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Abstract—Through connecting intelligent vehicles as well as
the roadside infrastructure, the perception range of vehicles can
be significantly extended, and hidden objects at blind spots can
be efficiently detected and avoided. To realize this, accurate road
map data must be downloaded in real time to these intelligent
vehicles for navigation and localization purposes. Besides, the
cloud must be updated with dynamic changes that happened
in the road network. These involve the transmissions of high-
definition 3D road map data for accurately representing the
physical environments. In this work, we propose solutions under
the fog computing architecture in a heterogeneous vehicular
network to optimize data exchange among intelligent vehicles, the
roadside infrastructure, as well as regional databases. Specifically,
the efficiency of 3D road map data dissemination at roadside
fog nodes is achieved by exploiting index coding techniques to
reduce the overall data load, while opportunistic scheduling of
heterogeneous transmissions can be done to judiciously manage
network resources and minimize operating cost. In addition,
3D point cloud coding and hashing techniques are applied to
expedite the updates of various dynamic changes in the network.
We empirically evaluate the proposed solutions based on real-
world mobility traces of vehicles and 3D LIght Detection And
Ranging (LIDAR) data of city streets. The proposed system is also
implemented in a multi-robotic testbed for practical evaluation.

Index Terms—Intelligent connected vehicles, vehicular net-
works, fog computing, index coding, opportunistic scheduling

I. INTRODUCTION

THERE have been a plenty of flourishing developments
for intelligent vehicles in the past decade. In 2011,

Google introduced a driverless car that is tested in real-world
streets [1]. Since then, there have been many self-driving
car projects (e.g., Uber [2], Waymo [3]) gearing towards
full driving autonomy. Intelligent vehicles are equipped with
a plethora of on-board sensors for sensing the surrounding
environment, and a communication system capable of short-
range broadcast and cellular communications for information
sharing among intelligent vehicles and infrastructure nodes,
such as roadside units (RSUs), base stations, local controllers,
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databases, and cloud servers. Infrastructure nodes are fixed-
location systems that transmit and receive short- and long-
range communications from vehicles for storage, processing,
and information exchange. Collectively, intelligent vehicles
and the infrastructure are the fundamental building blocks of
a vehicular network.

In a vehicular network comprising of multiple intelligent
vehicles and infrastructure nodes, sharing local surrounding
information enables the delivery of various vehicular applica-
tions and services for improving road safety and travel con-
venience [4]. To facilitate autonomous driving, accurate road
map data depicting real-time road events are crucial and should
be exchanged among intelligent vehicles and the infrastruc-
ture for driving perception, localization, route planning, and
control. The road map data capture the static (e.g., buildings,
road structures) and dynamic (e.g., presence of road accidents,
traffic conditions) features of the road setup. A particular type
of data that can accurately describe the road environment is
the 3D LIDAR point cloud data [5]. An example is illustrated
in Fig. 1 [6]. This is a set of data points in a 3D coordinate
system that represent the surfaces of physical objects in the 3D
space. However, 3D LIDAR point cloud data are usually huge
in size. Commercial LIDAR with 64 laser sensors can generate
up to 2.2M points per second for the 3D representation of its
surrounding environment [7]. Given this, the exchange of 3D
map data from one vehicular node to another is a challenging
task. Overcoming the bandwidth limitation in highly-dynamic
vehicular networks for exchanging 3D point cloud data can
enable collaborative perception among vehicular nodes for
extending their sights to reach hidden and distant on-road
objects or pedestrians.

Fig. 1. A four-way junction 3D point cloud captured by a LIDAR.

The information exchanges among intelligent vehicles and
the roadside infrastructure, as illustrated in Fig. 2, are sup-
ported by Vehicle-to-Everything (V2X) communications (e.g.,
Vehicle-to-Vehicle (V2V) and Vehicle-to-Infrastructure (V2I)),
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which can be realized by either short-range local broadcast or
long-range unicast via the cellular network. In Fig. 2, the Map
Data Repository (MDR) is another roadside infrastructure that
functions as a central database for all map data. It is a cloud
computing server that stores the global view of map data over
time, merges multiple map data sources, and extracts useful
information to assist decision-making at individual vehicles.

Fig. 2. Road map information exchange among an intelligent vehicle,
a roadside unit, and the map data repository in a V2X network.

Short-range local broadcast can be achieved by Dedicated
Short-Range Communications (DSRC) [8] or 3GPP Cellular
V2X (C-V2X) [9], which has been proposed to broadcast basic
safety messages (e.g., speed, heading, and location). However,
local broadcast suffers from the limited available spectrum
and restricted data transmission rate. On the other hand, long-
range unicast via LTE may be inefficient to share common data
among nearby transmitters, such as map data for vehicles in the
vicinity. In addition, cellular networks incur service charges by
mobile service operators.

Given the increasing number of vehicles on road, estimated
over 1.3 billion worldwide in 2016 [10], there is an abundant
source of road map information available, and hence the
uploading and downloading of road map data among vehicles
and the road infrastructure is time-consuming and takes up a
huge amount of network resources. In addition, many V2X
applications are time-critical and failure in transmission may
lead to accidents and casualties [11]. Therefore, how to effec-
tively manage the information exchange among vehicles and
the infrastructure in a heterogeneous V2X network is a pivotal
challenge. In such case, a new computing paradigm is needed
to reduce latency in data processing and communications so
that vehicles and the infrastructure can acquire the required
data on time for making real-time on-road decisions.

Fog computing, first coined and introduced by Cisco Sys-
tems in 2012, is a recent paradigm bringing cloud computing
closer to the network edges to reduce the latency in various
real-time services [12]. The incorporation of fog computing
into vehicular networks establishes the Internet of Vehicles
(IoV) concept or the vehicular fog computing (VFC) paradigm.
Extensive fog computing surveys [13]–[15] have outlined the
possible application of such computing paradigm in vehicular
networks. In vehicular fog networks, as depicted in Fig. 3,
intelligent vehicles act as sensing devices that gather and pre-
process surrounding data before uploading. Some data coding
and hashing techniques can also be done at the network edges
to alleviate the traffic load as well. Intelligent vehicles may

serve as mobile fog nodes for implementing localized compu-
tational tasks and can directly communicate with nearby vehi-
cles via DSRC/C-V2X, especially when vehicles are beyond
the infrastructure’s coverage. On the other hand, infrastructure
nodes, such as roadside units (RSUs), traffic lights, base
stations, can act as fog nodes for efficiently communicating
with intelligent vehicles within its transmission range. These
infrastructure nodes can also store huge amount of data and
perform computationally-intensive processing and calculations
instead of allowing the cloud to do it, thereby, providing
real-time and reliable vehicular applications, e.g., autonomous
driving in a dynamic environment.

Meanwhile, the data exchange among closely related in-
frastructure fog nodes in a local region is facilitated by a
local controller. Local controllers determine the transmission
mode, i.e., either long-range unicast (LTE) or short-range
broadcast via DSRC or C-V2X. They also decide whether
certain road map data are to be forwarded to the map data
repository (cloud) [16] or stored in local databases. The access
of road information from other local regions is administrated
by the super software-defined networking (SDN) controller,
which is the network component with global intelligence [17]
that orchestrates data traffic and manages resources among
local controllers and databases [18]. The SDN controllers also
perform scheduling of tasks among fog nodes. Finally, the map
data repository is a cloud node with global knowledge of an
urban area for monitoring and control in a city-wide level [15].

Overall, in a vehicular network employing the fog comput-
ing paradigm, we consider a scheduled information dissem-
ination mechanism utilizing index coding, data hashing and
heterogeneous transmission options. The major contributions
of this work are summarized as follows.

1) Under the vehicular fog computing framework, we inte-
grate the index coding algorithm to optimally dissemi-
nate high-definition 3D road map data among intelligent
vehicles and the roadside infrastructure to reduce the
number of required transmissions and data load while
satisfying the vehicular demands.

2) We propose fog-based opportunistic scheduling algo-
rithms based on vehicular trip plans for map data down-
loading in city-wide vehicular networks. These dynamic
schedulers determine the mode of transmission (short-
range broadcast or long-range unicast) based on the
available resources at fog devices to reduce the overall
operating cost of the network. In addition, differential
coding and hashing techniques for 3D point cloud data
uploading at the vehicular level is also proposed to avoid
data redundancy, and hence reduce the processing and
computation load of roadside fog nodes.

3) Utilizing empirical mobility traces and 3D LIDAR data
of city streets, we rigorously evaluate the performance of
the proposed algorithms and system. We have also im-
plemented our system in a multi-robotic vehicle testbed
for practical evaluation.

The paper is organized as follows. Section II describes
our proposed information dissemination system at the fog
layer. In Section III, we formally define the information
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Fig. 3. The vehicular fog computing architecture. Most information exchange and computation take place in the fog layer.

dissemination problem and discuss the downloading and up-
loading operations of 3D road map data. Section IV presents
motivating examples on utilizing index coding for vehicular
data exchange, and derives the optimal index coding scheme
for single road junction as well as the city-wide multi-junction
scenario. The fog-based opportunistic scheduling problem is
tackled in Section V, and the techniques for efficient uploading
of 3D LIDAR point cloud data from vehicles is covered in
Section VI. Sections VII to VIII present experimental and
simulation results obtained based on our multi-robotic vehicle
testbed and empirical mobility traces, respectively. Finally,
Section IX concludes this paper.

II. INFORMATION EXCHANGE OF 3D ROAD MAP DATA IN
V2X NETWORKS

To implement efficient road map data dissemination in a
vehicular fog network, we propose the 3D MAp Dissemination
System (3D-MADS). The general operation of 3D-MADS
includes intelligent vehicles, roadside units, local controllers
and databases, which are all within the fog layer in Fig. 3.
Overall, the system distributes map data among the parties in a
timely manner, taking into account the characteristics of long-
range unicast and short-range broadcast transmissions. Short-
range broadcast normally has limited spectrum resources at
lower transmission cost, while long-range unicast has large
bandwidth capacity at higher transmission cost. We aim at
optimizing these transmission options while satisfying the
dynamic data demand of respectively vehicles. By referring

to Fig. 3, each component or module in 3D-MADS and its
corresponding tasks are explained as follows.

• Intelligent Vehicles
- Uploading enables sharing of on-board LIDAR data
among vehicles via the vehicular fog network.
- Coding & Hashing encodes and identifies differentiated
data and redundant map information.
- Downloading delivers the most updated 3D road map
data from local databases to intelligent vehicles via either
cellular network or local broadcast at RSU fog nodes.
- Perception utilizes on-board sensors, e.g., LIDAR and
GPS, to perceive the surrounding road environment as 3D
point cloud data, from which we can detect and recognize
objects and obstacles in the environment. The locally
processed 3D point cloud data will be uploaded to RSUs
or local controllers for further integration with the data
from other vehicular and roadside nodes.
- Inference & Decision allows intelligent vehicles to
predict their movements for autonomous navigation and
control based on the perceived and downloaded 3D road
map data as well as position information.
- Control & Navigation relies on driving feedback and
manages the intelligent vehicles to move safely and
appropriately in the environment.

• Roadside Unit (RSU) Fog Nodes
- Perception provides blind-spot views that cannot be
detected by intelligent vehicles via the local sensors.
- Integration combines downloaded 3D road map data
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from the cloud with the local LIDAR sensor data before
sending them to nearby intelligent vehicles.
- Index Coding encodes 3D road map data according to
the data demand and availability of nearby vehicles to
improve the transmission efficiency.
- Broadcast is the periodic transmission of index-coded
data to nearby vehicles via local short-range broadcast.

• Local Controllers and Databases (LCD)
- Integration coordinates the data exchanged among in-
telligent vehicles and RSU by setting the locations and
boundaries of each region of map data. It can also correct
and realign the LIDAR data from different vehicles that
may contain drifting inaccuracy.
- Separation differentiates static and dynamic objects in
the integrated 3D road map data via segmentation. Ad-
ditional annotations can be generated based on machine
learning techniques [19] to label the objects in the map
data. Different coding and transmission schemes can be
applied to data with different characteristics.
- Scheduling organizes the download and upload trans-
missions based on the trip plans of vehicles, given the
options of using either the cellular network unicast or
the short-range local broadcast transmissions.

With respect to Fig. 3, we can see that 3D-MADS is an inter-
disciplinary system that requires the joint effort from multiple
fields (e.g., communications, signal processing, computing,
navigation and control, transportation engineering, etc.), which
is our long-term goal. In this paper, we focus on investigating
and discussing data exchange related modules (which include
index coding, map download scheduling, and coding and
hashing) to kick start the development of such system.

III. FORMULATION AND DEFINITIONS

In this section, we formally define the 3D road map data
dissemination problem for intelligent vehicles. Consider a set
of discrete time slots t ∈ T , where |T | = T , and a network
of roads that is represented by graph G = (N , E), where
each node v ∈ N represents a junction and each undirected
edge e ∈ E represents a road segment. For each edge e
at time t, a set of map data is associated and denoted by
me(t). me(t) consists of both static data set ms

e and dynamic
data set md

e(t), such that me(t) = ms
e ∪md

e(t). We consider
an abstract representation, without specifying the elements in
me(t). That is, one may consider an element in me(t) as a map
data file. The dynamic data may be generated from roadside
sensors, and perception from other vehicles. For practicality,
we consider the dynamic data within a certain time window τ
from the current time t, namely md

e(t
′) where t′ ∈ [t− τ, t].

There is a set of vehicles C where each vehicle c ∈ C
is associated with a trip plan Pc, which is a path in G. We
represent Pc by a set of edges in E , or a sequence of nodes in
N . Let the time of vehicle c entering edge (i.e., road segment)
e ∈ Pc be tce, and the time of entering node (i.e., junction)
v ∈ Pc be tcv .

A. Downloading
Each vehicle c ∈ C downloads both static data ms

e before
tce, and dynamic data md

e(t
′), for some t′ ∈ [tce − τ, tce], at

some time between t′ and tce. The options for downloading
are either using short-range broadcast transmissions at RSUs,
or unicast transmissions via cellular networks. We assume that
LTE cellular network transmissions have much larger capacity,
whereas short-range broadcast transmissions are limited by
local spectrum allocation. On the other hand, the short-range
broadcast transmissions incur no or very low costs, whereas
cellular network transmissions incur higher costs.

We assume that RSU fog nodes are only located at a subset
of nodes in G, denoted by R ⊆ N . Denote the set of edges
connecting to RSU fog node r ∈ R by Er ⊆ E . A vehicle c
can receive data from r, when entering edge e ∈ Er. At each
RSU fog node r ∈ R, there is a download capacity of C↓r at
r, whereas there is no capacity limit via cellular networks.

Let the data transmitted by RSU fog node r using short-
range broadcast at time t be xr(t). A vehicle c can also
download data via cellular networks, which is denoted by
yc(t). At the time t, let Xc(t) be the union of all data that
c has received from the visited RSU fog nodes on its path
before time t, namely,

Xc(t) ,
⋃

e∈Pc∧e∈Er∧tce≤t

{
xr(t

c
e)
}

(1)

Also, let Y c(t) be the union of data that c has received from
cellular network transmissions before time t, namely,

Y c(t) ,
⋃
t′≤t

{
yc(t′)

}
(2)

We denote a decoding function by Dec[·], which decodes
all the downloaded data to a set of map data, M c(t) =
Dec[Xc(t), Y c(t)].

We aim to minimize the number of cellular network trans-
missions, subject to the constraints of timely delivery of static
and dynamic data:

min
{xr(t),yc(t)|t∈T ,c∈C,r∈R}

∑
c∈C

∣∣Y c(T )
∣∣ (3)

subject to |xr(t)| ≤ C↓r , for all t ∈ T , r ∈ R, (4)
ms

e ∈M c(tce), for all c ∈ C, e ∈ Pc, (5)

md
e(t) ∈M c(tce), for all c ∈ C, e ∈ Pc,

for some t ∈ [tce − τ, tce]. (6)

In this problem, we assume that the trip plans of all vehicles
are given a-priori. However, the online version is also dis-
cussed in Sec. V. Cons. (4) represents the capacity constraint
of local broadcast, whereas Cons. (5) and Cons. (6) represent
the download constraint of static data and dynamic data,
respectively.

B. Uploading
The previous section considers downloading map data from
fog units (e.g., RSUs and base stations). In practice, intelligent
vehicles are equipped with various sensors (e.g., LIDAR,
RADAR, camera, inertial measurement unit (IMU), GPS unit,
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etc.), whose data can be uploaded to LCD via RSUs or base
stations for sharing with other vehicles.

We consider the uploading of processed 3D LIDAR point
cloud data in this paper, in which the operations can be
optimized by uploading hash files of the perception data and
differentially coded data to reduce the redundant data load to
the network, as described in Sec. VI.

IV. INDEX CODING FOR LOCAL BROADCAST AT RSU FOG
NODES

To reduce latency in the presence of numerous intelligent
vehicles, the local broadcast operations at RSU fog nodes can
be improved by index coding. Index coding is a variant of
network coding [20], [21] applied to wireless communications.
Nearby vehicles will likely receive common information by
local broadcast, which also possess certain prior information
(i.e., information received from other RSU fog nodes at
previously traversed road segments). We show that smart data
dissemination considering prior information can significantly
reduce the number of broadcast transmissions needed.

This section only considers the dissemination of static
data, without capacity constraint. In the next section, we will
develop heuristics for the settings with capacity constraint
and dynamic data. It is assumed that the local broadcast
transmissions incur a very low cost, which is negligible.

A. Motivating Examples
We first present some motivating examples of index coding.
The basic idea of using index coding to optimize transmissions
at RSU fog nodes is by mixing the transmitted packets with
prior information previously received.

Fig. 4. An example of index coding for map data dissemination with
two opposite traveling intelligent vehicles.

Example 1: We illustrate a simple example using index
coding for map data dissemination in Fig. 4. There are two
intelligent vehicles traveling on opposite directions. Consider
the static map data for two road segments, denoted by m1

and m2 in bit string representation. Both vehicles are now
within the transmission range of a common RSU fog node and
had obtained map data m1 and m2 correspondingly, before
entering their respective road segments. The common RSU
fog node can broadcast a coded packet m1⊕m2, where ⊕
is a bitwise XOR operator, thereby, reducing the number of
broadcast transmissions. To obtain the required map data,
the vehicles can decode using the received data as follows:
m1⊕(m1⊕m2) = m2 and m2⊕(m1⊕m2) = m1.

Fig. 5. A four-way junction with three vehicles: c1 with direc-
tion m1→m3, c2 with direction m2→m1, and c3 with direction
m3→m1.

Example 2: We next consider an example of index coding
for a four-way junction in Fig. 5. There are three vehicles:
c1 moving from m1 to m3, c2 moving from m2 to m1, and
c3 moving from m3 to m2. Note that we use mi to denote
road segment i as well as the map data of road i for notation
simplicity here. In this case, the RSU fog node only needs to
broadcast two packets: m1⊕m3 and m2⊕m1. c1 can obtain
m3 = m1⊕(m1⊕m3), c2 can obtain m1 = m2⊕(m2⊕m1),
and c3 can obtain m2 = m3⊕(m2⊕m1)⊕ (m1⊕m3).

In the preceding examples, the vehicles are able to decode
the required packets by bitwise XOR operation ⊕. Note
that the bitwise XOR operator is a linear operator over the
binary number field. Applying index coding in these scenarios
can improve network throughput and reduce latency. One
mild drawback is that it generates overheads in the network.
However, since only binary-coded packets are employed in
our scheme, it can still be solved within polynomial time.
The reader is referred to Section VIII-D for the overall delay
analysis based on the processing overheads and transmission
delay in the proposed index coding scheme.

B. Optimal Index Coding for Single Junction
In this section, we derive the general theories for constructing
index coding schemes for a road network with a-priori trip
plans of vehicles. We only consider linear index coding, i.e.,
the coding/decoding schemes only rely on bitwise XOR oper-
ator. In linear index coding, the encoding/decoding operations
can sometimes be interpreted as unions and complemented
intersections on a set of packets1.

In general, a good index coding scheme for multiple junc-
tions is a hard problem, because it is related to the multi-source
network coding problem, which is an open problem [20], [21].
Instead, we focus on one single junction first, and then extend
the single-junction scheme as a heuristic for multiple junctions.
In fact, under the assumption of ‘single meeting’ as depicted
in the next subsection, this is an optimal solution. Note that
we ignore the download capacity in this section, which will
be considered in the general schemes in the next section.

To construct a good index coding scheme, we consider a
particular RSU fog node at a single n-way junction, labeled
as r ∈ R. We represent the demands for map data by a

1For example, coding by m1⊕m3 can be interpreted as union m1 ∪m3,
whereas decoding by (m1 ⊕m3)⊕m1 = m3 can be can be interpreted as
complemented intersection (m1 ∪m3) ∩ (m1 ∪m3\m1) = m3.
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directed graph (called demand graph) Dr with a set of n
nodes representing the set of connected road segments to r.
Denote the map data for the k-th road segment by mk, where
k ∈ {1, ..., n}. There is a directed edge (mk1

→mk2
) in Dr,

if there is a vehicle moving from the k1-th road segment to
the k2-th road segment, which needs to obtain mk2

, given
mk1

as prior information. The destination nodes in Dr (i.e.,
those with at least one in-coming directed edge) are called
the demanded packets. Two examples of Dr for a four-way
junction are shown in Fig. 6.

The uncoded packets {m1, ...,mn} are called source pack-
ets. A packet consists of K source packets combined by
bitwise XOR operator is called a K-ary coded packets. For
example, m2⊕m1 is a binary-coded packet. An index coding
scheme, denoted by I, is a set of coded or source packets.
For convenience of analysis, we assume that each packet of
map data has a uniform size. If packets have different sizes,
padding will be used.

Given a set of demanded packets, we aim to construct an
optimal index coding scheme using the minimal number of
transmitted packets that can be decoded into the required
information (i.e., destination nodes in Dr). Note that the
construction of a decodable index coding scheme is similar to
a generalization of the set cover problem. Each coded packet is
a cover, while the demanded packets are items to be covered
by some coded packets. The decodability of coded packets
requires that a combination of complemented intersections
(i.e., XOR operations) of the received coded packets can
generate the demanded packets.

Theorem 1: Given the demand graph Dr, an optimal index
coding scheme I can be constructed using source packets and
binary-coded packets. In particular, each demand (mk1→mk2)
in Dr can be decoded by one of the following ways:

1) A source packet (i.e., mk2 ∈ I).
2) Or a sequence of connected binary coded packets,

say {mk1
⊕mkr

,mkr
⊕mkr−1

, ...,mk3
⊕mk2

} ⊆ I, such
that the required packet can be decoded by mk1

and such
a sequence of binary-coded packets.

See two examples of optimal index coding schemes in
Fig. 6, where an arrow represents a demand, and a dashed
enclosure represents a coded or source packet.

By Theorem 1, it suffices to consider binary-coded packets.
We next present a polynomial-time algorithm 1J-IdxCd to
identify the optimal index coding scheme, which first adds any
demand (mk1

→mk2
) as a coded packet, and then removes

redundant packets in any cycles of coded packets, while
ensuring the decodability of demanded packets.

Theorem 2: Algorithm 1J-IdxCd produces an optimal index
coding scheme for a single junction.

Let us apply Algorithm 1J-IdxCd to the example in Fig.
6(a). The initial index coding scheme is I ← {(m1 ⊕
m2), (m2⊕m3), (m3⊕m1), (m2⊕m4)} and their correspond-
ing locks, lock(k1, k2) are set to False. These are defined by
lines 2–5. Lines 6–18 remove the redundant and unnecessary
coded packets. Coded packet (m2 ⊕m4) will be the first to
be removed since lock(2,4) is False and there is no cycle that
includes it. On the other hand, the combination of the coded

Fig. 6. Two examples of demand graph Dr and their optimal
index coding schemes for a four-way junction. (a) Four vehicles
with directions: (m1→m3), (m3→m2), (m2→m1), (m2→m4),
and an optimal index coding scheme is {m1⊕m2,m1⊕m3,m4}.
(b) Four vehicles with directions: (m1→m3), (m3→m1),
(m2→m4), (m4→m2), and an optimal index coding scheme is
{m1⊕m3,m2⊕m4}.

Algorithm 1 1J-IdxCd[Dr]

1: I ← ∅
2: for (mk1

→mk2
) ∈ Dr do

3: I ← I ∪ {mk1
⊕mk2

}
. Flag lockk1,k2

prevents mk1
⊕mk2

to be removed from I
4: lock(k1, k2)← False
5: end for
6: while there exists cycle {mk1

⊕mk2
,mk2

⊕mk3
...,mkr⊕mk1

} ⊆ I do
7: for mkt⊕mkt+1

∈ {mk1
⊕mk2

,mk2
⊕mk3

...,mkr⊕mk1
} do

8: if lock(kt, kt+1) = False then
9: I ← I\{mkt⊕mkt+1

}
10: for (mk′1

→mk′2
) ∈ Dr do

11: if there exists no path {mk′1
⊕mk′r

, ...,mk′3
⊕mk′2

}
12: ⊆ I\{mk′1

⊕mk′2
} then

13: lock(k′1, k
′
2)← True

14: end if
15: end for
16: end if
17: end for
18: end while
19: return I

packets {(m1 ⊕m2), (m2 ⊕m3), (m3 ⊕m1)} forms a cycle.
Any one of the three coded packets can be removed since all
their corresponding locks are false. For instance, we remove
(m2 ⊕ m3), then the locks lock(1,2) and lock(1,3) become
True. Therefore, Algorithm 1J-IdxCd returns the final index
coding scheme as I ← {(m1 ⊕m2), (m3 ⊕m1)}.

Note that Algorithm 1J-IdxCd produces an index coding
scheme with coded packets only. 1J-IdxCd can be improved
by replacing some coded packets by source packets, because
the source packets are immediately decodable. One can replace
any binary-coded packet that is only used to produce just
one demanded packet by the corresponding source packet,
although the size of I will remain the same. For the example
in Fig. 6(a), we add the source packet m4 to the index
coding scheme I, making the optimal index coding scheme
as I = {m1 ⊕m2,m1 ⊕m3,m4}.

The reader is referred to the Appendix in [22] for the proofs
of Theorems 1 and 2.

C. Extension for Multiple Junctions
We next present an extension for multiple junctions. The basic
idea is to adopt 1J-IdxCd as a basis for multiple junctions.
We assume that all trip plans, {Pc}c∈C , are given a-priori.
We define a meeting relation graph among the vehicles by
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Gmeet = (Nmeet, Emeet), where the set of nodes Nmeet are
subsets of vehicles (⊆ C) having intersected trip plans, and the
set of directed edges Emeet are the temporal ordering between
meetings with a common vehicle. Namely,

Nmeet ,
{
(c1, ..., cr) ⊆ C | ∃v ∈

r⋂
i=1

Pci and tc1v = ... = tcrv

}
(7)

Emeet ,
{
(c1, c2, ..., cr)→ (c1, c

′
2, ..., c

′
s) ∈ Nmeet ×Nmeet

| ∃v1 ∈
r⋂

i=1

Pci and ∃v2 ∈
s⋂

i=1

Pc′i and tc1v1 < tc1v2

}
(8)

If two vehicles meet in their trip plans, then there are two
cases: (1) traveling in different directions (e.g., meeting at a
junction), or (2) traveling along with each other. Case (1)
is utilized in index coding to broadcast mixed information
(via bitwise XOR) to vehicles, and then the vehicles decode
the mixed information using different prior information they
received previously. However, there will be no impact by index
coding for case (2).

Assumption 1: (Single Meeting) We assume that the trip
plans of every pair of vehicles intersect at most once, namely,
if they meet and depart, then they will never meet again. In
practice, if the autonomous vehicles always follow the shortest
paths and employ deterministic tie-breaking for the paths of
equal distance, then the meeting with another autonomous
vehicles of different source or destination is only at most
once. Otherwise, this will contradict to the property of shortest
paths. Since they meet at most once, each meeting event can
be uniquely identified as a node in Nmeet, and Gmeet is also
a directed acyclic graph.

Theorem 3: If the single meeting assumption (Assumption
1) holds, then applying Algorithm 1J-IdxCd independently at
each junction will produce an optimal index coding scheme
for multiple junctions.

The reader is referred to the Appendix in [22] for the
proof of Theorem 3. Note that even if the vehicles meet more
than once, Theorem 3 still provides a heuristic to construct a
good index coding scheme for multiple junctions with limited
meetings among vehicles.

V. FOG-BASED OPPORTUNISTIC SCHEDULING OF
HETEROGENEOUS V2X NETWORKS

The previous section considered the basic setting with
static map data and the absence of capacity constraint, under
the single meeting assumption. In this section, we present
scheduling schemes that decide the transmission options for
both static and dynamic map data from the LCD to intelligent
vehicles, considering capacity constraint at RSU fog nodes.
The scheduling schemes heuristically apply Algorithm 1J-
IdxCd at each junction.

A. Downloading

First, denote the starting and ending time of vehicle c’s trip
plan by tsc and tdc respectively. There are two modes of
scheduling:

1) Offline Mode: All the trip plans of intelligent vehicles
{Pc}c∈C are known in advance.

2) Online Mode: Not all trip plans are known. Only the trip
plans of intelligent vehicles started at the current time
tnow or before (i.e., {Pc | tsc ≤ tnow}c∈C) are known.

As illustrated in Fig. 3, the LCD scheduler decides the
download operations of map data to individual vehicles ac-
cording to their GPS locations and trip plans. The map data are
first downloaded via nearby RSUs (via short-range broadcast).
In case of insufficient capacity at the RSU fog nodes, cellular
network transmissions will be utilized.

Recall that static map data is denoted by ms
e and dynamic

data by md
e(t) for each road segment e ∈ E . ms

e should be
downloaded to vehicle c before or at time tce, and md

e(t) should
be downloaded to c at some time between tce − τ and tce. For
each RSU r ∈ R, let Cr(t) = {c ∈ C | t = tcr} be the set of
vehicles that meet at junction r at time t, and Dr(t) be the
demand graph considering the vehicles in Cr(t).

Let xdr(t, e) and xsr(t, e) be the decisions of the scheduler
to broadcast static and dynamic data respectively at RSU fog
node r, for road segment e at time t. Similarly, let ycd(t, e)
and ycs (t, e) be the decisions of the scheduler to download
static and dynamic data via cellular networks to vehicle c. Let
Isr(t) and Idr (t) be the index coding schemes for static and
dynamic data respectively at time t. Also, let us denote the
single-junction scheme applied to RSU fog node r for static
data by 1J-IdxCds[Dr(t)]. Similarly, 1J-IdxCdd[Dr(t)] for the
scheme applied to dynamic data in [t− τ, t] for a given time
window τ . We denote the size of the code by | · | (e.g., |ms

e|
and |1J-IdxCds[Dr(t)]|).

By the single meeting assumption, myopic scheduling of
static data at the respective junction in an on-demand manner
is optimal. For dynamic data, the latest information is always
more useful. Hence, myopic scheduling is also desirable.
However, in the presence of capacity constraint, it may not
be possible to schedule all required transmissions in an on-
demand manner. In this case, we have to greedily pick a
subset of vehicles at each junction to maximize the efficiency
of transmissions. Formally, given a demand graph Dr(t) =
(N [Dr(t)], E [Dr(t)]), we define subgraph Hr = (N , E),
where N is a subset of N [Dr(t)] and E is the induced subset
of edges of E [Dr(t)]. Let Nsrc[Dr(t)] be the set of source
nodes (i.e., nodes with at least one in-coming directed edge).

For such a subgraph Hr, we define W (Hr) as the number
of vehicles that can be satisfied by performing index coding
on Hr. We aim to find the best subgraph Hr that maximizes
W (Hr) subject to the capacity constraint 1J-IdxCds[Hr] ≤
C↓r . Since the number of roads connecting a junction is small,
this process can be performed efficiently. For each demand
packet that cannot be accommodated by local broadcast, the
scheduler will download it via the cellular network.

First, a greedy online opportunistic scheduling scheme is
presented in Algorithm ONLSchd, which schedules the local
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broadcast transmissions at RSU based on the arrival of vehicles
in an online manner. Static map data will be scheduled before
dynamic map data. If there is insufficient capacity at the RSU
fog nodes, then the scheduler will download the remaining
map data via the cellular network.

The greedy offline opportunistic scheduling scheme is pre-
sented in Algorithm OFLSchd. At each RSU fog node, optimal
single-junction index coding is employed, considering all
autonomous vehicles that approach the junction at the current
time. If there is any spare capacity at RSUs, the scheduler will
download the undelivered static map data in advance at any
RSU fog nodes with spare capacity. Finally, undelivered map
data will be downloaded via the cellular network.

Algorithm 2 ONLSchd[Dr(tnow)r∈R]

1: for r ∈ R do
2: c↓r(tnow)← C↓r

. Initialize RSU r download capacity
. Download static map data via local broadcast by index coding

3: Hr ← argmaxHW (H)
subject to 1J-IdxCds[H] ≤ c↓r(tnow) and H is subgraph of Dr(tnow)

. Get max # of vehicles whose demands can be satisfied
4: Isr(tnow)← 1J-IdxCds[Hr]

. Perform Optimal Index Coding on Hr

5: c↓r(tnow)← c↓r(tnow)− |I
s
r(tnow)|

. Update RSU r download capacity
6: for c ∈ Cr(tnow), e ∈ Pc ∩ Er do
7: if ms

e ∈ Nsrc[Hr] then
8: xs

r(tnow, e)← 1
. Download static map data via local broadcast

9: else
10: yc

s (tnow, e)← 1
. Download undelivered static map data via cellular networks

11: end if
12: end for

. Download dynamic map data via local broadcast by index coding
13: H′r ← argmaxH′W (H′)

subject to 1J-IdxCdd[H′] ≤ c↓r(tnow) and H′ is subgraph of Dr(tnow)
. Get max # of vehicles whose demands can be satisfied

14: Idr(tnow)← 1J-IdxCdd[H′r]
. Perform Optimal Index Coding on H′r

15: c↓r(tnow)← c↓r(tnow)− |I
d
r(tnow)|

. Update RSU r download capacity
16: for c ∈ Cr(tnow), e ∈ Pc ∩ Er do
17: if md

e ∈ Nsrc[H′r] then
18: xd

r(tnow, e)← 1
. Download static map data via local broadcast

19: else
20: yc

d (tnow, e)← 1
. Download undelivered dynamic map data via cellular networks

21: end if
22: end for
23: end for

VI. UPLOADING 3D LIDAR POINT CLOUD DATA

This section focuses on the discussion of 3D LIDAR point
cloud data, and a common representation called Octree. We
present differential coding and hashing schemes especially for
uploading 3D LIDAR point cloud data.

A. Octree Representation
3D point cloud depicts objects and surfaces as a set of 3D
points in the Cartesian coordinate system within a bounded
region [23]. A common approach to encode 3D point cloud is
using Octree, by which the 3D space is recursively partitioned
into 8 cells (voxels) and a binary number is used to indicate
the presence of an object in each cell. See an illustration of
Octree representation of 3D point cloud in Fig. 7.

Octree is a tree-based data structure suitable for sparse
3D point data, where each node represents a cell or volume

Algorithm 3 OFLSchd[Dr(t)t∈T ,r∈R]

1: for t ∈ T , r ∈ R do
2: c↓r(t)← C↓r

. Initialize RSU r download capacity
. Download static map data via local broadcast by index coding

3: Hr ← argmaxHW (H)
subject to 1J-IdxCds[H] ≤ c↓r(tnow) and H is subgraph of Dr(tnow)

. Get max # of vehicles whose demands can be satisfied
4: Isr(t)← 1J-IdxCds[Hr]

. Perform Optimal Index Coding on Hr

5: c↓r(t)← c↓r(t)− |I
s
r(t)|

. Update RSU r download capacity
6: for c ∈ Cr(t), e ∈ Pc ∩ Er do
7: if ms

e ∈ Nsrc[Hr] then
8: xs

r(t, e)← 1
. Download static map data via local broadcast

9: end if
10: end for

. Download dynamic map data via local broadcast by index coding
11: H′r ← argmaxH′W (H′)

subject to 1J-IdxCdd[H′] ≤ c↓r(tnow) and H′ is subgraph of Dr(tnow)
. Get max # of vehicles whose demands can be satisfied

12: Idr(t)← 1J-IdxCdd[H′r]
. Perform Optimal Index Coding on H′r

13: c↓r(t)← c↓r(t)− |I
d
r(t)|

. Update RSU r download capacity
14: for c ∈ Cr(t), e ∈ Pc ∩ Er do
15: if md

e ∈ Nsrc[H′r] then
16: xd

r(t, e)← 1
. Download dynamic map data via local broadcast

17: end if
18: end for
19: end for

. Download static map data via local broadcast in advance, if sufficient capacity
20: for t ∈ T , c ∈ C, r ∈ Pc do
21: if ∃e ∈ Pc and ∃r ∈ Pc and tcr < tce and

∏
t′≤tce

(1− xs
r(t
′, e)) = 0 and

c↓r(t
c
r) ≥ |m

s
e| then

22: xs
r(t

c
r, e)← 1

. Download static map data via local broadcast
23: Isr(t

c
r)← I

s
r(t

c
r) ∪ {m

s
e}
. Advanced static map data to be downloaded

24: c↓r(t)← c↓r(t)− |m
s
e|

. Update RSU r download capacity
25: end if
26: end for

. Download undelivered map data via cellular networks
27: for t ∈ T , r ∈ R do
28: for c ∈ Cr(t), e ∈ Pc ∩ Er do
29: if xs

r(t, e) 6= 1 then
30: yc

s (t, e)← 1
. Download undelivered static map data via cellular networks

31: end if
32: if xd

r(t, e) 6= 1 then
33: yc

d (t, e)← 1
. Download undelivered dynamic map data via cellular networks

34: end if
35: end for
36: end for

Fig. 7. An illustration of Octree representation of 3D point cloud.

element (voxel). From the root, it is iteratively divided into
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eight children until a certain depth or level L is achieved
[24] or if there is no more 3D point cloud to be partitioned.
An occupied voxel contains a point or a set of points, and is
labeled by ‘1’, otherwise by ‘0’. A node labeled by ‘1’ can
be further decomposed into eight more child nodes, whereas
there is no need to expand a node labeled by ‘0’. Accordingly,
the larger the depth (i.e., higher value of L), the higher the
resolution of the 3D object.

Two reference corners for the boundary of region of an
Octree are denoted by (x1, y1, z1) and (x2, y2, z2) (see Fig. 7).
One can represent an Octree by a bit string representation that
encodes its contents by a fixed traversal order in the voxels
of each layer. We can apply further coding schemes on the
bit string representation. Note that different LIDAR sensors
may produce different sets of 3D LIDAR point cloud data
on the same objects in the region because of different sensing
specifications. But the Octree representations can approximate
closely with each other, under a suitable value of L. Hence, it
is possible to compare different sets of 3D LIDAR point cloud
data in Octree representations.

There are several proposals for point cloud compression
[25], [26]. These techniques can be applied to our system, but
note that they are mainly for storage and are not optimized
for communication systems.

B. Differentiation and Differential Coding
Autonomous vehicles can identify and upload the necessary
dynamic map data to LCD using differentiation. Since dy-
namic map data is only detectable at the moment of departing
from a road segment, the upload transmissions take place
immediately through the nearby RSU fog node (in short-range
broadcast), whenever possible. Otherwise, cellular network
transmissions are employed.

Differentiation is particularly useful for identifying the
dynamic components in 3D LIDAR point cloud data. We
denote the differentiated data between observed point cloud
xc(t) and reference point cloud me(t− 1) by:

Diffc(t) =
(
xc(t)\me(t− 1)

)
∪
(
me(t− 1)\xc(t)

)
(9)

where t = tce and e ∈ Pc.
To encode the differentiated data, we employ differential

coding on Octree. Octree allows efficient identification of the
differences by enumerating the voxels along the tree. Once
the differences are identified, we can employ another Octree
to encode the differentiated parts. However, the meanings of
voxels are now different: ‘0’ means no difference with respect
to the reference 3D LIDAR point cloud data, whereas ‘1’
means the binary content in the respective voxel should be
flipped. See an illustration in Fig. 8.

C. Hashing 3D LIDAR Data
Comparison through the hash files associated with 3D LIDAR
point cloud data is more efficient than using the whole data
set. The hash files should have certain desirable properties.
For example, one can compare two hash files to identify which
point cloud data consists of more contents (e.g., more observed
objects). Second, one can check if the point cloud data contains

Fig. 8. An illustration of differential coding on 3D point cloud.

certain known objects, without looking at the whole data set.
A simple solution is to use a Bloom filter [27], a compact
lossy data structure representing the membership of a set
of elements. The basic operations of a Bloom filter involve
adding an element to the set and querying the membership
of an element. It does not support element removal, therefore,
upon query of an element membership, the Bloom filter output
may only result in false positives, which can be minimized
through parameter setting. In our system, each vehicle first
communicates with RSU and LCD using Bloom filters before
uploading the whole perception data.

Recall that xc(t) = {p1, p2, ...} is a set of 3D points. Note
that each pi has a unique octary representation, such that
each digit in the octary representation represents the order
of the respective occupied voxel at each layer in Octree. We
denote index ‘0’ to represent the first voxel. For example, the
four 3D points in the Octree of Fig. 7 can be represented in
octary representation as {101, 105, 150, 155}. Next, we map
each point in octary representation by a set of K binary
hash functions: fk(pi) 7→ {0, 1}, where k = 1, ...,K. Let
fk(xc(t)) = fk(p1) ∨ fk(p2) ∨ ... be the bitwise disjunction
of all the points in xc(t) = {p1, p2, ...}. The K output bits(
fk(xc(t))

)K
k=1

will be a Bloom filter for xc(t), denoted by
BF(xc(t)). Bloom filters have some desirable properties. If
a 3D point cloud has more contents, then its Bloom filter
contains more 1’s. One can check if a 3D point cloud contains
a set of known 3D points, by checking if its Bloom filter
contains the corresponding hash values.

VII. ROBOTIC TESTBED EVALUATION

We implemented the single junction scenario and evaluated
our proposed system in a practical testbed. In this set-up, as
depicted in Fig. 9, two cases are studied:
• Scenario 1: Car A on Road A intends to turn into Road

B with Car B. There is no time-sensitive data.
• Scenario 2: Similar to scenario 1, but there is a moving

object in front of Car B on Road B.
The robotic vehicles used in the testbed are shown in

Fig. 9(a). They represent the intelligent vehicles equipped with
suite of sensors, including a Kinect camera and LIDAR for
capturing its environment’s 3D point cloud data and proximity
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Fig. 9. (a) Robotic vehicles in (b) a single 4-way road junction scenario. (c) A moving object is introduced on Road B

Fig. 10. The 3D point cloud road map data captured by (a) car A, (b) car B and (c) the XOR-ed result of maps A and B.

sensors for collision detection. The experimental set-up is
shown in Fig. 9(b). The cardboard boxes represent buildings
(see Fig. 9). The 3D point cloud data is compressed to a 1 cm3

resolution to achieve at least a 60% compression rate before
being transmitted to the RSU fog node. Such Octree resolution
offers a significant compression rate while maintaining an
accurate representation of the sensed environment. The RSU
fog node and robotic vehicles exchange information by using
the IEEE 802.11 standard (WiFi).

In Scenario 1, at every five seconds, both vehicles captured
their respective environment in form of 3D point cloud data,
and performed Octree compression. The data are then transmit-
ted to the RSU fog node along with their requests of road map
data. Upon reception, the RSU fog node performs the encoding
mA ⊕ mB , where mi is the map data for road segment i,
and broadcasts the encoded packets. The 3D point cloud data
perceived by individual vehicle and the corresponding encoded
3D point cloud data are shown in Fig. 10. After receiving
the encoded packets (mA ⊕ mB), car A decodes it via (mA

⊕ mB) ⊕ mA to obtain its desired information regarding
road segment B. Car B does the same to acquire information
regarding road segment A. Since both road segments have
no obstacles detected, each vehicle immediately turns to its
desired road without the need of reducing its speed.

In Scenario 2, a small programmable mobile robot is added
in front of car B to introduce a dynamic object to the
environment. Such set-up is depicted in Fig. 9(b). In order
to detect obstacles that present on the road, we integrated
a map filter for object extraction after the decoding process,
and we search for the blocked information on the ground to
determine the location of the object. Fig. 9(c) illustrates the
detected dynamic data by car A after map filtering and object
detection. From the gathered information, car A reduces its
speed and waits until the small robot moves past the junction
before turning into Road B.

In summary, our robotic testbed manages to achieve cooper-
ative autonomous driving through transmitting road map data
between the two robot vehicles. It also experimentally demon-
strates that an efficient 3D road map data dissemination based
on the proposed index coding scheme is feasible in practice,
especially when dealing with moving dynamic objects on road.

VIII. SIMULATION STUDIES

In the previous section, we have demonstrated the fea-
sibility of employing index coding in the dissemination of
road segment data to nearby vehicles at a road junction. In
this section, we present further evaluation of our proposed
system by simulation studies using real-world 3D point cloud
data of city streets and GPS mobility traces of vehicles. We
consider both scenarios of single and multiple road junctions
for analyzing the effectiveness of the proposed schemes.

A. Local Broadcast by Index Coding for Single Junction
First, we consider the single-junction scenario. The simulation
set-up is described as follows.

1) Simulation Set-up
To study the performance on realistic 3D point cloud data,

we consider the 3D point cloud static map data of a real-
world junction depicted in Fig. 11 (a), which is obtained
by Ford Research campus in downtown Dearborn, Michigan
[6]. It is partitioned into four separate views as perceived
by the vehicles in each road segment connecting to the
junction. In the dissemination process, the 3D point cloud data
is compressed using Octree compression [25]. The sizes of
compressed 3D point cloud data packets of each road segment
and binary-coded packets are shown in Table I.

To incorporate realistic vehicle mobility patterns, we con-
sider the dataset of Beijing taxi GPS mobility traces [28]
to simulate the mobility traces of autonomous vehicles at a
junction. The Beijing taxi dataset contains seven days of GPS
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Fig. 11. (a) Partitioned 3D point cloud map data of a real-world junction in Fig. 1. (b) Empirical GPS mobility traces for a particular single
junction in Beijing City. (c) Average mobility patterns of 40 selected junctions in Beijing City.

TABLE I
SIZES OF COMPRESSED 3D POINT CLOUD DATA FOR THE STATIC

MAP DATA SHOWN IN FIG. 9 (A).

Map Data Number of Points Data Size (MB)
m1 104,255 5.838
m2 95,537 5.254
m3 69,200 2.763
m4 73,168 3.184

m1⊕m2 63,607 2.126
m1⊕m3 65,920 2.812
m1⊕m4 61,738 2.630
m2⊕m3 67,806 2.631
m2⊕m4 66,072 2.363
m3⊕m4 64,025 2.126

mobility traces (including longitude and latitude positions),
timestamps of recorded positions, and vehicle IDs of 28,590
taxis traveling in Beijing City. Beijing City resembles a
grid network geographically, consisting of mostly four-way
junctions. In particular, we consider the junction between the
East 3rd Ring Road Middle and Jianguo Road, as shown in
Fig. 11(b). There are 8,663 taxis on average traversing it daily.
Fig. 11(b) depicts the empirical GPS mobility traces of 12
taxis. We assume that the RSU fog node is deployed near the
junction center with a transmission range of 200 meters.

2) Evaluation of Download Operations
To perform the download operations, a RSU fog node r first

scans the nearby vehicles in every sampling time TS. Once
the vehicles reach within the proximity of r, it determines the
vehicles’ map data demands and constructs the demand graph
Dr. Next, RSU fog node r applies 1J-IdxCd[Dr] to perform
local broadcast based on index coding.

To study the performance of 1J-IdxCd[Dr], we consider
two benchmarks:

1) Random Broadcast (Rand): It broadcasts all source
packets in a random fashion.

2) Index Coding with Prior Information (1J-IdxCd-PI): It
explores the scenario that some vehicles may have extra
prior knowledge of a certain road segment. For example,
a particular road segment is popular among all vehicles.

The map data is likely to be pre-downloaded to the
vehicles in advance.

The evaluation results are depicted in Fig. 12, which shows
the daily total number of transmissions and sizes of transmitted
packets for Rand and 1J-IdxCd for seven days based on GPS
mobility traces. The sizes of each transmitted packets are set
according to Table I.
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Fig. 12. Daily total number of transmissions and sizes of transmitted
packets for Rand, 1J-IdxCd, 1J-IdxCd-PI.

It is observed that 1J-IdxCd can effectively reduce the
total number of transmissions by around 500 transmissions
less when compared to the benchmark Rand. For download-
ing static data, the benchmark requires a number of 7.75
transmissions on average to satisfy all vehicles’ demands as
compared to 1J-IdxCd that requires only 5.94 transmissions
on average. The average daily sizes of transmitted data for
random transmission is 12.18 GB while that for 1J-IdxCd
is only 10.24 GB. 1J-IdxCd transmits 6.00 MB on average
within a period of TS, while Rand transmits 5.46 MB on
average. Overall, employing 1J-IdxCd enables higher data rate
with the fewest number of transmissions.
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Next, we evaluate the effectiveness with extra prior informa-
tion. 1J-IdxCd-PI considers extra prior information for road
segment 2. In this case, 1J-IdxCd-PI preforms like 1J-IdxCd,
but it assumes every vehicle already has map data of road
segment 2, and performs index coding incorporating such prior
information. We observe that the availability of extra prior
information considerably reduces the number of transmissions,
and thus the required bandwidth, transmitting 5.01 MB on
average by 4.49 transmissions.

B. Applying Index Coding to Multiple Junctions

After evaluating the performance of single-junction index
coding, we consider index coding for multiple junctions.

1) Simulation Set-up
We selected 40 junctions in Beijing, as depicted in

Fig. 11(c), and use the corresponding GPS mobility traces
of taxis traversing these junctions to simulate the mobility
patterns. The simulation parameters are listed in Table II. In
Fig. 11(c), we visualize the average mobility patterns of these
40 junctions by circles of different sizes. The bigger the circle,
the more number of taxis traversed the respective junction.

TABLE II
SIMULATION PARAMETERS FOR MULTIPLE JUNCTIONS IN FIG. 11(C).

Simulation Attribute/Parameter Value
Total area (in ≈ km2) 50
Number of observed days 7
Number of road segments per junction 4
Number of RSUs 40
RSU transmission range (meters) 200
Total number of taxis 24,845
Daily average number of taxi trips 79,012
Hourly average number of taxis in each junction 466
Total number of recorded time each day (hrs) 24
Sampling time of GPS traces (mins) 2

2) Evaluation Results
Fig. 13 depicts the average number of transmissions and

sizes of transmitted data when 1J-IdxCd is applied indepen-
dently at the 40 junctions. Note that the number of visits is not
directly proportional to the average number of transmissions.
In particular, RSU fog nodes 19 and 24 have relatively low
volume of visits, whereas RSU fog nodes 9 and 25 have
a relatively high number. However, RSU fog node 19 has
fewer number of transmissions than RSU fog node 24. This
is because the vehicles in RSU 19 arrive more regularly than
those at RSU 24, hence more significant performance gain can
be found in terms of the number of transmissions and sizes
of transmitted data by 1J-IdxCd. A similar phenomenon is
observed at the high-volume RSU fog node 25.

Fig. 14 shows the RSU fog nodes located on West 2nd
Ring Road (i.e., RSUs 8, 10, 18, 22, 26) and depicts the
hourly performance of each RSU. The average volume of visits
through these road sections are similar. The curve labeled by
‘Avg’ indicates the average value of the 40 RSU fog nodes
over a day. We observe that the information dissemination by
the RSU fog nodes increased starting from 08:00h, because the
peak traffic hours occur at 08:00h. From midnight to 06:00h,
the traffic is relatively low.

Fig. 13. Average total number of transmissions and sizes of transmit-
ted data for each of the 40 RSU fog nodes situated in Beijing.

Fig. 14. Hourly average total number of transmissions and sizes of
transmitted data for each RSU fog nodes located on West 2nd Ring
Road.

C. Scheduling over Multiple Junctions
In this section, we evaluate the performance of the proposed
scheduling schemes over the selected 40 junctions. We employ
both the online (ONLSchd) and offline (OFLSchd) oppor-
tunistic scheduling schemes for disseminating map data to
vehicles.

1) Applying the Opportunistic Scheduling
We assign each RSU fog node the same download capacity

(C↓). The performance of various scheduling schemes are
shown in Fig. 15, under various download capacity (C↓) based
on the GPS mobility traces of taxis traversing the 40 junctions
in Beijing in Fig. 11(c).

We observe that the RSU fog nodes reach the download
capacity at a much faster rate by Rand, because Rand
broadcasts a large amount of data (equal to the sum of all
source packets of map data in a trip per vehicle), as compared
to the opportunistic scheduling schemes per sampling time.
This leads to heavier load on the cellular network when
Rand is used in scenarios with low download capacity (C↓ ≤
700 MB). Although ONLSchd reduces the required cellular
transmissions, it is still evident that it exhibits the same effect
during low download capacity, i.e., more cellular transmissions
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Fig. 15. Performance of various scheduling schemes against download
capacity (C↓).

than local broadcast transmissions. For a given set of map data,
increasing the local broadcast download capacity can reduce
the need for cellular network transmissions. This presents a
design trade-off for the network administrator to balance the
loads between local broadcast and cellular unicast.

Among the three schemes, OFLSchd employs considerably
less cellular network bandwidth even when the local broadcast
download capacity is low. It relies almost totally on local
broadcast transmissions as the download capacity is over 700
MB. This is because all of the vehicles’ trip plans are known
in advance, thus, enabling the RSU fog nodes to schedule
map data dissemination more efficiently, and less rely on the
cellular download of road map data.
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Fig. 16. Comparing the OFLSchd and Rand methods on the distance
of pre-downloaded remote data to requesting vehicles.

Fig. 16 shows the distance (in terms of the number of blocks
away) of pre-downloaded remote data to a requesting vehicle
at an RSU fog node. Since OFLSchd knows the planned trips
of the vehicles, it reduces the number of transmissions required
to satisfy all vehicles, while providing pre-downloaded remote
data up to five blocks away (when the RSU fog node download
capacity is ≥ 900 MB). For example, RSU fog node 14 can
transmit road segment data from remote RSU fog nodes such
as 1, 10, 17, 32, etc. Such amount of advanced data will
allow a vehicle to update its planned trip and alter its route if
necessary. On the other hand, Rand can only deliver data up
to an average of 1.66 RSU blocks away from the requesting
RSU fog node.

2) Meeting Frequency of Vehicles
Theorem 3 shows that applying Algorithm 1J-IdxCd inde-

pendently at each junction produces an optimal index coding
scheme for multiple junctions, under the single meeting as-
sumption. In this section, we empirically examine the meeting
frequency of vehicles based on GPS mobility traces.

We define that a meeting occurs when the taxis’ routes
(according to GPS traces) are within 200 m of each other.
Given an observation window during the day, these frequencies
of meetings are stored in the adjacency matrix TM, defined
below in (10):

TM =



0 x1,2 · · · x1,n−1 x1,n

x2,1 0 · · ·
... x2,n

...
...

. . .
...

...

xn−1,1 · · · · · ·
. . . xn−1,n

xn,1 xn,2 · · · xn,n−1 0


(10)

where xi,j ∈ {0, 1, 2, ...} is the number of times that vehicles
i and j met and xi,j = xj,i. The observation window is equal
to tstop − tstart. In this case, tstop − tstart = 24 hours, having
a 2-min sampling interval.

The results are illustrated in Fig. 17. Any two given taxis
from the mobility traces only met each other once 86% of
the time, while the remaining 14% met more than once. From
Fig. 17, we know that any pair of taxis met at most once
within a moderate time window. This shows limited meetings
among vehicles with different trips in a city in practice. Hence,
applying Algorithm 1J-IdxCd independently at each junction
still provides a heuristic to construct a good index coding
scheme for a city-wide multiple junction scenario.

Fig. 17. Meeting frequency between any pair of taxis.

Finally, we study the scenarios that the majority of the
number of meetings in the adjacency matrix TM is more than
one (i.e., xi,j ≥ 2). Note that the proposed scheme produces
the best performance when xi,j = 1. The simulation results
for 3,000 runs are shown in Fig. 18. We also compare the
performance with a benchmark scheme, OnDemand [29],
which transmits the source packets of the most demanded
road segment first, and then transmits binary-coded packets
of the most demanded road segment data until all demands
are satisfied.

We observe that as the number of meetings between any
pair of vehicles increases, the total number of transmissions
increases in all scheduling schemes (see the top figure of
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Fig. 18). We note that both Rand and OnDemand, having
equal number of transmissions, increase at a higher rate than
1J-IdxCd. However, OnDemand transmits fewer data than
Rand to satisfy all requesting vehicles. Overall, considering
both performance metrics, 1J-IdxCd outperforms the two
benchmarks in the multiple junction scenario.

Fig. 18. Comparison of the three schemes in terms of the total number
of transmissions (top) and total sizes of transmitted data (bottom)
against the meeting frequencies between any pair of vehicles.

D. Processing Overhead Analysis
We analyze in this subsection the processing overheads of the
proposed index coding algorithm based on the overall data
dissemination delay (including both the processing/encoding
delay and transmission delay) from the RSU to the nearby
vehicles. For the Rand method, the overall delay only contains
the transmission delay, while the 1J-IdxCd scheme includes
also the processing delay due to the XOR encoding of relevant
road map data, which is proportional to the number of encoded
packets generated. To compute for the transmission delay, we
assume that the packet size is 1024 bytes and the data rate is
6 Mbps. On the other hand, the encoding processing delay is
assumed to be fixed. For a given RSU fog node, the overall
delay is computed every sampling time TS = 2 min.

Given a processing delay of 1 ms, Fig. 19 illustrates the
overall delay averaged over seven days for RSUs 8, 10, 18,
22, and 26. These five RSU fog nodes have a daily average
of 8,100 taxis passing through, and there are 11–12 taxis
connected to each RSU per TS on average. We can observe
that even if there is an additional processing time introduced
by the 1J-IdxCd method, its daily average overall delay is
still less than that of the Rand method by about 34%. This is
because the 1J-IdxCd scheme has a much shorter transmission
delay than the Rand method by reducing the total number of
required packets and the number of road segments at each
intersection is limited.

IX. CONCLUSION

In this paper, we have presented an efficient information
dissemination system of 3D point cloud road map data (3D-
MADS) for intelligent vehicles and roadside infrastructure in-
tegrated in a vehicular fog computing architecture. Our system

Fig. 19. Average overall delay of each RSU fog node under the two
transmission schemes.

aims to minimize the amount of cellular network unicast while
maximizing the utility of short-range local broadcast trans-
missions by implementing fog-based opportunistic schedulers.
We have also optimized the performance of 3D point cloud
data dissemination and update by utilizing techniques such as
index coding at roadside unit fog nodes and hashing of 3D
point cloud data at vehicular nodes. The overall system was
validated with empirical mobility traces, 3D LIDAR data, and
an experimental multi-robotic testbed.
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