◦Ai can be complicated in practice and

handling it directly can be challenging. Indeed, although the proximal mappings of
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γPi, i = 0, . . . ,m, are easy to compute, the proximal mapping of P0 +
∑m
i=1 Pi ◦Ai

may be hard to evaluate and hence the classical proximal gradient algorithm and its
variants cannot be adapted directly and efficiently for solving (1). In this paper, we
suitably adapt a “smoothing” scheme for solving the above nonconvex nonsmooth
problem. In this approach, in each iteration, we minimize the auxiliary function

Fλ(x) := f(x) + P0(x) +
m∑
i=1

eλiPi(Aix) (5)

approximately and then update x and λ = (λ1, · · · , λm), where eλiPi is the Moreau
envelope of Pi.

When Pi, i = 1, . . . ,m are all convex functions, the corresponding functions
eλiPi are Lipschitz differentiable [3, Proposition 12.29]. Hence, the function Fλ
becomes the sum of a nonsmooth function P0 and a smooth function, and can be
minimized efficiently using, for example, the proximal gradient algorithm and its
variants. This smoothing strategy has been widely used in the literature for con-
vex problems; see [20], and also [4] for a software package for convex optimization
problems based on smoothing techniques. However, in our setting, Pi is not nec-

essarily convex. Thus, the corresponding Moreau envelope eλiPi is not necessarily

smooth and it is unclear whether Fλ can be minimized efficiently at first glance.
The key ingredient in our approach (where Pi is possibly nonconvex) is the

simple observation that for any nonnegative proper closed function P and any
µ > 0,

eµP (u) =
1

2µ
‖u‖2 − sup

y∈domP

{
1

µ
u>y − 1

2µ
‖y‖2 − P (y)

}
︸ ︷︷ ︸

Dµ,P (u)

. (6)

Such a decomposition has been noted in [2] when P = δC for some nonempty closed
set C, and in [17, Proposition 3] for the general case. Then Dµ,P , as the supreme of
affine functions and being finite-valued, is convex continuous. Moreover, using the
definition of eµP (u), proxµP (u) and (6), we see that the supremum in Dµ,P (u)
is attained at any point in proxµP (u). Let y∗ ∈ proxµP (Ax). Then y∗ ∈ domP

and we have for any w that

Dµ,P (w)−Dµ,P (Ax)

= sup
y∈domP

{
1

µ
w>y − 1

2µ
‖y‖2 − P (y)

}
− sup
y∈domP

{
1

µ
(Ax)>y − 1

2µ
‖y‖2 − P (y)

}
≥ 1

µ
w>y∗ − 1

2µ
‖y∗‖2 − P (y∗)−

(
1

µ
(Ax)>y∗ − 1

2µ
‖y∗‖2 − P (y∗)

)
=

1

µ
y∗
>

(w −Ax).

This implies 1
µproxµP (Ax) ⊆ ∂Dµ,P (Ax), from which we deduce further that

1

µ
A∗proxµP (Ax) ⊆ A∗∂Dµ,P (Ax) = ∂(Dµ,P ◦ A)(x), (7)

where the last equality follows from [24, Theorem 23.9] because Dµ,P is convex
continuous. Thus, (5) is the sum of a smooth function f , a nonsmooth noncon-
vex function P0 whose proximal mapping is easy to compute, and a continuous
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difference-of-convex function such that a subgradient corresponding to its concave
part is easy to compute; thanks to (7) and Assumption A2. Proximal gradient
methods with majorization techniques can then be suitably applied to minimiz-
ing (5). For instance, one can apply the NPGmajor described in the appendix.
Specifically, one can apply NPGmajor with

h(x) = f(x) +
m∑
i=1

1

2λi
‖Aix‖2, P (x) = P0(x), g(x) =

m∑
i=1

Dλi,Pi(Aix).

It is routine to check that this choice of h, P and g satisfies the assumptions
required in the appendix. Moreover, the Fλ is level-bounded because f + P0 is
level-bounded by assumption and eλiPi are nonnegative for each i = 1, . . . ,m since
Pi are nonnegative. Finally, Fλ is continuous in its domain because P0 is. Hence all
assumptions required in the appendix for applying NPGmajor are satisfied and the
method can be applied to minimizing Fλ by initializing at any point x0 ∈ domP0.

We now describe our method for solving (1) with its update rules below in Al-
gorithm 1. We call this method the successive difference-of-convex approximation
method (SDCAM).

Algorithm 1 The SDCAM for (1)

Step 0. Pick m + 1 sequences of positive numbers with εt ↓ 0 and λi,t ↓ 0 for i = 1, . . . ,m,

an xfeas ∈ domP0 ∩
⋂m
i=1A

−1
i (domPi), and an x0 ∈ domP0. Set t = 0.

Step 1. If Fλt (x
t) ≤ Fλt (xfeas), set xt,0 = xt. Else, set xt,0 = xfeas.

Step 2. Approximately minimize Fλt (x), starting at xt,0, and terminating at xt,lt when

dist

(
0,∇f(xt,lt ) + ∂P0(xt,lt+1) +

m∑
i=1

1

λi,t
A∗i [Aixt,lt − proxλi,tPi (Aix

t,lt )]

)
≤ εt,

and ‖xt,lt+1 − xt,lt‖ ≤ εt, Fλt (x
t,lt ) ≤ Fλt (x

t,0).

(8)

Step 3. Update xt+1 = xt,lt and t = t+ 1. Go to Step 1.

We would like to point out that Step 1 in SDCAM is crucial in our convergence
analysis: this strategy was also used in the penalty decomposition method in [15].
As we shall see in the proof of Theorem 2 below, it ensures that (2) can be applied
at an accumulation point of {xt}.

3.2 Theoretical guarantee for global convergence

In this section, we first discuss how Fλt can be approximately minimized so that
(8) is satisfied at the t-th iteration and comment on the computational complexity.
Then we prove the convergence of the SDCAM under suitable assumptions.

As discussed above, Fλt can be minimized by the NPGmajor outlined in the

appendix. Moreover, due to (7), one can choose ζt,l =
∑m
i=1

1
λi,t
A∗i ζ

t,l
i in the

algorithm with
ζt,li ∈ proxλi,tPi(Aix

t,l) (9)
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for each i = 1, . . . ,m and l ≥ 0 so that
∑m
i=1

1
λi,t
A∗i ζ

t,l
i lies in the subdifferential of∑m

i=1(Dλi,t,Pi ◦ Ai) at xt,l. Using this special version of NPGmajor, we can show
that the termination criterion (8) is satisfied after finitely many inner iterations.

Theorem 1 Suppose that the NPGmajor is applied with ζt,l =
∑m
i=1

1
λi,t
A∗i ζ

t,l
i , where

ζt,li are chosen as in (9), to minimizing Fλt in the t-th iteration of SDCAM. Then the

criterion (8) is satisfied after finitely many inner iterations.

Proof According to the convergence properties of the NPGmajor, one obtains a
sequence {xt,l}l≥0 satisfying

1. lim
l→∞

‖xt,l+1 − xt,l‖ = 0 (Proposition 2 in the appendix), Fλt(x
t,l) ≤ Fλt(x

t,0)

(thanks to (46)); and
2. for any l ≥ 0 (see (45)),

xt,l+1∈Argmin
x


(
∇f(xt,l) +

m∑
i=1

ωt,li
λi,t

)>
x+

L̄t,l
2
‖x− xt,l‖2 + P0(x)

 , (10)

where ωt,li := A∗i [Aix
t,l − ζt,li ]. Here, the sequence {L̄t,l}l≥0 can be shown to

be bounded; see Proposition 1 in the appendix.

Using [25, Exercise 8.8(c)], the condition (10) implies

0 ∈ ∇f(xt,l) +
m∑
i=1

1

λi,t
A∗i [Aix

t,l − ζt,li ] + L̄t,l(x
t,l+1 − xt,l) + ∂P0(xt,l+1),

⇒− L̄t,l(xt,l+1 − xt,l) ∈ ∇f(xt,l) +
m∑
i=1

1

λi,t
A∗i [Aix

t,l − ζt,li ] + ∂P0(xt,l+1),

from which (8) can be seen to hold with lt = l when l is sufficiently large because
lim
l→∞

‖xt,l+1 − xt,l‖ = 0 and {L̄t,l}l≥0 is bounded. �

Remark 1 (Computational complexity) Suppose that the NPGmajor is applied
to minimizing Fλt in each iteration of SDCAM, with the ζt,l chosen as in Theo-
rem 1. Then one has to repeatedly solve subproblems of the form (10) for various
values of λt and β > 0 (in place of L̄t,l). These computations are easy under the as-
sumption that the proximal mapping γPi, i = 1, . . . ,m, γ > 0, is easy to compute.
Indeed, the subproblems can be rewritten as

xt,l+1 ∈ prox 1
βP0

(
xt,l − 1

β

(
∇f(xt,l) +

m∑
i=1

1

λi,t
A∗i [Aix

t,l − ζt,li ]

))
, (11)

where ζt,li ∈ proxλi,tPi(Aix
t,l).

We now state and prove our convergence result for SDCAM. We will comment
on (12) in Remark 2 below before proving the theorem.

Theorem 2 (Convergence of SDCAM) Let {xt} be the sequence generated by S-

DCAM for solving (1). Then {xt} is bounded. Let x∗ be an accumulation point of this

sequence. Then we have the following results.
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(i) It holds that x∗ ∈ domP0 ∩
⋂m
i=1A

−1
i (domPi).

(ii) Suppose that

y0 +
m∑
i=1

A∗i yi = 0 and y0 ∈ ∂∞P0(x∗), yi ∈ ∂∞Pi(Aix∗) for i = 1, . . . ,m

=⇒ yi = 0 for i = 0, . . . ,m.

(12)

Then x∗ is a stationary point of (1), i.e.,

0 ∈ ∇f(x∗) + ∂P0(x∗) +
m∑
i=1

A∗i ∂Pi(Aix
∗). (13)

Remark 2 (Comments on condition (12))

(i) Condition (12) is a classical constraint qualification for nonconvex nonsmooth

optimization problems; see [25, Corollary 10.9]. It is satisfied, for example, when

Ai equals the identity map for all i, and all but one Pi are locally Lipschitz so

that ∂∞Pi(x
∗) = {0} for all but one Pi; see [25, Exercise 10.10].

(ii) Under (12), it can be shown using [25, Theorem 10.1], [25, Proposition 10.5] and

[25, Theorem 10.6] that any local minimizer x∗ of (1) satisfies (13).

Proof Using the nonnegativity of Pi, the last criterion in (8) and the definitions of
Fλ and xt,0, we see that

f(xt) + P0(xt) ≤ Fλt−1
(xt) ≤ Fλt−1

(xfeas) ≤ F (xfeas) =: Ffeas, (14)

where the last inequality follows from the definitions of F , Fλ and (3). From this,
one immediately conclude that {xt} is bounded because f + P0 is level-bounded.

Next, let x∗ be an accumulation point of {xt}. Then there exists a subsequence
{xt}t∈I so that lim

t∈I
xt = x∗. Using this, (14), and the lower semicontinuity of f+P0,

we further see that

f(x∗) + P0(x∗) ≤ lim inf
t∈I

f(xt) + P0(xt) ≤ Ffeas <∞.

This shows that x∗ ∈ domP0. On the other hand, since Pi is nonnegative, we have

0 ≤ 1

2
dist2(Aix,domPi) = inf

y∈domPi

{
1

2
‖Aix− y‖2

}
≤ inf
y∈domPi

{
1

2
‖Aix− y‖2 + λi,t−1Pi(y)

}
= λi,t−1eλi,t−1

Pi(Aix)

for all x and for each i = 1, . . . ,m. Using this, the finiteness of ` := inf{f + P0}
(thanks to the level-boundedness of f + P0), and the definition of Fλ, we have for
each i = 1, . . . ,m that

`+
1

2λi,t−1
dist2(Aixt,domPi) ≤ `+ eλi,t−1

Pi(Aixt) ≤ Fλt−1
(xt) ≤ Ffeas,

where the last inequality follows from (14). Since λi,t−1 ↓ 0, we conclude that
dist2(Aix∗,domPi) ≤ 0 and hence Aix∗ ∈ domPi because domPi is closed.
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We now prove (13) under (12). For notational simplicity, let yt+1 := xt,lt+1.
Then lim

t∈I
yt = x∗ thanks to the second relation in (8). Moreover, from the first

relation in (8), we see that there exist ξt with ‖ξt‖ ≤ εt−1, ηt ∈ ∂P0(yt) and
ζti ∈ proxλi,t−1Pi(Aix

t) for each i = 1, . . . ,m so that

ξt = ∇f(xt) + ηt +
m∑
i=1

1

λi,t−1
A∗i (Aix

t − ζti ). (15)

Define

rt := ‖ηt‖+
m∑
i=1

1

λi,t−1
‖A∗i (Aix

t − ζti )‖.

We claim that {rt}t∈I is bounded. Suppose to the contrary that {rt}t∈I is un-
bounded and we assume without loss of generality that lim

t∈I
rt =∞ and inf

t∈I
rt > 0.

Then the sequences { 1
rt
ηt}t∈I and { 1

λi,t−1rt
A∗i (Aix

t − ζti )}t∈I for i = 1, . . . ,m are

bounded. Without loss of generality, we may assume

lim
t∈I

ηt

rt
= η∗ and lim

t∈I
A∗i
(
Aixt − ζti
λi,t−1rt

)
= χ∗i (16)

for some η∗ and χ∗i , i = 1, . . . ,m. Notice that

1 =
‖ηt‖+

∑m
i=1

1
λi,t−1

‖A∗i (Aix
t − ζti )‖

rt
⇒ 1 = ‖η∗‖+

m∑
i=1

‖χ∗i ‖. (17)

In addition, by dividing rt from both sides of (15) and passing to the limit along
t ∈ I, we conclude that

0 = η∗ +
m∑
i=1

χ∗i . (18)

On the other hand, since ηt ∈ ∂P0(yt) and lim
t∈I

rt = ∞, we have from (16), the

continuity of P0 in its domain and (2) that

η∗ ∈ ∂∞P0(x∗). (19)

Next, we prove that χ∗i ∈ A
∗
i ∂
∞Pi(Aix∗) for i = 1, ...,m. To proceed, we define for

each i = 1, . . . ,m,

wti :=

∥∥∥∥Aixt − ζtiλi,t−1rt

∥∥∥∥
and claim that {wti}t∈I is bounded for all i = 1, . . . ,m. For an arbitrarily fixed
i ∈ {1, ...,m}, suppose to the contrary that {wti}t∈I is unbounded and we assume
without loss of generality that lim

t∈I
wti =∞ and that

lim
t∈I

1

wti

Aixt − ζti
λi,t−1rt

= ψ∗i (20)

for some ψ∗i with unit norm. Then from the second equation in (16), we have

‖ψ∗i ‖ = 1 and A∗iψ
∗
i = 0. (21)
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In addition, we observe from (20) that

ψ∗i = lim
t∈I

1

wti

Aixt − ζti
λi,t−1rt

∈
{

lim
t∈I

1

wtirt
ut : ut ∈ ∂Pi(ζti ) for each t

}
⊆ ∂∞Pi(Aix∗).

where the first inclusion follows from (4) and the second inclusion follows from
Lemma 1 (so that lim

t∈I
ζti = Aix∗ and {ζti}t∈I ⊆ domPi), the continuity of Pi in its

domain and (2). These together with the facts 0 ∈ ∂∞P0(x∗) , 0 ∈ ∂∞Pi(Aix∗)
(i = 1, ...,m)1 and (21) contradict (12). Consequently, {wti}t∈I is bounded for all

i = 1, . . . ,m. Then, without loss of generality, we assume that lim
t∈I

Aixt−ζti
λi,t−1rt

exists

for all i = 1, ...,m. Then, for each i = 1, . . . ,m, we observe from (16) that

χ∗i = A∗i lim
t∈I

Aixt − ζti
λi,t−1rt

∈ A∗i
{

lim
t∈I

1

rt
ut : ut ∈ ∂Pi(ζti ) for each t

}
⊆ A∗i ∂

∞Pi(Aix∗),

where the first inclusion follows from (4) and the second inclusion follows from
Lemma 1 (so that lim

t∈I
ζti = Aix∗ and {ζti}t∈I ⊆ domPi for each i = 1, . . . ,m), the

continuity of Pi in its domain and (2). These together with (17), (18) and (19)
contradict (12). Consequently, {rt}t∈I is bounded.

Since {rt}t∈I is bounded, we may assume without loss of generality that

lim
t∈I

ηt = η̃∗ and lim
t∈I

1

λi,t−1
A∗i (Aix

t − ζti ) = χ̃∗i (22)

for some η̃∗ and χ̃∗i , i = 1, . . . ,m. Then we have from (2) and the continuity of P0

in its domain that

η̃∗ ∈ ∂P0(x∗). (23)

Next, we prove that χ̃∗i ∈ A
∗
i ∂Pi(Aix

∗) for i = 1, ...,m. To proceed, we define for
each i = 1, . . . ,m,

νti :=

∥∥∥∥Aixt − ζtiλi,t−1

∥∥∥∥
and claim that {νti}t∈I is bounded for all i = 1, . . . ,m. For an arbitrary fixed
i ∈ {1, ...,m}, suppose to the contrary that {νti}t∈I is unbounded and we assume
without loss of generality that lim

t∈I
νti =∞ and that

lim
t∈I

1

νti

Aixt − ζti
λi,t−1

= φ∗i (24)

for some φ∗i with unit norm. Notice from the second equation of (22) that

‖φ∗i ‖ = 1 and A∗iφ
∗
i = 0. (25)

In addition, we observe from (24) that

φ∗i = lim
t∈I

1

νti

Aixt − ζti
λi,t−1

∈
{

lim
t∈I

1

νti
ut : ut ∈ ∂Pi(ζti ) for each t

}
⊆ ∂∞Pi(Aix∗).

1 These follow from (i) and [25, Corollary 8.10].
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where the first inclusion follows from (4) and the second inclusion follows from
Lemma 1 (so that lim

t∈I
ζti = Aix∗ and {ζti}t∈I ⊆ domPi), the continuity of Pi in

its domain and (2). These together with the facts 0 ∈ ∂∞P0(x∗), 0 ∈ ∂∞Pi(Aix∗)
(i = 1, ...,m)2 and (25) contradict (12). Consequently, {νti}t∈I is bounded for all

i = 1, . . . ,m. Then, without loss of generality, we assume that lim
t∈I

Aixt−ζti
λi,t−1

exists

for all i = 1, ...,m. Therefore, for each i = 1, . . . ,m, we obtain from (22) that

χ̃∗i = A∗i lim
t∈I

Aixt − ζti
λi,t−1

∈ A∗i
{

lim
t∈I

ut : ut ∈ ∂Pi(ζti ) for each t

}
⊆ A∗i ∂Pi(Aix

∗),

(26)
where the first inclusion follows from (4) and the second inclusion follows from
Lemma 1 (so that lim

t∈I
ζti = Aix∗ and {ζti}t∈I ⊆ domPi for each i = 1, . . . ,m), the

continuity of Pi in its domain and (2). Passing to the limit in (15) along t ∈ I and
invoking (22), (23) and (26), we see that

0 = ∇f(x∗) + η̃∗ +
m∑
i=1

χ̃∗i ∈ ∇f(x∗) + ∂P0(x∗) +
m∑
i=1

A∗i ∂Pi(Aix
∗).

This completes the proof. �

Remark 3 If, instead of (8), one can guarantee that

Fλt(x
t,lt) ≤ inf Fλt + εt,

then one can show that any accumulation point of the sequence {xt} generated by
SDCAM is a global minimizer of (1). To see this, recall from [25, Theorem 1.25]
that eλi,tPi(Aix) → Pi(Aix) for each i and all x, and from the discussion on
[25, Page 244] that {(eλi,tPi) ◦ Ai} epiconverges to Pi ◦ Ai for each i. Using these
together with [25, Theorem 7.46], we further see that {Fλt} epiconverges to F .
Now, in view of [25, Theorem 7.31(b)], we conclude that any accumulation point
of the sequence {xt} generated by SDCAM is a global minimizer of F .

4 Applications to structured optimization problems

4.1 Problems involving sparsity

Consider the following `0-constrained optimization problem discussed in [30]:

minimize
x

f(x)

subject to ‖x‖0 ≤ k, x ∈ C,
(27)

where f is as in (1) and C is a nonempty closed set. This model includes many im-
portant application problems such as sparse principal component analysis, sparse
portfolio selection and sparse nonnegative linear regression as special cases. These
applications typically involve a closed set C whose projection is easy to compute.
For instance, we have f(x) = −x>V x, defined with a covariance matrix V ∈ Sn

2 These follow from (i) and [25, Corollary 8.10].
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and C = {x : ‖x‖ = 1} for sparse principal component analysis [27]. As another
example, for sparse nonnegative linear regression [26], f(x) = 1

2‖Ax− b‖
2 defined

with A ∈ Rm×n and b ∈ Rm, and C = {x : x ≥ 0} are used. For these two
examples, the direct projection onto C ∩ {x : ‖x‖0 ≤ k} is easy to compute, and
the proximal gradient algorithm can then be applied to solving (27).

We next discuss a specific example where the direct projection onto C ∩ {x :
‖x‖0 ≤ k} might not be easy to compute, and describe how our SDCAM can be
applied.

Example 1 (Sparse portfolio problem) Given a basket of investable assets, the
Markowitz model [19] seeks to find the optimal asset allocation of the portfolio
by minimizing the estimated variance with an expected return above a specified
level. More recently, [6] has added the `1-norm to the classical Markowitz model to
obtain sparse portfolios, and after that, various types of sparse regularizers such
as `p-norm (0 < p < 1) are incorporated into the Markowitz model (e.g., [8]).

The sparse portfolio selection problem we consider here takes the following
form:

minimize
x

f(x) := 1
2x
>Qx

subject to ‖x‖0 ≤ k, x ≥ 0, e>x = 1, r>x = r0,
(28)

where Q ∈ Sn is the estimated covariance matrix of the portfolio, r ∈ Rn is the
estimated mean return vector of investable assets, r0 ∈ R is a specific return level,
and e is the vector of all ones. The constraint x ≥ 0 is known as the non-shortsale
constraint, and model (28) is the formulation of the shorting-prohibited sparse
Markowitz model. We assume here that the feasible set of (28) is nonempty.

Notice that the feasible set of (28) is compact and hence (28) has a solution. Let
x∗ be a solution of (28) and τ � max

i
|x∗i |. Define Ω := {x : ‖x‖0 ≤ k, 0 ≤ x ≤ τ}

and S := {x : e>x = 1, r>x = r0}. Then (28) can be rewritten in the form of (1)
(with the same optimal value) as follows

minimize
x

f(x) + δΩ(x)︸ ︷︷ ︸
P0(x)

+ δS(x)︸ ︷︷ ︸
P1(x)

, (29)

in which f +P0 is level-bounded. Therefore, we can apply SDCAM in Section 3 to
(29), and in each subproblem of SDCAM we can use NPGmajor to minimize Fλt as
described in Theorem 1. The method involves computing two projections projΩ
and projS , which are easy to compute. Indeed, we have max{min{H̃k(y), τ}, 0} ∈
projΩ(y), where H̃k(v) keeps any k largest entries of v and sets the rest to zero.
3 �

3 To see this, recall from [15, Proposition 3.1] that an element ζ∗ of projΩ(y) can be
obtained as

ζ∗i =

{
ζ̃∗i if i ∈ I∗,
0 otherwise,

where ζ̃∗i = argmin{ 1
2

(ζi − yi)2 : 0 ≤ ζi ≤ τ} = max{min{yi, τ}, 0}, and I∗ is an index set of

size k corresponding to the k largest values of { 1
2
y2i−

1
2

(ζ̃∗i −yi)2}ni=1 = { 1
2
y2i−

1
2

(min{max{yi−
τ, 0}, yi})2}ni=1. Since the function t 7→ 1

2
t2 − 1

2
(min{max{t− τ, 0}, t})2 is nondecreasing, we

can let I∗ correspond to any k largest entries of y.
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In statistics, `1-norm regularizer has been used for inducing sparsity in variable
selection problems; see Lasso [28], which is an application of the `1 penalty to linear
regression. A more general model of Lasso, the generalized Lasso [29], has been
proposed as

minimize
x

1
2‖Ax− b‖

2 + c‖Dx‖1,

where A ∈ Rm×n is a matrix of predictors, b ∈ Rm is a response vector, c ≥ 0
is a tuning parameter and D ∈ Rd×n is a specified penalty matrix. The term
‖Dx‖1 can enforce certain structural sparsity on the coefficients in the solution.
For example, with an appropriate D, ‖Dx‖1 can express

∑n
i=2 |xi − xi−1|, which

penalizes the absolute differences in adjacent coordinates of x. This specificD leads
to the so-called fused Lasso. A variant of this type of regularizer (anisotropic total
variation regularizer) is also used in image processing for minimizing the horizontal
or/and vertical differences between pixels. Some other applications which require a
non-identity matrix D in the generalized Lasso were discussed in [29]. In the next
example, we discuss how our SDCAM can be applied to some nonconvex variants
of the generalized Lasso problem.

Example 2 (Nonconvex fused regularized problem) Similarly as in [21], we
consider the following nonconvex fused regularized problem

minimize
x

1
2‖Ax− b‖

2 + c1φ1(x) + c2φ2(Dx), (30)

where A ∈ Rm×n, b ∈ Rm, Dx = (x2 − x1, ..., xn − xn−1)>, c1 > 0 and c2 > 0 are
regularization parameters, φ1(x) =

∑n
i=1 ϕi(|xi|) and φ2 are nonconvex sparsity-

inducing regularizers with ϕi : R+ → R+ being closed and nondecreasing, and
φ2 : Rn−1 → R+ being closed and level-bounded.

Note that (30) can be rewritten in the form of

minimize
x

g(Ãx− b̃) + Ψ(x), (31)

in which Ã =

(
A

D

)
, b̃ =

(
b

0

)
, g(y) = 1

2‖y1‖
2 + c2φ2(y2) with y := (y1,y2) ∈

Rm × Rn−1, and Ψ(x) = c1
∑n
i=1 ϕi(|xi|). It is routine to check that g and Ψ

satisfy [14, Assumption 2]. Hence, according to [14, Theorem 2.1], we know that
(31), and hence (30), has at least one solution.

Notice that we can directly apply the SDCAM in Section 3 to (30) when φ1
is level-bounded, e.g., φ1(x) = ‖x‖p: we set f(x) = 1

2‖Ax − b‖
2, P0 = c1φ1 and

P1 = c2φ2 with A1 = D in this case. When the NPGmajor is applied as described
in Theorem 1 for solving the corresponding subproblems, it involves computing
the proximal mappings proxµφ1

and proxµφ2
for µ > 0. These are easy to compute

for many well-known nonconvex sparse regularizers; see [12].
Finally, in the case when φ1 is not level-bounded, let x∗ be a solution of (30)

and τ � max
i
|x∗i |. We define Ω := {x : max

i
|xi| ≤ τ} and rewrite (30) in the form

of (1) (with the same optimal value) as follows

minimize
x

1

2
‖Ax− b‖2︸ ︷︷ ︸
f(x)

+ c1

n∑
i=1

ϕi(|xi|) + δΩ(x)︸ ︷︷ ︸
P0(x)

+ c2φ2(Dx)︸ ︷︷ ︸
P1(A1x)

. (32)
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Then f + P0 is level-bounded and hence the SDCAM in Section 3 can be applied.
When the NPGmajor is applied in the subproblem of SDCAM as described in
Theorem 1, it involves computing the proximal mappings proxµP0

and proxµφ2
for

µ > 0. Note that proxµP0
can be obtained from proxµψi with ψi(xi) := c1ϕi(|xi|)+

δ|·|≤τ (xi), i = 1, ..., n, which can be efficiently computed for various nonconvex
sparse regularizers such as SCAD, MCP, `p penalty and Capped-`1 (see [12]).
Finally, the computation of proxµφ2

is also easy for many of these regularizers. �

4.2 Problems with rank constraints

Our algorithm can also be applied to rank-constrained nonconvex nonsmooth ma-
trix optimization problems. We discuss some concrete examples below.

For notational simplicity, from now on, we let

Ξk := {X : rank(X) ≤ k}

for a given integer k. Note that if P1 = δΞk , then

eλ1
P1(X) =

1

2λ1
dist2(X, Ξk) =

1

2λ1
(‖X‖2F − |||X|||

2
k,2),

where |||X|||2k,2 denotes the sum of squares of the k largest singular values of X. The

function X 7→ ‖X‖2F−|||X|||
2
k,2 is a “rank-related” variant of the so-called k-sparsity

functions [1] because the relation rank(X) ≤ k can be equivalently expressed as
‖X‖2F − |||X|||

2
k,2 = 0. A variant of this function was used in [30] as a penalty

function for inducing sparsity. It is interesting to note that this function falls out
naturally from the Moreau envelope of the indicator function of Ξk.

Example 3 (Matrix completion) The problem of recovering a low-rank data
matrix M ∈ Rm×n from a sampling of its entries is known as the matrix comple-
tion problem [7]. This problem can be formulated as

minimize
X

rank(X)

subject to PΩ(X) = PΩ(M),

where Ω is the index set of known entries of M , and PΩ is the sampling map
defined as

[PΩ(Y )]ij =

{
Yij if (i, j) ∈ Ω,
0 otherwise.

When the entries of the data matrix are noisy, one can consider the following
variants of the above model:

minimize
X

‖PΩ(X)− PΩ(M)‖2F
subject to rank(X) ≤ k,

or minimize
X

‖PΩ(X)− PΩ(M)‖2F + µ rank(X),

where µ > 0 is tuning parameter, and k is a positive integer. Since these problems
are nonconvex in general, some popular convex relaxation approaches have been
proposed, where the rank function is replaced by the nuclear norm function [22].
The convex relaxations can be shown to be equivalent to the original nonconvex
problems under suitable conditions [7].
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Here we consider the following variation of the matrix completion problem:

minimize
X

1

2
‖PΩ(X)− PΩ(M)‖2F

subject to PΘ(X) = PΘ(M), rank(X) ≤ k,
(33)

where Ω is an index set corresponding to possibly noisy known entries of M , and
Θ is another index set corresponding to noiseless known entries of M . Suppose
that (33) has a solution X∗, and take τ � max{max

i,j
|X∗ij |, σmax(X∗)}.

Let S := {X : PΘ(X) = PΘ(M)}, S̃ := {X ∈ S : max
i,j
|Xij | ≤ τ} and Ξ̃k :=

{X ∈ Ξk : σmax(X) ≤ τ}. Then (33) can be rewritten in the form of (1) (with the
same optimal value) in the following two ways:

minimize
X

1

2
‖PΩ(X −M)‖2F︸ ︷︷ ︸

f(X)

+ δS(X)︸ ︷︷ ︸
P1(X)

+ δΞ̃k(X)︸ ︷︷ ︸
P0(X)

,
(34)

minimize
X

1

2
‖PΩ(X −M)‖2F︸ ︷︷ ︸

f(X)

+ δS̃(X)︸ ︷︷ ︸
P0(X)

+ δΞk(X)︸ ︷︷ ︸
P1(X)

.
(35)

Note that in both cases, f+P0 is level-bounded and hence the SDCAM in Section 3
can be applied.

Suppose that SDCAM is applied to (34). Then when the NPGmajor is applied as
described in Theorem 1 for solving the subproblems, it requires computing projS
and projΞ̃k . Both of these are easy to compute. In particular, let UDiag(σ)V >

be a singular value decomposition of W . Then an element Y ∈ projΞ̃k(W ) can

be computed as Y = UDiag(ζ∗)V > with ζ∗ = min{Hk(σ), τe}, where e is the
vector of all ones, the minimum is taken componentwise, and Hk(v) is the hard
thresholding operator that keeps any k largest entries of v in magnitude and sets
the rest to zero. 4

On the other hand, when applying SDCAM to (35) with the NPGmajor as de-
scribed in Theorem 1 applied to the subproblems, one needs to compute projS̃ and

projΞk . Again, both of these are easy to compute. In particular, let UDiag(σ)V >

be a singular value decomposition of W . Then an element Y ∈ projΞk(W ) can

be computed as Y = UDiag(Hk(σ))V >. �

Example 4 (Nearest low-rank correlation matrix) Finding the nearest low-rank
correlation matrix has important applications in finance; see [5, 11]. The problem

4 To see this, recall from [16, Corollary 2.3] and [15, Proposition 3.1] that an element Y ∈
projΞ̃k

(W ) can be computed as Y = UDiag(ζ∗)V >, where

ζ∗i =

{
ζ̃∗i if i ∈ I∗,
0 otherwise,

where ζ̃∗i = argmin{ 1
2

(ζi − σi)2 : |ζi| ≤ τ} = min{σi, τ}, and I∗ is an index set of size k

corresponding to the k largest values of { 1
2
σ2
i −

1
2

(ζ̃∗i − σi)2}ni=1 = { 1
2
σ2
i −

1
2

(max{0, σi −
τ})2}ni=1. Since t 7→ 1

2
t2 − 1

2
(max{0, t− τ})2 is nondecreasing for nonnegative t, we can take

I∗ to correspond to any k largest singular values.
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is often formulated as

minimize
X∈Sn

1
2‖H ◦ (X −M)‖2F

subject to diag(X) = e,

X � 0, rank(X) ≤ k,
(36)

where Sn is the space of n×n symmetric matrices, H is a given nonnegative weight
matrix, M is a given symmetric matrix and e is the vector of all ones, k ≥ 1. In
[11], the constraint rank(X) ≤ k was rewritten equivalently as requiring the sum
of the n−k smallest eigenvalues equal zero. A penalty approach was then adopted
to handle this latter equality constraint.

In the following, we describe how to solve (36) by the SDCAM in Section 3.
Notice that for any X ∈ Sn satisfying diag(X) = e and X � 0, we have X � n I.
Thus, the feasible set of (36) is compact and hence (36) has a solution. Let X∗ be
a solution of (36) and τ � max{max

i,j
|X∗ij |, λmax(X∗)}. Define

S := {X ∈ Sn : diag(X) = e}, S̃ := {X ∈ S : max
i,j
|Xij | ≤ τ},

Πk := {X � 0 : rank(X) ≤ k}, Π̃k := {X ∈ Πk : λmax(X) ≤ τ}.

Then (36) can be rewritten in the form of (1) (with the same optimal value) in
the following two ways:

minimize
X∈Sn

1

2
‖H ◦ (X −M)‖2F︸ ︷︷ ︸

f(X)

+ δS(X)︸ ︷︷ ︸
P1(X)

+ δΠ̃k(X)︸ ︷︷ ︸
P0(X)

,
(37)

minimize
X∈Sn

1

2
‖H ◦ (X −M)‖2F︸ ︷︷ ︸

f(X)

+ δS̃(X)︸ ︷︷ ︸
P0(X)

+ δΠk(X)︸ ︷︷ ︸
P1(X)

.
(38)

Notice that in both cases, f + P0 is level-bounded and hence we can apply the
SDCAM in Section 3.

We first look at (37). When the NPGmajor as described in Theorem 1 is ap-
plied to the subproblems, one has to compute projS and projΠ̃k . Both projections

can be easily computed. In particular, let UDiag(λ)U> be an eigenvalue decom-
position of W ∈ Sn. Then an element Y ∈ projΠ̃k(W ) can be computed as

Y = UDiag(ζ∗)V > with ζ∗ = max{min{H̃k(λ), τ}, 0}, where H̃k(v) keeps any k

largest entries of v and sets the rest to zero. 5

We next turn to (38). In this case, in each NPGmajor iteration, one has to
compute projS̃ and projΠk . Again, both projections can be easily computed. In

5 To see this, recall from [16, Proposition 2.8] and [15, Proposition 3.1] that an element
Y ∈ projΠ̃k

(W ) can be computed as Y = UDiag(ζ∗)V >, where

ζ∗i =

{
ζ̃∗i if i ∈ I∗,
0 otherwise,

where ζ̃∗i = argmin{ 1
2

(ζi − λi)2 : 0 ≤ ζi ≤ τ} = max{min{λi, τ}, 0}, and I∗ is an index

set of size k corresponding to the k largest values of { 1
2
λ2i −

1
2

(ζ̃∗i − λi)
2}ni=1 = { 1

2
λ2i −

1
2

(min{max{λi − τ, 0}, λi})2}ni=1. Since the function t 7→ 1
2
t2 − 1

2
(min{max{t − τ, 0}, t})2 is

nondecreasing, we can let I∗ correspond to any k largest entries of λ.
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particular, let UDiag(λ)U> be an eigenvalue decomposition of W ∈ Sn. Then an
element Y ∈ projΠk(W ) can be computed as Y = UDiag(max{H̃k(λ),0})U>. �

Example 5 (Simultaneously sparse and low rank matrix optimization problem)

The following problem was considered in [23]:

minimize
X

f(X) + γ‖vec(X)‖1 + τ‖X‖∗,

where f is as in (1), γ and τ are positive numbers. This problem aims at finding
solutions which are both sparse and low-rank, and can be applied to identifying
clusters in social networks; see [23, Section 6.2]. This model relaxes and penalizes
the sparsity index ‖vec(X)‖0 and the low-rank index rank(X) by two convex
functions ‖vec(X)‖1 and ‖X‖∗, respectively.

Here, we consider the following variant that explicitly incorporates the sparsity
and rank constraints:

minimize
X

f(X)

subject to ‖vec(X)‖0 ≤ s, rank(X) ≤ k.
(39)

Suppose that (39) has a solution X∗, and let τ � max{max
i,j
|X∗ij |, σmax(X∗)}.

Define S := {X : ‖vec(X)‖0 ≤ s}, S̃ := {X ∈ S : max
i,j
|Xij | ≤ τ} and Ξ̃k := {X ∈

Ξk : σmax(X) ≤ τ}. Then (39) can be rewritten in the form of (1) (with the same
optimal value) in the following two ways:

minimize
X

f(X) + δS(X)︸ ︷︷ ︸
P1(X)

+ δΞ̃k(X)︸ ︷︷ ︸
P0(X)

,
(40)

minimize
X

f(X) + δS̃(X)︸ ︷︷ ︸
P0(X)

+ δΞk(X)︸ ︷︷ ︸
P1(X)

.
(41)

Note that in both cases, f+P0 is level-bounded and hence the SDCAM in Section 3
can be applied. When the NPGmajor as described in Theorem 1 is applied to the
corresponding subproblems, one has to compute projS and projΞ̃k for (40), and
projS̃ and projΞk for (41). All these projections can be computed efficiently; see
Examples 1 and 3. �

5 Numerical experiments

In this section, we apply our SDCAM in Section 3 with subproblems solved by
NPGmajor as described in Theorem 1 to an instance of Example 2 and Example 5:
the nonconvex fused regularized problem and the simultaneously sparse and low
rank matrix optimization problem. All numerical experiments are performed in
Matlab R2016a on a 64-bit PC with an Intel(R) Core(TM) i7-6700 CPU (3.41GHz)
and 32GB of RAM.
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5.1 Nonconvex fused regularized problem: comparison against a solution method
based on smoothing

We consider the following special instance of nonconvex fused regularized problem:

minimize
x

1
2‖x− b‖

2 + c1‖x‖1 + c2‖Dx‖pp, (42)

where c1 > 0, c2 > 0, p = 0.5, Dx = (x2 − x1, ..., xn − xn−1)>, and b ∈ Rn is the
noisy measurement of a piecewise constant sparse signal. Notice that the function
‖ · ‖1 is level-bounded. We can directly apply SDCAM as described in Example 2
and solve the subproblems by NPGmajor. On the other hand, a commonly used
technique for handling optimization problems involving `p penalty functions (0 <
p < 1) is smoothing. Thus, in our experiments below, we compare SDCAM with
a method based on smoothing, the smoothing nonmonotone proximal gradient
method (sNPG), for solving (42). In sNPG, we solve the following sequence of
subproblems approximately by NPG (this is NPGmajor applied to (44) when g =
0):

minimize
x

1

2
‖x− b‖2 + c2

n−1∑
i=1

(
(Dx)2i + λ2t

) p
2

︸ ︷︷ ︸
ft(x)

+ c1‖x‖1︸ ︷︷ ︸
Q(x)

,

where λt ↓ 0 is the smoothing parameter. The approximate stationary point of
ft +Q obtained is then used as initialization for minimizing ft+1 +Q.

Data generation: We first randomly generate a piecewise constant signal x ∈ Rn
using the following Matlab code:

J = randperm(10);I = sort(J(1:6),’ascend’);x = zeros(n,1);

for i = 1:r

if randn > 0

x(n*I(i)/10 - 3*n/50 - randi(3) : n*I(i)/10) = randi(3);

else

x(n*I(i)/10 - 3*n/50 - randi(3) : n*I(i)/10) = -randi(3);

end

end

Then we let b = x+σξ, where σ > 0 is a noise factor and ξ has i.i.d. standard Gaus-
sian entries. In our experiments, motivated by [21], we choose c1 = c2 = σ

√
n/40.

We shall see that this choice leads to reasonable recovery results in Figure 1. We
also set σ = 0.1, n = 2000, 4000, 6000, 8000, 10000.

Parameter setting: In SDCAM, we set λt = 1/10t+1 and xfeas to be the vector of
all ones. In the NPGmajor for solving the subproblems, we set M = 4, Lmax = 108,
Lmin = 10−8, τ = 2, c = 10−4, L0

t,0 = 1 and for l ≥ 1,

L0
t,l = max

{
min

{
sl
>
yl

‖sl‖2
, Lmax

}
, Lmin

}
,
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(which is the inverse of the so-called Barzilai-Borwein stepsize) where sl = xt,l −
xt,l−1 and yl = ∇h(xt,l)−∇h(xt,l−1). We initialize NPGmajor at xfeas and termi-
nate it when the maximum number of iterations exceeds 10000 or

‖xt,l − xt,l−1‖
max(‖xt,l‖, 1)

< εt/L̄t,l−1 or
|Fλt(x

t,l)− Fλt(x
t,l−1)|

max{1, |Fλt(xt,l)|}
< 10−12,

where ε0 = 10−5 and εt = max{εt−1/1.5, 10−6}. On the other hand, in sNPG,
we also let λt = 1/10t+1 and solve the subproblems using NPG (i.e., NPGmajor

applied to (44) with g = 0) with the same setting as described above, except that
the Fλt above is replaced by ft +Q and for l ≥ 1,

L0
t,l =

max
{

min
{
sl
>
yl

‖sl‖2 , Lmax

}
, Lmin

}
if sl

>
yl > 10−12,

max
{

min
{
L̄t,l−1/2, Lmax

}
, Lmin

}
otherwise.

Finally, we terminate SDCAM when λt < 10−9. And for a fair comparison, we
consider two different termination criteria for sNPG: λt < 10−7 (sNPG−7) and
λt < 10−8 (sNPG−8).

Numerical results: In Table 1, we compare SDCAM, sNPG−7 and sNPG−8 in
terms of the number of iterations (iter), CPU time (CPU) and the terminating
function values (fval), averaged over 10 randomly generated instances. One can see
that the terminating function values are comparable, and SDCAM is in general
faster than sNPG−8 and slower than sNPG−7. Moreover, SDCAM outperforms
the sNPG’s slightly in terms of function values when the dimension is relatively
low (≤ 4000). To illustrate the ability to recover the original signal, we also plot
the original signal, the noisy measurement b and the signals recovered by SDCAM
and sNPG−8 for a random instance with n = 2000 in Figure 1.

Table 1: Results for SDCAM, sNPG−7 and sNPG−8 for solving (42).

n
iter CPU fval

SDCAM sNPG−7 sNPG−8 SDCAM sNPG−7 sNPG−8 SDCAM sNPG−7 sNPG−8

2000 27796 18498 23700 5.8 5.2 8.5 1.77278e+02 1.77294e+02 1.77290e+02
4000 41686 33465 43465 17.0 16.5 29.1 4.95918e+02 4.95929e+02 4.95923e+02
6000 45573 34113 44113 25.6 22.2 38.2 8.49430e+02 8.49420e+02 8.49398e+02
8000 49089 28984 38984 34.7 23.7 43.5 1.32155e+03 1.32160e+03 1.32153e+03
10000 45320 37379 47379 45.5 38.1 63.1 1.65874e+03 1.65870e+03 1.65864e+03

To illustrate intuitively the approximation used in our SDCAM and sNPG,
we plot the function f(x) = |x|1/2 (in dashed lines), its Moreau envelope and its
smoothing function in Figure 2. One can see that the envelope smooths the original
nonsmooth point by a quadratic function. It is a lower approximation of f , while
the smoothing function is an upper approximation of f .



Successive DC Approximation for Nonconvex and Nonsmooth Problems 21

Fig. 1: Recovery comparison for
noisy signal.

Fig. 2: |x|1/2 with its Moreau envelope
and smoothing function.

5.2 Simultaneously sparse and low rank matrix optimization problem: which
constraint should be modeled by P1?

We consider the following special instance of simultaneously sparse and low rank
matrix optimization problem:

minimize
X

1

2
‖X −M‖2F

subject to ‖vec(X)‖0 ≤ s, rank(X) ≤ k,
(43)

where M ∈ Rm×n is a given noisy matrix, s and k are positive integers. Note that
f(X) := 1

2‖X −M‖
2
F is level-bounded. Therefore, (43) has at least one solution.

Then, as discussed in Example 5, we can apply SDCAM to solving (43) in two
different ways by considering, respectively, the two formulations in (40) and (41):6

the indicator function δ|·|0≤s(·) is approximated by the Moreau envelope in (40)
and the function δrank(·)≤k(·) is approximated by its Moreau envelope in (41). We

call the method based on (40) SDCAMr and the method based on (41) SDCAMs.
In the following experiments, we compare these two methods.

Data generation: We first randomly generate M1 ∈ Rm×k and M2 ∈ Rk×n to
have i.i.d. standard Gaussian entries. Then we set m/10 random rows ofM1 to zero
and let M = M1M2 +σ∆, where σ > 0 is a noise factor and ∆ has i.i.d. standard
Gaussian entries. We fix n = 500, k = 10 and s = mn/10, and we experiment with
σ = 0.005, 0.01, 0.02 and m = 1000, 2000, 3000 below.

6 We would like to point out that we are indeed using Ξk in place of Ξ̃k in (40) and using

S in place of S̃ in (41) in our experiments below. Notice that A3 is still satisfied because f is
level-bounded.
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Parameter setting: In both SDCAMr and SDCAMs, we set λt = 1/10t+1 and
Xfeas = 0. In the NPGmajor for solving the subproblems, we use the same param-
eter setting as in Section 5.1. We initialize both algorithms at Xfeas and terminate
them when

dist(Xt, S) ≤ 10−6 · ‖Xt‖F and dist(Xt, Ξk) ≤ 10−6 · ‖Xt‖F ,

respectively.

Numerical results: In Table 2, we compare SDCAMr and SDCAMs in terms
of the number of iterations (iter), CPU time (CPU) and the feasibility violation
(vio) (i.e., dist(Xt, S) and dist(Xt, Ξk), respectively) at termination, averaged
over 10 randomly generated instances. One can see that SDCAMr takes fewer
iterations and less time. An intuitive explanation could be that the rank constraint
is a more complicated constraint than the sparsity constraint to approximate via
“subgradients”. Thus, the algorithm SDCAMr that maintains all its iterates in the
rank constraint and then attempts to approximately satisfy the sparsity constraint
as the algorithm progresses ends up converging more quickly.

Table 2: Comparison of SDCAMr and SDCAMs for solving (43).

σ m
iter CPU vio

SDCAMr SDCAMs SDCAMr SDCAMs SDCAMr SDCAMs

1000 41 5597 4.7 378.1 4.7569e-04 1.0515e-04
0.005 2000 12 5298 4.0 647.0 6.7084e-04 1.5247e-04

3000 12 4618 6.0 862.8 8.2038e-04 1.8857e-04
1000 4508 7900 379.3 529.2 9.4347e-05 2.1032e-04

0.010 2000 4453 7526 653.6 912.6 1.3412e-04 3.0580e-04
3000 4428 5721 969.5 1080.6 1.6434e-04 3.7701e-04
1000 4922 11631 413.7 769.2 1.8985e-04 4.2222e-04

0.020 2000 4634 10267 675.5 1251.3 2.6849e-04 6.1136e-04
3000 4580 10859 1003.5 2043.0 3.2804e-04 7.5510e-04

6 Conclusions

In this paper, we propose a successive difference-of-convex approximation method
for solving (1). The key idea of this method is to approximate the nonsmooth
functions in the objective of (1) by their Moreau envelopes. The approximation
function can then be minimized by various proximal gradient methods with ma-
jorization techniques such as NPGmajor in the appendix, thanks to (6). We prove
that the sequence generated by our method is bounded and any accumulation
point is a stationary point of (1) under suitable conditions. We also discuss how
to apply our method to concrete applications and conduct numerical experiments
to illustrate its efficiency.
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A Convergence of an NPG method with majorization

In this appendix, we consider the following optimization problem:

min
x

F (x) = h(x) + P (x)− g(x), (44)

where h is an Lh-smooth function, P is a proper closed function with inf P > −∞ and g is a
continuous convex function. We assume in addition that there exists x0 ∈ domP so that F is
continuous in Ω(x0) := {x : F (x) ≤ F (x0)} and the set Ω(x0) is compact. As a consequence,
it holds that inf F > −∞.

In Algorithm 2 below, we describe an algorithm, the nonmonotone proximal gradient
method with majorization (NPGmajor), for solving (44). We first show that the line-search
criterion is well-defined.

Algorithm 2 The NPGmajor for (44)

Step 0. Choose x0 ∈ domP so that Ω(x0) is compact and F is continuous in it. Pick Lmax ≥
Lmin > 0, τ > 1, c > 0 and an integer M ≥ 0 arbitrarily. Set t = 0.

Step 1. Choose any L0
t ∈ [Lmin, Lmax] and set Lt = L0

t .
1a) Pick any ζt ∈ ∂g(xt). Solve the subproblem

u ∈ Argmin
x

{
(∇h(xt)− ζt)>(x− xt) +

Lt

2
‖x− xt‖2 + P (x)

}
. (45)

1b) If

F (u) ≤ max
[t−M ]+≤i≤t

F (xi)−
c

2
‖u− xt‖2 (46)

is satisfied, then go to step 2).
1c) Set Lt ← τLt and go to step 1a).

Step 2. If a termination criterion is not met, set L̄t = Lt, xt+1 = u, t = t+1. Go to Step 1.

Proposition 1 For each t, the condition (46) is satisfied after at most

ñ := max

{⌈
log(Lh + c)− log(Lmin)

log τ

⌉
, 1

}
inner iterations, which is independent of t. Consequently, {L̄t} is bounded.

Proof For each t and L > 0, let utL be an arbitrarily fixed element in

Argmin
x

{
(∇h(xt)− ζt)>(x− xt) +

L

2
‖x− xt‖2 + P (x)

}
.

Then we have

F (utL) ≤ h(xt) +∇h(xt)>(utL − x
t) +

Lh

2
‖utL − x

t‖2 + P (utL)− g(xt)− ζt>(utL − x
t)

= h(xt)− g(xt) + (∇h(xt)− ζt)>(utL − x
t) +

Lh

2
‖utL − x

t‖2 + P (utL)

≤ F (xt) +
Lh − L

2
‖utL − x

t‖2,

where the first inequality holds because of the Lh-smoothness of h, the convexity of g and the
fact that ζt ∈ ∂g(xt), and the last inequality follows from the definition of utL as a minimizer.
Thus, at the t-th iteration, the criterion (46) is satisfied by u = utL whenever L ≥ Lh + c.
Since we have

τ ñL0
t ≥ τ ñLmin ≥ Lh + c,

we conclude that (46) must be satisfied at or before the ñ-th inner iteration. Consequently, we
have L̄t ≤ τ ñLmax for all t. �
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The convergence of NPGmajor can now be proved similarly as in [31, Lemma 4].

Proposition 2 Let {xt} be the sequence generated by NPGmajor. Then ‖xt+1 − xt‖ → 0.
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