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Abstract—A graph, comprising a set of nodes connected by
edges, is one of the simplest yet remarkably useful math-
ematical structures for the analysis of real-world complex
systems. Network theory, being an application-based extension
of graph theory, has been applied to a wide variety of real-
world systems involving complex interconnection of subsystems.
The application of network theory has permitted in-depth
understanding of connectivity, topologies, and operations of
many practical networked systems as well as the roles that
various parameters play in determining the performance of
such systems. In the field of transportation networks, however,
the use of graph theory has been relatively much less explored,
and this motivates us to bring together the recent development
in the field of public transport analysis from a graph theoretic
perspective. In this paper, we focus on ground transportation,
and in particular the bus transport network (BTN) and metro
transport network (MTN), since the two types of networks
are widely used by the public and their performances have
significant impact to people’s life. In the course of our analysis,
various network parameters are introduced to probe into the
impact of topologies and their relative merits and demerits
in transportation. The various local and global properties
evaluated as part of the topological analysis provide a common
platform to comprehend and decipher the inherent network
features that are partly encoded in their topological properties.
Overall, this paper gives a detailed exposition of recent devel-
opment in the use of graph theory in public transport network
analysis, and summarizes the key results that offer important
insights for government agencies and public transport system
operators to plan, design, and optimize future public transport
networks in order to achieve more efficient and robust services.

Keywords: Public transport network analysis, bus transport
networks, metro transport networks, network science, graph
theory, survey.

I. INTRODUCTION

Public transportation systems form a vital part of our
infrastructure that permits massive flow of commuters within
a city and between cities. In order to meet the rising stan-
dards of living of the society, transportation networks have
to keep abreast of the need of commuters with respect to the
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ever increasing demand of reducing the traveling time and
extending the area covered. At the same time, transportation
networks are facing series of challenges, including satisfying
the ever increasing passenger volume, achieving long-term
sustainability, and improving the quality of service. Such
challenges are encountered at various levels of operation,
ranging from infrastructure deployment to optimal route
planning, and the problems are addressed from different
angles depending on the discipline of study such as ur-
ban planning, regional science, geography, engineering, etc.
The literature abounds with diverse methodologies adopted
in various disciplines to represent, perceive and analyze
the complex dynamics of public transport systems, among
which, Geographic Information System (GIS), graph theory,
mathematical programming, and agent-based modeling are
most commonly adopted [1].

Motivated by the notable contributions of network theory
[2], application of graph theoretic concepts in the analysis
of public transport networks (PTN) has attracted significant
attention, and today, it is one of the most widely employed
approaches to understand the nature of connectivity in PTNs.
The representation of a PTN as a complex network, together
with the adoption of some concepts from statistical physics,
offers remarkable advantages in the modeling and analysis
of nonlinear and dynamic PTN structures. Specifically, the
analysis of PTNs using network theory permits the use of a
common platform on which to comprehend and decipher the
inherent network features that are encoded in the topological
properties. Moreover, to apply the concepts of complex net-
works, one should understand the language of graph theory,
as a prerequisite, where a network is typically represented
as a graph consisting of a set of nodes interconnected by a
set of edges.

Graph theory and network theory, despite being rooted
historically in mathematics, has found applications in sta-
tistical physics, biology, social sciences, finance, and engi-
neering. One of the oldest instances of using the notion of
graph theory to analyze a real-world problem dates back to
the 17th Century when Leonhard Euler used the concept of
nodes and edges to solve the problem of seven bridges of
Königsberg, a notable problem in the history of mathematics
[3]. However, notable usage of graph theory was found
by Gustav Kirchhoff who employed nodes and edges to
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calculate voltages and currents in electric circuits, nowadays
widely known as Kirchhoff’s laws [4]. Subsequently, many
real-world networks were analyzed using graph theory with
significant contributions from the fields of social networks
(world wide web) and biological networks, and later from
other fields including friendship networks, relationship in
social media, food web, metabolism, professional ties, author
and co-author relations, citation networks, computer virus
flow, network router analysis, chemical reactions, neural
networks, transportation networks, etc. From the literature, it
was evident that modeling various large real-world network
structures as graphs, and analyzing their behavior from a
network perspective, facilitated better understanding of both
the global and local properties of the network. Thus, this
domain of study has attracted a humongous amount of re-
search interest in the past two decades [5], [6], [7]. Although
a lot of real-world complex systems have been analyzed
using graph theory, little attention has been paid to the field
of transportation networks which is an active research area
among researchers in transportation and logistics.

Although a public transport network can either be uni-
modal or multi-modal, we focus on two major types of
public transportation, namely, the bus transport network
(BTN) and metro transport network (MTN), since we believe
that these two types of networks are most widely used by
the public to meet their daily commuting needs. In this
article, the recent contributions and the concepts employed
in the topological analysis of public transport networks are
discussed. Our focus is on the understanding of various
network parameters and approaches employed to analyze the
topology of a PTN [5], [6], [7]. Moreover, a brief discussion
on the fundamental graph theoretic concepts will be made
whenever necessary.

The remainder of the paper is structured as follows.
Section II introduces a few preliminary steps to be followed
to construct a real-world network topology from given
datasets, i.e., collecting the real-world datasets from various
online sources, and data mining to extract useful informa-
tion from both computational and visualization perspectives.
Section III presents various spaces of graph representation
for studying the topological representation of PTNs. Section
IV discusses in detail the contributions of previous works
in terms of the use of appropriate network parameters that
aid PTN analysis. Section V focuses on some distinctive
contributions accomplished in PTN analysis which might
pave the way for future research or some food for thought.
Finally, in Section VI, a few important conclusions are
drawn, and the possible scope of future work is discussed.

II. DATA COLLECTION, MINING AND VISUALIZATION

Although significant research interest in the field of net-
work science theory has been cultivated for several decades,
applying the established concepts to real-world data has been
practiced only recently as a consequence of the availability

of real-world datasets and the high-end tools for processing
such huge datasets. With the aid of real-world datasets,
a network topology which closely mimics the real-world
structure is generated using the concepts of graph theory.
Building a network topology forms the fundamental and
important aspect in a PTN analysis since the course of the
defined topology significantly influences the understanding
of both the local and global aspects of a network. A list of
online sources and relevant datasets are given in Appendix
A. The extracted datasets include information on

(i) List of stops/stations along with their id’s, names,
latitude/northing and longitude/easting data.

(ii) List of routes/sequence-of-stops along with their stop
sequence id’s and names for the inbound, outbound,
and round-trip routes.

where a stop or station is a designated place allocated to
pick up or drop off passengers, a route (sequence of stops)
is a path taken to reach the destination from a source along
the intermediate stops. Furthermore, other information such
as the list of routes operated by different operators, end-to-
end travel cost, frequency of operation, specific day and time
(e.g., weekday, weekend, special days, peak hours, off-peak
hours, day-time, night-time routes), etc., are also available
in a few datasets.

Like other complex networks, the availability of huge data
have posed big challenges to transport network analysis.
Fortunately, the obtained datasets for PTNs are relatively
midget, and can be processed in a reasonable time. Here,
we describe three basic steps in mining the crude datasets
for extracting meaningful information:

Step 1: Eliminate the anomalies that are commonly
observed in the extracted datasets, e.g., data redundancies
with respect to the locations of public transport stops or
routes, missing information in the sequence of stops along
a route, allocation of multiple id’s to a specific stop or
route, missing information on the geographical location of
a few stops, etc.

Step 2: Process the crude data obtained in Step 1 to permit
further analysis. This involves the following procedure:

(i) Since PTNs belong to the category of spatial networks,
understanding the topological behavior along with spa-
tial information will facilitate better network analysis.
The spatial information of public transport stops listed
in the datasets are either easting-northing or latitude-
longitude. However, since many of the network visual-
ization tools adopts latitude and longitude information
for displaying the spatial locations of the stations, it is
useful to convert easting and northing data to latitude
and longitude using tools like ArcGIS [8]. Before the
conversion, a suitable global coordinate system (e.g.,
WGS84) should be chosen based on the information
about local coordinate systems (e.g., OSGB36 for Lon-
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don and HK1980 for Hong Kong) provided by the local
survey departments [9].

(ii) In some datasets, the numbers assigned for the stops
are typically non-sequential in nature, posing com-
putational challenges to analysis, e.g., in generating
adjacency matrix as discussed in Step 3. Thus, it is
necessary to map the list of id’s (both routes and
stops) extracted from the database with sequentially
mapped numbers. This mapping of original stop id’s
with sequentially mapped id’s makes it less arduous to
further process the data.

(iii) The concept of short distance station pairs (SSPs)
has been commonly adopted to represent a group of
stations as a single (merged) station [10], [11], [12].
Assigning new id’s to such SSPs according to the
sequential mapping carried out in Step 2 is recom-
mended to facilitate identification of SSPs in a network.
The clustering of multiple stations into one station
can be based on geographical closeness, similar names
for nearby stations, stations within a specific walkable
catchment, etc. Although different terminologies have
been used, the essential idea of SSPs has been reported
in several sources [10], [11], [13]. The idea behind
identifying SSPs is to establish a virtual connectivity
among the nodes, especially when a large number of
SSPs are observed in the network [10], [13]. However,
as discussed in ref. [13], when combining multiple
nodes as a single node based on their geographical
closeness, the actual definition of geographical close-
ness is always a matter of choice. A distance threshold
(dth) is needed to define the closeness of two nodes and
can be chosen judiciously by observing the distribution
pattern of geographical distances between successive
stations (dij) in a network. However, it should be noted
that choosing an extremely small value of dth creates a
lot of SSPs in a dense network, whereas a large value
of dth is meaningless, since a long walking distance to
reach another station in the network is unreasonable.
In either of the cases, the chosen value of dth may
bias the understanding of network behavior [13]. Hence,
a careful selection of the dth is important. SSPs are
more prevalently observed in bus transport networks as
compared to metro transport networks.

Step 3: Generate the topology of a PTN from the data
extracted in Step 2. Initially, based on the graph type and
the space of representation, a square adjacency matrix A
with dimension N × N and elements aij can be derived
to describe the connection between node pair ni and nj .
The element aij = 1 if there exists a connection between
nodes ni and nj , and 0 otherwise. A graph can either be
directed (digraph), undirected, weighted or unweighted. The
intent of choosing the graph type solely depends on the
necessity of the type of analysis to be accomplished. For
the analysis of transport structures, especially bus transport

structures, a directed graph is often chosen since the inbound
and outbound routes have different travel paths servicing
different stations (except the round-trip journey routes).
However, an undirected graph is typically chosen in the
analysis of metro transport networks where the inbound and
outbound travel paths remain the same for a vast majority of
routes. Furthermore, depending on the aim of the network
analysis, the graph can be represented in various spaces of
representation as will be discussed in Section III. Thus, the
type of graphs (directed, undirected, weighted, unweighted)
along with the space of representation (L-, P-, B- and
C-space) defines the topology of a PTN structure to be
examined. Table I shows the graph type and the space
of representation chosen in various PTN analysis in the
literature.

Finally, for visualizing a network, there are many open
source network visualization tools, and the selection would
depend on the need of the analysis. For a comparison of
different visualization tools, interested readers are referred
to ref. [14].

III. SPACES OF NETWORK REPRESENTATION

In this section, we describe different spaces of network
representation together with the adjacency matrix representa-
tion for analysis of public transport networks. Our discussion
will follow the basics introduced in Kurant and Thiran [15]
and Ferber et al. [17] for representing a public transport
network in different spaces of network representation, as
shown in Fig. 1. The various topological representations are
fundamentally related to how the network and its parameters
are being perceived. For instance, different aspects of interest
may include information about the stations having more
routes traversing through them, the most significant station in
a network in terms of connectivity, the routes servicing more
stations, edges with more overlapped routes, the number
of transfers needed to reach two different stations in a
network, and so on. Fig. 1 shows the most commonly used
representations of a PTN analysis along with their adjacency
matrix entries.

(i) A graph in L-space, also called the space-of-stations,
is shown in Fig. 1(b). In an L-space graph, a public
transport stop is treated as a node, and a pair of nodes
are connected by an edge if there is at least one route
servicing the two stops consecutively. The L-space
representation is the most extensively used represen-
tation in the analysis of PTNs since it signifies the
actual physical infrastructure that exists in a real-world
network, and renders useful information on relationship
between the nodes.

(ii) A graph in B-space, also called a bipartite graph, is
shown in Fig. 1(c), where both the routes and stops
are represented by nodes. A route node is connected to
all the stops it services, and a stop node is connected
to all the routes servicing it. There is no directed
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TABLE I: Graph type and space of representation used in various PTN analyses.

Directed Undirected Weighted Unweighted References
Bus transport network

L-space X • • X [15] [16] [17]
[18] [11]

X • X • [12] [19] [20] [21]
[10] [22] [13]

P-space X • • X [23] [16] [17]
[24] [18] [25]

X • X • [26] [20] [22] [10]
C-space X • • X [17]

• X • X [27]
Metro transport network

L-space • X • X [28] [29] [30] [31]
[32]

• X X • [33] [34] [35]

Fig. 1: (a) Simple public transport map with stations A–F being serviced by route no. 1 (shaded orange), no. 2 (black),
and no. 3 (blue); (b) L-space graph; (c) B-space bipartite graph (route nodes are shown as squares); (d) P-space graph
(complete sub-graph corresponding to route no. 1 is highlighted in orange); (e) C-space graph of routes. The matrix of
connectivity is shown below the corresponding network representation.

edge between nodes of the same type, i.e., an edge
will not exist between two route nodes or stop nodes.
A graph in the B-space will be undirected. Although
analysis of PTNs using bipartite graphs finds limited
application, the one mode projection of a bipartite graph
into the P-space (node projected) and the C-space (route
projected) has gained significant attention.

(iii) A graph in P-space is also called space-of-changes,
space-of-transfers, or stop-unipartite graph, and is
shown in Fig. 1(d). In the P-space, the stops are
represented by nodes and every possible pair of nodes
that can be reached without making any transfers are
linked by edges (stops serviced by a single route). A
graph in the P-space can be undirected or directed
depending on the type of transport networks (BTN or
MTN) under study. The P-space representation renders
useful information for studying the transfers between
different routes since the neighbors of a node in the
P-space representation are the set of nodes that can be

reached with or without making a transfer. Hence, the
node set associated with a specific route forms a clique
or a complete subgraph.

(iv) A graph in the C-space is also called route-unipartite
graph, as shown in Fig. 1(e). In the C-space, the nodes
are the routes and two nodes are connected by an edge
if they service a common set of stop(s) along their
journeys. A graph in the C-space can be directed or
undirected depending on the type of networks under
study (BTN or MTN).

Table II shows the allowed graph types (directed or undi-
rected) with respect to various spaces of network represen-
tation (L-, B-, P- and C-space) and the type of transport
networks (bus or metro).

IV. OVERVIEW OF TOPOLOGICAL ANALYSIS OF PUBLIC
TRANSPORT NETWORKS

Network Science by itself has no strong association with
any single field of study as its applications can be found in
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TABLE II: Allowed graph type under various spaces of
representation.

Space Directed Undirected
L Yes Yes
B No Yes
P No Yes
C Yes Yes

a great variety of real-world systems. There are a handful of
parameters commonly used for analyzing complex networks.
In this section, some key network parameters that aid the
understanding of public transport networks are discussed.
For brevity and convenience of discussion, a nomenclature
list is given in Table III.

The topology of the network under analysis is represented
as a graph G, which is an ordered pair comprising a set of
nodes (V ) and a set of edges (E), i.e., G = (V,E) such that

V =
{
n1, n2, n3, ......, nN}; N = |V | (1)

E =
{
e1, e2, e3, ......, eL}; ei → (ni, nj) ∀ni, nj ∈ V,

ei ∈ E; L = |E|
(2)

where N and L are the cardinality of the node set and edge
set, respectively. Appendix B lists the statistical details of
various PTN structures analyzed in the literature. Tables IV
to VI provide an empirical comparison of a few network
parameters employed in the analysis of PTNs using vari-
ous spaces of representation, the details of which will be
discussed in the subsequent subsections.

A. Connectivity in Public Transport Networks

In a public transport network, the connectivity pattern
of a node with its neighbors is evaluated by a network
parameter termed degree, which is the number of edges
incident on a node. Degree is one of the most fundamental,
yet significant parameters in network analysis. Degree is a
local property of a node, and average degree of a network is a
global parameter which conveys information on the average
connectivity of nodes in the entire network. Depending on
the graph type, the degree, k, and average degree, 〈k〉, for
undirected networks are defined as

ki =

N∑
j=1

aij ∀i, j ∈ V, i 6= j, 〈k〉 = 1

N

N∑
i=1

ki (3)

For undirected networks they are

kin
i =

N∑
j=1

aji, kout
i =

N∑
i=1

aij , ktotal
i = kin

i + kout
i

∀i, j ∈ V, i 6= j
(4)

〈kin〉 = 1

N

N∑
i=1

kin
i , 〈kout〉 =

N∑
i=1

kout
i ,

〈ktotal〉 = 〈kin〉+ 〈kout〉

(5)

All symbols in equations (3)–(5) are defined in Table 3.
The weighted node degree and the average weighted node

degree are defined similar to (3)–(5), where aij is multiplied
by wij , the edge weight (to be discussed in Section IV-J).
Furthermore, Tables IV to VI tabulate the empirical values of
average node degree under various spaces of representation.
From Table IV, we observe that the average node degree
in L-space analysis is nearly equal to two (in general)
indicating that a stop is merely connected to its neighboring
stops. On the other hand, the values shown in Table V
indicate that the average node degree in the P-space analysis
is roughly 10 times higher than that in the L-space which
denotes the average number of nodes that can be reached
from a certain node with or without making a transfer.
Appendix C lists the various interpretations of the node
degree under different spaces of network representation. The
key point is that significant features like connectivity of a
node in the L-space representation, route overlapping pattern
in the C-space representation, and the number of transfers to
be made in the P-space representation can be more readily
identified via studying the node degree. In addition, the
study of the degree distribution in a network would benefit
the evaluation of an interesting network property called the
scale-free property.

B. Are Public Transport Networks Scale-free?

Following the random network model proposed by Paul
Erdős and Alfréd Rényi [38], many real-world networks
were verified to be connected in a random way, in which
a myriad number of nodes in the network exhibit similar
degree since the nodes are connected randomly. The degree
distribution of such a random network is more likely to
follow a Poisson distribution [39], [38]. However, Barabási
[2], [5], [40], [41] showed a unique behavior in which a
few nodes in the network exhibit very high degree while a
large number of nodes exhibit low degree, and the degree
distribution of such network is expected to follow a power
law distribution. Such networks are called scale-free net-
works. Observing the scale-free property in public transport
networks can be inspiring since it demonstrates a strong
prevalence of the hierarchical network structure, i.e., hubs
at the top of the hierarchy serves maximum demand, while
those below are relatively midget nodes serving mediocre
demand. Intuitively, although we would expect a certain
number of stops in a network are serviced by a large
number of routes, it is intriguing to verify such property
mathematically. Interestingly, it was observed that some
of the public transport networks do exhibit the scale-free



6TABLE III: Nomenclature List.
Notation Details
A adjacency matrix
aij an element of A, defining the directed connectivity between nodes i and j
a1 percentage of total population accessing stops on layer α
a2 percentage of total population accessing stops on layer β
Ci local clustering coefficient of node i
〈C〉 average clustering coefficient
C∆ global clustering coefficient
Cb(i) betweenness centrality of a node i
Cb(eim) betweenness centrality of an edge eim connecting nodes i and m
Cc(i) closeness centrality of a node i
cd cost of a shortest path d
〈d〉 average path length between two nodes
〈dtr〉 average path length between two nodes considering the number of transfers
dij geodesic path or shortest path between nodes i and j
dij(k) shortest path between nodes i and j through the node k
dmax diameter of the network
dm # of points-of-interests of category m
DFR′ duplication factor of a bus route R′

E or M set of edges in a network
ki degree of a node i
kiα degree of a node i on layer α
kmax maximum degree of a node i
kmin minimum degree of a node i
kin
i in-degree of a node i in a directed network
kout
i out-degree of a node i in a directed network
ktotal
i total degree of a node i in a directed network
kwi weighted degree of a node i
(kin
i )w weighted in-degree of a node i in a directed network

(kout
i )w weighted out-degree of a node i in a directed network

(ktotal
i )w weighted overall degree of a node i in a directed network
〈k〉 average degree of an undirected network
〈kw〉 average weighted degree of an undirected network
〈kin〉 average in-degree of a directed network
〈(kin)w〉 average weighted in-degree of a directed network
〈kout〉 average out-degree of a directed network
〈(kout)w〉 average weighted out-degree of a directed network
〈ktotal〉 average overall degree of a directed network
〈(ktotal)w〉 average weighted overall degree of a directed network
L cardinality of edges in a network, i.e., L = |E|
Lproj link projected graph of a bipartite graph
n∗i ith node in a network
N cardinality of nodes in a network i.e. N = |V |
Nk number of nodes with degree k
Nproj node projected graph of a bipartite graph
pk probability of finding a node with degree k
Pi # of people accessing stop i
Pα # of people accessing the stops on layer α
Pβ # of people accessing the stops on layer β
PT total population
R the number of bus routes a stop joins
R′ number of routes operating between two nodes
S the number of stops in a bus route
trij number of transfers between nodes i and j
V set of nodes in a network
vij average vehicular speed along an edge connecting nodes ni and nj
wij weight of an edge connecting nodes i and j
(wiα )Z weight of a node i on layer α in a zone Z
wi overall weight of a node i
λ Poisson coefficient
α exponential coefficient
γ power law coefficient
γin power law coefficient for in-degree in a directed network
γout power law coefficient for out-degree in a directed network
r assortativity coefficient
r(2) assortativity coefficient for second neighbors of a node
σ small-world parameter
ω new small-world parameter
ρPα density of people accessing stops on layer α in a zone Z
ρNα density of stops layer α in a zone Z
ρPα
ρNα

node occupying probability (NOP)

ε length difference between the two routes
λth route length divergence threshold
γ′ transfer count difference
ξ route transfer count divergence
∗ a node ni is interchangeably represented as i in a few sections for brevity.
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TABLE IV: Empirical values of various network parameters in L-space repesentation

〈k〉 C∆ 〈d〉 r References
Bus transport network

2.48-3.03 0.055-0.161 6.83-21.52 +ve [16]
2.88-4.59 0.09-0.15 7.13-12.56 +ve [20]

2.1-2.4 0.0004-0.0129 28.1-50.9 • [15]
1.18-3.59 • 6.4-52 +ve [17]

3.13 0.142 20.03 + ve [18]
2.25-2.50 0.06-0.08 21.09-43.02 • [10]
• • 10.8-14.5 • [12]

3.67-24.58 0.07-0.26 3.87-25.69 +ve, −ve [11]
2.65-2.92 • • +ve [19]
2.65-2.92 0.05-0.09 13.82-20.9 • [21]
1.91-3.77 0.074-0.213 9.9-102 • [13]

Metro transport network
• • 10.74-15.60 • [32]

2-2.45 0-0.077 10-16 • [29]
2.2 0.0018 • • [31]
• 0.390-0.710 • • [34]

2-2.4 • 6.7-19.9 • [36]
• • 10.13-15.02 • [32]

TABLE V: Empirical values of various network parameters in P-space representation

〈k〉 C∆ 〈d〉 r References
Bus transport network

33.13-90.93 0.682-0.847 1.71-2.90 +ve, −ve [16]
41.06-94.19 0.73-0.78 2.54-2.66 +ve, −ve [20]
24.6-102.3 0.6829-0.9095 2.3-3.7 • [15]

4-11 • 2.2-4.7 +ve, −ve [17]
44.60-122.89 0.716-0.819 2.84-3.45 +ve, −ve [24]
35.84-60.24 0.57-0.68 3.15-3.46 • [10]
44.40-92.54 0.69-0.81 2.42-3.45 • [25]
44.46-134.65 0.73-0.78 2.53-2.89 • [23]

TABLE VI: Empirical values of various network parameters in C-space representation

〈k〉 C∆ 〈d〉 r References
Bus transport network

11.09-151.72 2.14-28.3 1.7-4 +ve [17]
98.1 • • • [27]

TABLE VII: Degree distribution patterns from some public transport network analyses.

L-space P-space C-space References
Bus transport network

Power law Exponential • [16] [20]
Shifted power law • • [18]

Power law • • [13]
Power law Shifted power law • [19]

Heavy tailed Power law • [11] [37]
Exponential Exponential • [15] [17] [10]
Exponential • • [26] [12]

• Exponential • [23] [24]
• Power law • [25]
• • Exponential [27]

Metro transport network
Power law • • [33] [34]
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property. Furthermore, as explained later in this section, the
degree distribution in a network is a good source of inference
on the network evolution [23], [42]. Thus, the study of
degree distribution has attracted enormous research interest.

The degree distribution exposes the probability of a ran-
domly selected node in the network having a degree of k,
i.e.,

pk =
Nk
N

or Nk = Npk (6)

where pk is the probability of finding a node with degree
k, Nk is the number of nodes with degree k, and N
is the total number of nodes in the network. Interested
readers may refer to [5, Chapters 3–5] to probe further
into the difference between random and scale-free networks.
Table VII tabulates the degree distributions of various PTNs
reported in the literature. From Table VII, we make the
following observations:

(i) An exponential degree distribution in L-space indicates
that connecting a newly added node with the existing
nodes is more likely to be random. This is in contrary
to the notion of preferential attachment where newly
added nodes are connected to the already existing
influential nodes in the network, making the degree
distribution a power-law distribution.

(ii) An exponential degree distribution in P-space indicates
that defining a new route sequence in the network is
more likely to be random in order to ensure a better
coverage and service rather than along the influential
nodes in the network.

(iii) An exponential degree distribution in C-space indicates
that defining the stops along a route node is more
random than defining the stops along a route to cover
the influential nodes.

Thus, the degree distribution of a network provides infor-
mation on the topological evolution of the public transport
network in a city [23]. Up to now, some simple network
evolution models have been proposed based on fitting em-
pirical data. However, the nature of network evolution has
never been verified from the actual deployment perspective.
As demonstrated by Barabási [2], the existence of hubs in
a scale-free network can be a result of two phenomena,
namely, growth and preferential attachment. However, the
feasibility of deployment of preferential attachment in a real-
world network is yet to be verified!

In our previous work [13], as part of analyzing bus
transport networks, we proposed a supernode graph repre-
sentation, where a supernode is a cluster of geographically
closely-located nodes which satisfy the criterion dth ≤ 100
m, where dth is the geographical distance between two
nodes. Using the supernode representation, we analyzed
the scale-free behavior for three cities, and it was very
interesting to observe that the Hong Kong network plau-
sibly exhibited the scale-free property with the supernode
representation, as shown in Fig. 2. In other words, a slight

modification in the topological representation permitted the
exposition of an important network property which otherwise
was undetected under conventional graph representation.
Therefore, the effect of supernodes in analyzing the pubic
transport networks should not be overlooked.

Finally, it is very interesting to observe the scale-free
property (sometimes called the 80/20 rule) in public trans-
port networks. This demonstrates the fact the a myriad
number of stops carry 20% of the network load, and a
countable number of stops carry 80% of the load. Public
transport networks having such a property are free of any
scaling applied to them. The mechanism of passenger flow
in a scale-free network is an important research topic from
the perspective of a transport engineer, similar to the study
of information spread or disease spreading by network engi-
neers and biologists. Another core research area of practical
importance is robustness analysis which aims to study the
network functionality upon removal of a certain set of target
nodes. It has been shown that scale-free networks are more
prone to targeted attacks, in contrary to random networks
which end up merely at network fragmentation on targeted
attacks.

C. Network Cohesiveness

The extent to which the immediate neighbors of a node
are connected to each other is examined through a property
called clustering, which defines the level of cohesiveness in a
network. Clustering, also known as the transitivity, is a local
property dealing with node level information in network
theory. The cohesiveness of nodes is evaluated at local level
through a parameter called local clustering coefficient, which
is given by

Ci =

∑
j,h aijaihajh

ki(ki − 1)
(7)

for undirected networks, and

Ci =

∑
j

∑
h(aij + aji)(ajh + ahj)(ahi + aih)

2[ki(ki − 1)− 2k↔i ]
;

ki
↔ =

∑
i 6=j

aijaji
(8)

for directed networks. At the global level, the global clus-
tering coefficient is given by

C∆ =
1

N

∑
i

Ci. (9)

Again, all symbols are defined in Table 3. For an in-depth
discussion of evaluating clustering by identifying triads
or cliques in different graph types, interested readers are
referred to ref. [43].

The study of clustering coefficients by itself has not
attracted much attention from researchers in the analysis of
PTNs. However, some inspiring observations can be made
from the relationship between Ci and k.
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(a)

(b)

Fig. 2: Power law fit for (a) in-degree distribution; (b) out-
degree distribution under regular and supernode representa-
tions.

(i) The dependency of Ci and k closely resembles a power
law where the value of Ci for a given k (Ci(k)) is close
to unity for small values of k, and Ci(k) decreases
rapidly with increasing k [11], [16], [20].

(ii) As observed from (7) and (8), the inverse dependency
of Ci on k indicates the hierarchical structure of a net-
work in the L-space representation, where high degree
nodes (hubs) tend to form numerous connections with
their neighbors, thus reducing the possibility of their
neighbors having connections among themselves. This
reduces the local clustering coefficient of high degree
nodes. On the other hand, a low degree node has a
greater tendency to be connected among its neighbors,

increasing its local clustering coefficient [11].
(iii) In the P-space representation, all stations of a specific

route form a perfect clique, with Ci=1 for all nodes in
the route. The value of Ci becomes smaller when the
nodes are shared by multiple routes. Thus, in the P-
space representation, the fully connected subgraphs of
all stops along a route constitute local cliques, and these
local cliques are shared between routes through the
common nodes. Hence, the nodes with a low degree and
a high clustering coefficient belong to a fully connected
local clique, whereas the nodes with a high degree
and a low clustering coefficient connect multiple local
cliques, reflecting that hubs act as coordinating points
for several routes [16], [23], [24], [25], [44]. Thus, the
distribution of Ci(k) gives an indication on how the
clustering is organized for nodes of various degrees.

Appendix C summarizes the common interpretations of
transitivity under various spaces of network representation,
and Tables IV to VI give the ranges of values of the global
clustering coefficient under the various spaces of network
representation. It can be seen that the clustering in P-space is
significantly higher than that in L-space due to the existence
of more local cliques in P-space. Although clustering has
been extensively employed in L-space PTN analysis, the
physical significance of evaluating both local and global
clustering coefficients in L-space is vague. Moreover, the
clustering coefficient is more meaningfully interpreted in the
P-space representation for a PTN analysis. Also, evaluating
the clustering coefficient in B-space (bipartite graph) is
meaningless since the neighbors of a node are from the
same group, and there exists no connection between nodes of
the same group in B-space. However, evaluating clustering
in C-space conveys interesting information on the extent of
route overlapping in a network which is an extremely useful
information for route optimization, and thus deserves more
work.

D. Travel Distance in Hops

In a PTN, the number of hops to be traversed to accom-
plish a journey between any two chosen stops in a network
is normally measured by path length. In graph theory, a path
is a sequence of nodes connected by links. The shortest path
length is the shortest number of links between two chosen
nodes, and the average path length (geodesic path) is the
average of the shortest path length between all node pairs in
the network. The diameter is the longest of all shortest paths,
and is an upper bound of the average path length. Although
the measure of path length conveys no information on the
number of transfers to be made during the journey, it is
still an important measure in the public transport network
analysis from a passenger point of view since the number
of hops is definitely one of the prime factors considered by
the passengers in selecting a route for the journey. There
are a few notable algorithms for finding the average path
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length in a network [45]. However, it should be noted that
the edge weight should be cautiously chosen (represented) in
the evaluation of the average path length in a weighted graph
in order to avoid a wrong interpretation of the measured
path length. For example, the Dijkastra’s algorithm using dij
(geographical distance between two stops) and vij (average
vehicular speed along a road segment) as the edge weight
may generate two completely different results in evaluating
the path length between two chosen nodes [46]. The average
shortest path length is usually given by

〈d〉 =

∑
i 6=j

dij

N(N − 1)
∀i = j = 1, 2, .., N (10)

where dij is the geodesic distance between nodes ni and nj .
Also, dij=1 if there exists a path between the two nodes,
and dij = ∞ otherwise, implying a possible divergence
problem in a non-connected graph. A smaller value of d
indicates a shorter travel distance (with or without transfers)
that a passenger should take to accomplish a journey. The
different perspectives of average path length are given in
Appendix C. A detailed comparison of average path length
in different spaces has been given in Tables IV to VI. From
the values of 〈d〉 given in Tables IV to VI, it is evident
that the average path length in the L-space representation is
significantly longer than that in the P-space representation.
Thus, the average number of links traversed by a user is
much larger than the number of transfers made to reach the
destination. A few other notable observations concerning the
average path length are

(i) An inhomogeneous distribution of stops within a city
leads to Gaussian or asymmetric unimodal distribution
(with longer tail ends) in the L-space and P-space
representations. Thus, a fewer number of stops in
the suburbs/downtown in a city leads to long travel
distances. This accounts for the long tail ends in the
distribution. This phenomenon is consistent with the
plethora of stops observed at city centers leading to
short travel distances [12], [16], [17]. A rather unique
feature can be observed in the distribution pattern in
ref. [17], where a secondary peak in the tail end of
the distribution along with the major peak has been
observed, indicating that in addition to a major central
business district (CBD), a supporting minor CBD exists
in the city.

(ii) As studied in ref. [15], the average path length of
a network is significantly affected in L-space by the
existence of shortcut paths. Despite the absence of
physical connectivity between a few nodes in the PTN
(e.g., between a bus stop and a metro station which are
geographically close, or stops on either sides of a road
segment), they can be virtually connected by a short
walking distance and such nodes can be represented as
short distance station pairs (SSPs) or supernodes. Thus,
merely representing the physical connectivity of two

different transportation networks does not justify the
true measure of the average path length [10], [11], [12],
[13]. However, a slight reorganization of the network
topology using supernodes provides a better and more
practical insight on the average path length estimation
in PTN analysis [10], [13].

(iii) Fig. 3 shows the path length distribution of bus stops for
the three cities analyzed in our previous work with and
without considering supernodes in the network [13]. For
all the three cities in Fig. 3, it has been observed that
the path length values are comparatively small when
the supernode representation is used which conveys
more clear information on the actual path length to
be traversed in practice. Thus, in a PTN analysis, the
supernode representation offers a more realistic path
length estimation.

(iv) The link length distribution (the distribution of geo-
graphical distance between the stops) conveys captivat-
ing information on the route length adopted by public
transport networks. In ref. [10], the geographic link
length distribution has been found to follow a power
law, indicating that a substantial number of routes in the
public transportation have a short geographical route
length and only a nominal number of routes have a
long route length. Furthermore, such an analysis sheds
useful light on the city’s demographics. (Note: Since
the latitude and longitude information of the stops are
given in a spherical coordinate system, the great-circle
distance is preferred over the Euclidean distance in
evaluating the geographic distance between two stops
[47]).

(v) In PTN analysis, the average shortest path length be-
tween any two nodes in the network might not always
guarantee a minimum number of transfers. Hence,
combining the number of transfers with the shortest
path length offers a more realistic choice for traveling
between a chosen node pair. Zhang [18] has demon-
strated a way of measuring the shortest path length in
(10) taking into consideration the number of transfers
along the shortest path, i.e.,

〈dtr〉 =
∑
i

∑
j dij(1 + trij)

N(N − 1)
∀i = j = 1, 2, ..N

(11)
where trij is the total number of transfers needed to
travel between nodes i and j.

E. Small-worldness in Public Transport Networks

First demonstrated by Watts and Strogatz [48], a class of
networks, called small-world networks, exhibit high cluster-
ing and a low average path length. Empirically the small-
world property of a network can be verified by

σ =
C
Crand

d
drand

=
γ

λ
(12)
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(a)

(b)

(c)

Fig. 3: Average path length distribution for (a) Hong Kong;
(b) London; and (c) Bengaluru networks with and without
considering supernodes.

where Crand and drand are the clustering coefficient and aver-
age path length values of the equivalent random networks
(degree conserved network of the same size) [49]. If σ
> 1, i.e., when C ≥ Crand and d ≈ drand, the network
can be classified as a small-world network. Telesford et
al. [50] pointed out that the comparison of average path
length of a given network to its equivalent random network
is acceptable; however, the comparison of clustering of a
network to that of its equivalent random network does not
fully capture the small-world behavior since the clustering of
a network is expected to behave close to a lattice structure. It
is also observed in (12) that even a small change in Crand will
affect the value of the small-world parameter (σ). Hence, a

new approach to capture the small-worldness of a network
can be adopted, as proposed by Telesford et al. [50], i.e.,

ω =
drand

d
− C

Clatt
(13)

where Clatt and drand are the clustering coefficient and
average path length values of the equivalent lattice and
random network, respectively. In (13), when C ≈ Clatt and
d ≈ drand, we have ω ≈ 0 and such networks are considered
small-world networks. By simulating the behavior of a small
network, Telesford et al. [50] demonstrated the variation of
σ and ω, where σ > 1 for all values of p (except p =1).
This means that the network would show the small-world
property for all the rewiring probabilities (except p = 1),
demonstrating that σ > 1 cannot fully capture the small-
worldness. However, the variation of ω shows three major
zones, viz. ω < 0, ω ≈= 0, and ω > 0, capturing the
random, small-world, and lattice properties of the network
[50]. Furthermore, interested readers may refer to refs. [48],
[49] for details on the basic rewiring approaches.

Some reported works have attempted to use (12) to
test the small-worldness of public transport networks by
verifying σ > 1, but such results have been found to deliver
misleading conclusions [11], [16], [24], [25], [37]. In our
previous work [13], we adopted Telesford et al.’s method to
evaluate the small-world property of bus transport networks,
and the results of two networks are shown here in Fig. 4. By
observing the value of ω in Fig. 4a we can see that the Hong
Kong network becomes a small-world network if certain
modifications are made to the existing routes. However, from
the value of ω shown in Fig. 4b, we can also see that the
modifications in the routes needed can be quite substantial
and hence difficult to implement.

Unlike Stanley Milgram’s experiment conducted in 1967
for studying the small-world behavior of a social network
[51], finding a small value of average path length in large
public transport networks is much more difficult. In addition,
it is widely know that 〈d〉 varies with

√
N [5]. Thus, a

true measure of small-worldness should consider the network
size as one of the parameters alongside with the clustering
and average path length. Small-worldness is undoubtedly
an important network behavior in public transport networks
as it demonstrates the effectiveness of a transport network
in terms of both connectivity (clustering) and the travel
distance in hops (path length). However, existing measures
of small-worldness have merely been used to demonstrate
high clustering and low average path length, and a practical
measure from the passenger’s perspective would be more
desirable for public transport networks.

F. Bridges in Public Transport Networks

Centrality is a network parameter describing primarily
local information about nodes (edges), and yet having a
global significance. Centrality quantifies the significance of
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(a)

(b)

Fig. 4: Small world network behavior for (a) Hong Kong;
and (b) London networks with and without supernodes, and
the value of ω at p = 10−4 is highlighted. (Note: L is used
instead of 〈d〉 to represent the average path length).

a node (edge) based on various sources of information.
Centrality measures may thus include degree centrality,
Eigen-centrality, Katz-centrality, page rank centrality, close-
ness centrality, betweenness centrality, etc. In PTN analysis,
a few centrality measures have been extensively studied,
e.g., degree centrality, closeness centrality, and betweenness
centrality. The degree centrality, as discussed in Section
IV-A, rates a node’s significance according to its degree.
Similarly, betweenness centrality emphasizes the capability
of a node in bridging multiple shortest paths in a network
[52]. Specifically, the node betweenness centrality is defined

as

Cb(i) =
∑

i,j,k∈V

djk(i)

djk
, (14)

and the edge betweenness centrality is defined as

Cb(eim) =
∑

i,j,k,m∈V

djk(eim)

djk
(15)

where djk is the total number of shortest paths between
nodes j and k, and djk(i) or djk(eim) is the shortest
paths between nodes j and k passing through node i or
edge eim. Appendix C summarizes the different perspectives
of betweenness centrality under various spaces of network
representation.

For a given network, it is intuitive to assume that the nodes
having a higher degree have a higher probability to serve
as central nodes in the network, and thus, the relationship
between degree and betweenness centrality has been actively
studied. The major observations are as follows:

(i) The dependency of betweenness upon degree is found
to follow a Poisson distribution in the L-space represen-
tation [16], and a power-law distribution in the L-space
representation [22] and the C- space representations
[17].

(ii) In the P-space representation, two variations of power
law distribution have been observed depending on the
value of k. For small values of k, the betweenness
is almost zero leading to a steep slope in the power-
law distribution, whereas for high values of k, a larger
betweenness has been observed, leading to a more
regular power-law distribution pattern [16], [17].

(iii) In the B-space representation, the distribution pattern
is found to be similar to that of the P-space repre-
sentation since, Nproj nodes have low degree and Lproj
nodes have high degree [17]. Furthermore, Bona et al.
demonstrated that, the nodes having a high betweenness
centrality are mostly situated in CBDs [25]. However,
this observation remains partially true because a node
in the downtown/suburb which acts as an entry or exit
point for passengers traveling between the cities might
also contribute to a high betweenness centrality.

In an earlier work [53], we employed betweenness cen-
trality as a prime parameter for studying network behavior
when the interaction between multiple transport networks
(bus and metro, for example) are ignored. Specifically, to
demonstrate the unbalanced use or biasness of PTNs, a node
weight was assigned considering the bus (layer α) and metro
(layer β) transport layers as individual mono-layers where
the layer interaction is ignored. Later, a method of spatial
amalgamation was applied to integrate the two layers, and
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accordingly, a new node weight was assigned to the nodes
in the integrated multi-layer, i.e.,

(Pα = a1 ∗ PT )Z and (Pβ = a2 ∗ PT )Z (16)

(wiα)Z =

(
ρPα
ρNα

)
Z

+ kiα (17)

wi = wiα + Cb(i) (18)

where all symbols are listed in Table 3. Similar to equations
16 - 18, the node weight is evaluated on layer β. Fig.
5 shows the influential nodes (wi ≥ 0.8) in the network
according to the node weight assigned with and without con-
sidering the interaction between the layers. We can see that
the assigned node weights differ significantly between the
individual mono-layer analysis and the integrated multi-layer
analysis. This indicates that ignoring the inter-connectedness
between the transport layers leads to a unrealistic conclu-
sions. Betweenness centrality has been employed as the
prime parameter for assigning node weight for the multi-
layer analysis since passengers may prefer using multiple
transport networks (bus and metro) to complete their trips.

One of the main advantages of using betweenness central-
ity as a measure of significance of a node is that the removal
of high betweenness nodes can adversely affect the average
path length of the entire network as these nodes essentially
control the traffic movement in the network by bridging
various routes and nodes. Consideration of betweenness
of nodes has recently been incorporated under robustness
analysis and is attracting a significant research attention [28],
[34], [54], [55], [56], [57].

G. How Close are the Stops in a Public Transport Network?

Closeness centrality is yet another parameter giving node
level information, and in particular indicates how close a
node i is to the rest of the network. Normally, closeness is
evaluated in terms of hop count, i.e., total number of hops
required to reach all other nodes in a network from a given
node, i.e., we have

Cc(i) =
1∑
j dij

(19)

The smaller the value of dij , the closer node i is to all other
nodes. Prior works [12], [22] have considered the closeness
centrality values for weighted and unweighted network struc-
tures, respectively, and the corresponding distributions have
been found to follow an exponential distribution. Appendix
C summarizes the key perspectives on closeness centrality
under various spaces of representation. Due to the limited
available results on closeness centrality related to PTNs and
the rather restricted analysis in the L-space representation,
the practical significance of evaluating closeness centrality
of PTNs is still not widely recognized. In addition, in a
PTN under the L-space representation, a particular stop is
seldom expected to be close to all other remaining nodes in

(a)

(b)

Fig. 5: Influential nodes in the London PTN with (a) mono-
layer analysis; (b) multi-layer analysis.

the network as it is typically connected to a portion of the
network. However, closeness centrality in other spaces might
offer insightful information, and should therefore deserve
further investigation.

H. Social Behavior in Public Transport Networks

Observing the social behavior at public transport stops and
routes in a PTN is interesting. Specifically, the polarization
of connectivity of the stops and routes towards other stops
and routes is practically useful. Such social behavior can be
studied in terms of assortativity. While degree, as discussed
in Section IV-A, captures the connectivity of a node in
the network, assortativity captures the connectivity among
similar kind of nodes in the network. In other words,
assortativity reflects the bias of nodes to connect with nodes
of similar kind. Thus, assortativity is also a local parameter
providing node level information and specifically correlation
between node degrees in the network. Depending on the
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correlation type, the network can be either assortative (con-
nection between two high-degree or low-degree nodes) or
dissassortative (connection between a high-degree node and
a low-degree node). Assortativity can be assessed in terms
of the average degree of a node’s neighbors [58]. Moreover,
Newman [59] later demonstrated that assortativity can be
effectively evaluated by the Pearson correlation coefficient,
i.e.,

r =
M−1

∑
i jiki − [M−1

∑
i
ki+ji

2 ]2

M−1
∑
i
j2i+k2

i

2 − [M−1
∑
i
ki+ji

2 ]2
(20)

where ji and ki are the degrees at both ends of an edge i,
M is the number of edges, and −1 ≤ r ≤ 1. The network
is assortative if r is +ve, and disassortative if r is −ve.
Foster et al. [60] extended (20) for a directed network where
four typical assortative mixing levels are observed, namely,
r(in, in), r(in, out), r(out, in) and r(out, out) denoting the
correlation between in-degree of two nodes, out-degree of
two-nodes, in-degree of a node, and an out-degree of a
node, respectively. The physical significance of assortativity
is that a negative value of r shows the existence of core-
periphery network structure and a positive value of r shows
a layered network structure. In PTN analysis, it is more
desirable for the network to be disassortative in order to
offer better service and connectivity in a core-periphery
structure. However, if a PTN follows a layered architecture,
it is desirable to have assortative mixing between highly
central nodes or hubs, which in turn are expected to have a
disassortative mixing with other nodes in the network.

It has been observed that smaller networks are expected
to be more disassortative, and larger networks exhibit both
assortative and disassortative tendency [18], [21], [24]. Chat-
terjee et al. [22] developed the degree-correlation matrix
to visualize the connectivity preferences of nodes in the
L-space and P-space representations. Strong assortativity
has been observed in L-space among low degree nodes,
whereas, in P-space, strong assortativity can be seen in
nodes of certain node degrees. Also, Ferber et al. [17]
investigated the assortativity for the second neighbor (r(2))
of a node, and found that a more positive r(2) indicates
stronger correlation with the immediate neighbors as well as
the second neighbors. Although the property of assortative
mixing has so far been studied with respect to a node degree,
the polarization of nodes with respect to other parameters
(e.g., various centrality measures) may offer a different
perspective in understanding the network behavior. Such
study of social behavior of public transport stops and routes
will provide important information for the design of stop
locations and route distribution.

I. Communities

Community is a pair-wise parameter studied at node level
and yet offers a global view in network theory. Identifying
communities in a network, also called network partitioning,

can be thought of as an extension to identifying assortative
mixing in the network, but over a much larger set of nodes.
A community is a subgraph of a network with nodes of
similar behavior (in terms of connectivity), and there are
dense links within a community but much fewer links
between communities. Graph partitioning has been a hot
research topic in the field of graph theory in the past decade
since evaluating communities, especially in large and dense
networks involve computationally intensive processes. An
index called modularity is employed to evaluate communities
in a network, as demonstrated by Newman and Girvan [61],
[62], i.e.,

Q =
∑
i

sij −
∑
ijk

sijski (21)

where sij is a component of matrix s which defines the
number of edges in the original network that connects nodes
in community i to nodes in community j, and 0 ≤ Q ≤ 1.
Here, Q = 0 indicates the absence of similar degree con-
nectivity in a network (random graph), and Q = 1 indicates
a strong connection within the communities. Equation (21)
has been popularly used to evaluate the modularity index
for all types of networks (directed, undirected, weighted
and unweighted). Moreover, in the survey conducted by
Khan and Niazi [63], various modularity metrics have been
considered depending on the network type. In the study
by Háznagy et al. [12], the city’s center has been found
to have a few communities whereas the periphery has
numerous communities. The work by Bona et al. [25] has
identified 187 different communities with a modularity value
between 0.3 to 0.7 for a PTN in a Brazilian city. For
the Chinese city of Qingdao, Zhang et al. [19] observed
a high modularity value of 0.8 with an average of 20
communities. Furthermore, a total of 46 communities with
a strong modularity value of 0.91 was observed in an urban
rail transit system in China [18]. Sun et al. [27] also found a
weak modularity value of 0.34 with 7 communities in urban
bus networks, where communities have been consistently
identified with respect to their spatial coverage. Appendix
C offers various perspectives of understanding community
structures under various spaces of network representation.
A physical significance of identifying communities in a
network is that knowing the structural equivalence of nodes
and their communities is crucial to understanding of the
behavior of the intra-community and inter-community nodes.

J. Node and Edge Weights

In generating weighted networks, a weight (w) is either
added to a node, an edge, or both. Weighted transport
networks are still relatively less explored, despite their
obvious practical significance in quantifying the relative
importance of nodes and edges in relation to the level of
service and performance provided by a public transport
network. In this section we discuss a few weight metrics
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commonly employed in the topological analysis of various
public transport networks.

Node weight can be assigned to reflect the relative im-
portance of a node (station). For instance, a weight can
be assigned to a station or a link according to the number
of routes servicing it (degree) [12], [26], or according to
the sum of weights of the adjacent edge weights (weighted
degree) [27]. Edge weight may be assigned according to
the morning peak hour capacity of the vehicles carrying
the traffic [12], the minimum geographical distance between
any two nodes [10], [21], the number of overlapped bus
routes between two stations [27], [21], [11], or the number
of common stops serviced along a route in C-space [20].
Furthermore, dynamic edge weights may also be assigned
according to the average travel time between two nodes
[19], which have been found to be very useful in analyzing
the dynamic behavior of PTNs, especially in describing the
varying behavior during peak- and off-peak hours.

In our recent work [13], we proposed a static demand
estimation approach to assign node weight which reflects the
demand centrality of a node, i.e., the capability of a node
in serving the static demand by considering the number of
points of interest (POIs), and the number of people accessing
a specific station (node occupying probability). A POI can
be a hospital, hotel, office, school, sports arena, cinema,
shopping complex or the residential apartment. The crux
of this demand estimation approach is that the real-world
usage of a bus stop should be strongly dependent on the
presence of POIs around the bus stop and the number of
people accessing it. Using the information on POIs and node
occupying probability (NOP), the node weight is evaluated
as

wi = c1

(
4∑

m=1

dm

)
i

+ c2Pi + c3ki (22)

where wi is the weight of node i, dm is the number of
POIs of category m (emergency, recreation, education, etc.)
located around node i within a radius of 100 m, Pi is the
total number of passengers accessing node i, ki is the node
degree, c1, c2, and c3 are scaling factors. Certain POIs which
are equidistant to multiple stops are allocated to the nearest
node with the least distance. Fig. 6 shows the heat map
indicating the nodes serving high demand in Hong Kong. In
a comparison between the nodes serving high demand areas
and the nodes with high centrality values, we notice about
60% similarity of the nodes being compared, indicating
that nodes of high topological centrality are also serving
relatively higher demand areas. However, the remaining 40%
nodes, though are topologically central, are serving low
demand areas. This shows that merely considering topolog-
ical features but ignoring their actual usage might lead to
unrealistic conclusions, and such information is important
information to operators to carefully design and optimize
the network. Fig. 7 shows the comparison of highly central

Fig. 6: Heat map showing the nodes serving higher demand
areas (red) in Hong Kong.

nodes versus nodes serving high demand areas. Thus, the
demand estimation method would address the practical usage
of topologically central nodes.

V. NOTABLE CONTRIBUTIONS TO PUBLIC TRANSPORTS
NETWORK ANALYSIS

In this section, we discuss a few notable contributions in
the field of PTN analysis in addition to the applications of
network metrics in the study of PTN topologies.

(i) The usual procedure for generating the topology of a
PTN is based on some available online dataset. Kurant
and Thiran [15] made a novel attempt to extract real
physical topology of a network by considering the time-
tables of the mass transportation systems. Despite the
different terminologies adopted (space-of-changes for
P-space representation, space-of-stations for L-space
representation and the other being space-of-stops repre-
sentation), the representations proposed by Kurant and
Thiran [15] are generally consistent with the repre-
sentation types discussed in Section III. Essentially, a
multilayer framework had been adopted considering the
actual mapping of logical graphs on physical graphs,
where the logical layer is the real-world traffic flow
layer and the physical layer is the topological repre-
sentation based on space-of-changes, space-of-stations
and space-of-stops. A node load was estimated based
on the weighted combination of four load estimators,
namely, node degree, betweenness, restricted between-
ness, and simple load (origin-destination pair), assum-
ing the combined estimation would aid in revealing
some hidden network information which only degraded
the performance of the best involved estimator (simple
load). Moreover, Kurant and Thiran [15] also acknowl-
edged the fact that only the OD-pair information would
not suffice to carry out node load estimation without
additional information like the traffic pattern.
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(a)

(b)

Fig. 7: Hong Kong bus transport network with highly central
nodes evaluated using (a) different centrality measures; and
(b) static demand estimation method (nodes with high cen-
trality or high node weight are the nodes with the normalized
value greater than or equal to 0.8.)

(ii) A rare but insightful attempt was made by Haznagy et
al. [12] to apply the page ranking concept in a PTN
analysis. The public transport stops are ranked, in a
similar manner as in web page ranking in a search
engine demonstrated earlier by Larry Page [64]. The
idea behind evaluating the pagerank is to identify the
key nodes in the network that have significant impact
in analyzing the transport efficiency.

(iii) Spatial embedding networks (SENs) have been intro-
duced by Yang et al. [10] to demonstrate the effec-
tiveness in capturing the topological properties along-
side with the underlying spatial characteristics of a
network. It has been demonstrated that, considering
the underlying geographical feature is as important as
considering the network topology in PTN analysis. A

concept of extended space (ES) model was adopted
to represent the L-space (ESL), P-space (ESP) and
networks with SSPs (ESW) representation. A flexible
transfer algorithm using the extended model was also
proposed to evaluate the cost of a transfer plan (cd)
taking into account factors like transfer time, walking
distance, and distance to taking buses. Such analysis
has practical significance as it provides the passengers
a list of top minimum cost transfer path routes.

(iv) A simple network evolution model using a quasi-
continuous approximation model was proposed by Chen
et al. [23]. In their work, the number of bus routes a
stop joins, R, and the bus stop’s degree, k, are the
key parameters. Based primarily on the preferential
attachment, a simple BTN model was organized by
adding one new route at a time. It was demonstrated
empirically that a strong linear correlation exists be-
tween R and k, and this formed the basis for the
evolution model [23].

(v) A new P-space representation that considers the uplink
and downlink routes separately for the bus routes in
Harbin (a northeastern Chinese city) was proposed by
Feng et al. [26]. Essentially, the representation intro-
duced a duplication factor DFR′ which is the ratio of
repeated stations to unique stations for a given route R′.
This parameter provides practical useful information
about the bus route’s spatial availability, and DFR′ was
found to exceed 36%. In the new representation, the
adjacency matrix element aij is assigned a value 1 if
the node is a part of both uplink and downlink routes,
and 0.5 if the node is a part of either uplink or downlink
route. This representation readily captures the richness
of a node in terms of the degree, weighted degree,
average shortest path length, and node weight (weighted
degree/degree). The basis for evaluating the richness pa-
rameter is the so-called rich-club phenomenon, i.e., the
correlation probability of nodes having high richness
parameter (hub nodes). An exponential distribution was
observed by probing the rich-club connectivity pattern,
indicating that in a small portion of the network,
the hub nodes are well connected. Furthermore, the
evaluated node weight showed positive correlation with
the corresponding degree, weighted degree, and number
of routes along a node (R), indicating that the stations
carrying maximum load are always well connected [26].

(vi) A simple and realistic routing algorithm called pas-
senger intuitive logic (PIL) was used by Wu et al.
[32] to study the passenger flow in metro networks.
The passengers’ intuitive strategy of choosing routes,
including minimizing the number of hops traversed and
the number of transfers made, formed the basis of the
routing algorithm used in the study. In the study, Wu et
al. combined the use of shortest path (SP) and minimum
transfer path (MTP) to determine the routes chosen by
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passengers. Here, MTP corresponds to the route that
has the least number of transfer times, i.e.,

PMTP =

(
1− ε2

λ2
th

) 1
2

(
1− (γ′ − ξ)2

ξ2

)
where ε ∈ [0, λth], γ

′ ∈ [0, ξ]; and PSP = 1− PMTP

(23)

where PMTP is the probability of taking a minimum
transfer path, and PSP is the probability of taking a
shortest path. Simulation results for the Beijing, Tokyo,
Hong Kong, and London metro systems offer insightful
observations on the relationship between the topological
structure of metro networks and traffic flow [32].

(vii) Topological efficiency of traffic networks has tradition-
ally been evaluated in terms of the number of hops as
given by

ηG =
1

N(N − 1)

∑
i 6=j

1

dij
(24)

where dij is the shortest distance path between nodes i
and j. In a recent work [13], we proposed an alternative
approach to measure the network efficiency in terms of
time rather than distance since the time metric is more
naturally used by passengers, i.e.,

ηG,t =
1

N(N − 1)

∑
i=1...n−1
j=i+1....n

dij
vij

(25)

where dij is the total number of hops between nodes i
and j, N is the network size, and vij is the maximum
velocity attained along every hop with the shortest path
between nodes i and j [13]. Due to the constraint in
obtaining real-world data of vij in (25), we employed
the SUMO (Simulation of Urban Mobility) simulator
to validate the time efficiency for a single route using
the synthetic mobility trace which yielded a better
estimation of time efficiency.
SUMO is a microscopic multi-modal traffic simulator
which allows the user to explicitly control the behavior
of each vehicle [65]. To conduct the simulation, we
first build the road network topology by importing the
actual road topology including information on road
junctions, bus stops, POIs, and traffic lights according
to Openstreetmap [66], as shown in Fig. 8a. Then,
the routes for buses are set up according to the actual
time table, and other generic vehicles are set up using
Activitygen, an activity-based traffic generator [67].
Finally, results are extracted from the SUMO output
files which record the footprints of every vehicle during
the simulation time at a sampling rate of 1 sec. By
evaluating the maximum speed for every road segment
and the geographic distance between the stops, the end-
to-end travel delay can be calculated using (25).

Our results showed the dependency of the vehicular
speed along a road segment upon the node weight, as
discussed in Section IV-J. Specifically, we observed that
the higher the node weight, the lower the maximum
speed attained by the vehicles on the road segment,
especially during rush hours. The speed was observed
to be further affected when the distance between the
stops is reduced. Our simulation results have been
verified using real-world data provided by the Kowloon
Motor Bus Co., one of the major transport operators in
Hong Kong [13]. Fig. 8b shows the dependency of the
maximum speed attained along a road segment (Vmax)
for a normalized node weight (wi norm). Empirical data
are in good agreement with our simulation results.
We may conclude that with increased node weight
(demand) and reduced geographical distance between
the stops, the attainable speed by vehicles along a
road segment is reduced significantly. In practice, when
the bus stops are located closer to each other to offer
better service, traffic speed will be compromised, and
more aggressive reduction of distance between the stops
may even lead to a state of traffic congestion. Our
node weight model can be adopted to facilitate a better
route planning and stop deployment to maintain optimal
traffic performance.

VI. CONCLUSION AND FUTURE WORK

In a data driven world, the availability of real-world
datasets and high-end tools for handling huge datasets has
greatly facilitated the research of complex system and data
analysis. Extracting useful information from huge and dis-
tributed datasets remains a major challenge. In public trans-
port network (PTN) analysis, the size of datasets, typically
consisting of several thousand nodes, is relatively midget and
the time for data mining is also comparatively manageable.
Despite the successful attempts in applying concepts from
network science to PTN analysis, serious study of PTN from
a network science perspective is still relatively rare. In this
paper, we aimed at bringing together some of the recent
developments in the application of network theory to PTN
analysis. In particular, useful contributions have been made
by various researchers in the use of L-space representa-
tion in comparison to P-, B- and C-space representations,
since the L-space graph structure mimics the actual real-
world infrastructure of a PTN. A directed and weighted
network structure is best suited for the study of bus transport
structures, whereas an undirected and weighted network
structure is more suited for metro transport studies, and the
main reason for considering the graph type is the level of
overlapping among inbound and outbound routes. We have
found that the notion of supernodes offers practical and more
insightful perspective to understanding the actual network
behavior, which is difficult to be captured by conventional
graph representations. Furthermore, adding static weights to



18

(a)

(b)

Fig. 8: (a) Snapshot of the SUMO simulator; and (b)
comparison of the simulation and empirical results for the
dependency of vehicular speed on node weight.

nodes and edges has been found to be effective in capturing
the significance of nodes and links in PTNs. It is worth
noting that merely representing the PTN structure as a graph
and analyzing various network parameters may not lead
to practically useful conclusions because the purpose of
the public transport systems is to meet travel needs of the
community being served, which requires the consideration
of more practical network parameters. Also, considering the
spatial embedding of PTNs alongside with the topological
analysis conveys more insightful information without which
quantifying the network might yield rudimentary results.

Topological analysis of PTNs have been performed using
various local metrics (e.g., degree, clustering, betweenness
centrality, closeness centrality), global metrics (e.g., degree
distribution, scale-free property, average path length, small-
world property), and pairwise properties (e.g., assortativ-
ity and communities). The study of various local, global,

and pairwise properties has provided intriguing information
about the topological behavior of public transport networks.
Such study has provided a great source of information for
researchers in the applied fields, for example, in designing
of transfer algorithm, optimization of public transport routes,
prediction and regulation of road congestion, network plan-
ning, transit operation, etc. However, while PTN analysis
generates information like the existence of hierarchical struc-
ture, core-periphery structure, and the absence of scaling in
a PTN, such information does not find immediate practical
relevance to the PTN operators or government agencies.
Thus, more work is still needed in developing application-
oriented network analysis so that results produced from
network theory can be readily translated to useful practical
information and more desirably at the operational level.

Robustness analysis is another important area. Evalu-
ating the resilience of PTNs improves understanding of
various criteria of network breakdown under different at-
tack strategies. Future research topics may also include the
study of the passenger migration process, the application
of integrated multiple transport modal analysis to analyze
real-world complexity of passenger route selection, effects
of polarization of stops and routes on the demand flow
in the network, etc. Furthermore, while research efforts
have been devoted to the spatial dynamics of PTNs in
the past, the temporal dynamics reflecting the topological
variation of a PTN at different times of the day should
deserve serious attention. Another major area of research
is dealing with the integration of the multiple transport
networks to form a coordinated and complimentary transport
system that can significantly enhance the traffic carrying
capacity and efficiency of the entire system. In the past,
very little contribution has been made through multi-layer
analysis where individual transport networks are treated as
independent topologies, and understanding the interaction
among these layers should deserve more research attention
in view of the practical relevance of integrated PTNs.

Finally, we would like to emphasize that applying graph
theory to the analysis of public transport behavior offers an
effective and convenient way to understand the network op-
eration at both the local and global levels. The various spaces
of network representation provide the fundamental network
representation framework for analyzing PTNs. The incorpo-
ration of practical network parameters and the emphasis of
the dynamic spatio-temporal behavior of the network can
offer a broader and more practical view of the network
functionality relevant to the network operators. Alongside
with offering these advantages, the network-based analysis
also raises a few technical challenges as a consequence of
increased computational time with increasing network size
and the lack of real-world datasets. In closing, we believe
that PTN analysis from a graph theory perspective will
continue to uncover important network properties and to
serve as a solid foundation on which to develop performance
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optimziation strategies, network planning, service deploy-
ment, maintenance schedules, etc. for achieving better and
more sustainable transport services and eventually smarter
cities.
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APPENDIX A
ONLINE SOURCES

City Country Source Ref.
Bus transport network

Hangzhou China www.hzbuda.com.cn [23]
Chennai India www.mtcbus.org/ [11]
Ahmedabad India www.ahmedabadbrts.org/web/commuters.html [11]
Delhi India delhitravelhelp.in/StopsOfBus.aspx [11]
Hyderabad India www.hyderabadbusroutes.com [11]
Kolkata India www.kolkataonline.in [11]
Mumbai India github.com/transitmetrics/ntd/tree/master [11]
- Singapore www.streetdirectory.com.sg/ -
Hong Kong China data.gov.hk/en-data/category/transport?organization= hk-td/ [68]
London UK data.london.gov.uk/dataset/tfl-bus-stop-locations-and-routes -
Bengaluru India opencity.in/topic/transportation/ -
- Australia opendata.transport.nsw.gov.au/search/type/dataset -
- - www.apta.com [17]

Metro transport network
Beijing China www.ebeijing.gov.cn/feature 2/BeijingSubway/ [33]
Shanghai China service.shmetro.com/en/ [31]
Hong Kong China www.mtr.com.hk/en/customer/tourist/index.php [32]
Tokyo Japan www.tokyometro.jp/en/subwaymap/index.html [32]
London UK tfl.gov.uk/maps/track?intcmp=40400 [32]
New York America web.mta.info/maps/submap.html [32]
Boston America mbta.com/schedules/subway [69]
Paris France parisbytrain.com/paris-metro/ [32]
Seoul Korea www.korea4expats.com/korean-subways.php [35]

APPENDIX B
STATISTICAL DETAILS OF PTNS

City Place Mode N Routes Spatial analysis Space type Ref.
Debrecen

Hungary

BET 306 53

X L-space [12]Gyor B 230 43
Miskolc BT 257 35
Pécs B 256 55
Szeged BET 242 40
Ahmedabad

India B

1103

• • L, P-space
[22]Chennai 1009

Delhi 1557
Hyderabad 1088
Kolkata 518
Mumbai 2267
Beijing

China B
7864 1308

X L, P-space [10]Shanghai 5931 842
Hangzhou 2750 509
Shanghai

China B
9502 1641

• P-space [24]Beijing 9361 1714
Guangzhou 3891 1256
Shenzhen 3594 884
Dongguan 3269 346
Chengdu 3053 505
Foshan 2952 378
Hangzhou 2789 688
Tianjin 2721 552
Suzhou 2662 341
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Beijing
China B

3938 516
• L-, P-space [20]Shanghai 2063 501

Nanjing 1150 174
Warsaw

• BTM
1533

• X L-, P-space [15]Switzerland 1613
Europe 4853
Pila

Poland BT

152

• • L, P-space [16]

Belchatów 174
Jelenia Góra 194
Opolew 205
Torunń 243
Olsztyn 268
Gorzów Wlkp 269
Bydgoszcz 276
Radom 282
Zielona Góra 312
Gdynia 406
Kielce 414
Czestochowa 419
Szczecin 467
Gdańsk 493
Wroclaw 526
Poznań 532
Bialystok 559
Krakoẃ 940
Lódź 1023
Warszawa 1530
GOP 2811
Hangzhou

China B

827 150

• P-space [23]Nanjing 1764 252
Beijing 4199 572
Shanghai 4374 968
Baoding

China B
634 52

• P-space [19]Jinan 883 100
Shijiazhuang 1299 139
Berlin

•

BMTU 2992 211

• L-,P-, C-space [17]

Dallas B 5366 117
Dusseldorf BMT 1494 124
Hamburg BFMTU 8084 708
Hong Kong B 2024 321
Istanbul BMT 4043 414
London BMT 10937 922
Los Angeles B 44629 1881
Moscow BEMT 3569 679
Paris BM 3728 251
Rome BT 3961 681
Sao Paolo B 7215 199717
Sydney B 1978 596
Taipei B 5311 389
Curitiba Brazil BM 9423 615 X P-space [25]
Qingdao China B 1758 261 X L, P-space [19]
Beijing China B 5421 722 • L-, P-space [18]
Harbin China B 993 132 • P-space [26]
Singapore • B 4620 428 X C-space [27]
Nagoya Japan BM 687 280 • L-, P-, C-space [37]
B: Bus, E: Electric trolleybus, T: Tram, M: Metro (subway), U: Urban train, F: Ferry
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APPENDIX C
NETWORK PARAMETERS IN DIFFERENT SPACES OF REPRESENTATION

Parameter L-space P-space C-space B-space
degree number of neighboring

stops that a given stop
is connected to

number of stops acces-
sible from a given stop
with or without making
a transfer

number of overlapped
routes

number of stations ser-
viced by a route (in
Lproj graph) or number
of routes a station is
connected to (in Nproj
graph)

local clustering
(transitivity)

cohesiveness among
the neighbors of a
node considering the
physical infrastructure

cohesiveness among
the neighbors of a
node considering the
actual connectivity

cohesiveness among
the neighbors of a
node considering the
common stops serviced
along the routes

cohesiveness between
the routes and stops in
a network

average path
length

total number of links
(hops) to be traversed
between the chosen O-
D

total number of trans-
fers to be taken to
travel between the cho-
sen O-D

- -

betweenness
centrality

node significance based
on the number of short-
est path routes that can
traverse via the given
node

node significance based
on the number of trans-
fers than can be han-
dled by the given node

- -

closeness cen-
trality

reachability of a node
with respect to every
other node in the net-
work

reachability of a node
with respect to other
routes in the network
considering the number
of transfers

- -

assortativity correlation level be-
tween similar degree
stops in the network

correlation level be-
tween similar degree
routes in the network

correlation between
similar degree routes
based on their
overlapping

-

communities identifying different
zones in the network
based on a behavior
of the stops and their
connectivity

identifying different
zones in a network
based on the behavior
of the routes

identifying different
zones in the network
based on the behavior
of route overlapping

-


	Introduction
	Data Collection, Mining and Visualization
	Spaces of Network Representation
	Overview of Topological Analysis of Public Transport Networks
	Connectivity in Public Transport Networks
	Are Public Transport Networks Scale-free?
	Network Cohesiveness
	Travel Distance in Hops
	Small-worldness in Public Transport Networks
	Bridges in Public Transport Networks
	How Close are the Stops in a Public Transport Network?
	Social Behavior in Public Transport Networks
	Communities
	Node and Edge Weights

	Notable Contributions to Public Transports Network Analysis
	Conclusion and Future Work
	References
	Biographies
	Tanuja Shanmukhappa
	Ivan Wang-Hei Ho
	Chi K. Tse
	Kin K. Leung

	Appendix A: Online Sources
	Appendix B: Statistical Details of PTNs
	Appendix C: Network Parameters in Different Spaces of Representation



