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A B S T R A C T   

The approach of cross-language brain decoding is to use models of brain decoding from one language to decode 
stimuli of another language. It has the potential to provide new insights into how our brain represents multiple 
languages. While it is possible to decode semantic information across different languages from neuroimaging 
data, the approach’s overall success remains to be tested and depends on a number of factors such as cross- 
language similarity, age of acquisition/proficiency levels, and depth of language processing. We expect to see 
continued progress in this domain, from a traditional focus on words and concrete concepts toward the use of 
naturalistic experimental tasks involving higher-level language processing (e.g., discourse processing). The 
approach can also be applied to understand how cross-modal, cross-cultural, and other nonlinguistic factors may 
influence neural representations of different languages. This article provides an overview of cross-language brain 
decoding with suggestions for future research directions.   

1. Introduction 

Decoding language from neural activity has become an exciting and 
challenging research topic, in large part due to the rapid advances in 
artificial intelligence, and in brain-inspired computing, that is, using 
what is known about the brain for the design of novel computing systems 
(Anumanchipalli, Chartier, & Chang, 2019; Poldrack, 2011). ‘Brain 
decoding of language’, as a relatively new field of research, refers to the 
following approach of study (see Fig. 1 for illustration): neural responses 
to linguistic materials are recorded with neuroimaging methods, such as 
functional magnetic resonance imaging (fMRI) and magnetoencepha
lography (MEG); a computational model is trained to map between brain 
activity and stimulus-specific linguistic features; if the model success
fully predicts new linguistic stimuli from brain activity, it means that the 
model captures important semantic-conceptual features of the stimuli, 
thereby achieving the purpose of decoding the language stimuli. The 
dimensions needed to capture the semantic features of the stimuli (i.e., 
the semantic space) may be postulated by researchers or derived from 
text corpora which can be based on statistical regularities inherent in the 
text (e.g., word co-occurrences). Many factors determine the accuracy of 
brain decoding, including the temporal and spatial resolutions in the 

neuroimaging recordings and the type and nature of the computational 
model (Gallant, 2016). The approach of brain decoding of language not 
only helps us to understand how the brain represents language, but also 
has important clinical and educational implications. For example, it 
could be used to predict what words a person is hearing, reading or even 
thinking, which, in the future, could inform the design of brain- 
computer interfaces. The proper development of such interfaces can 
make a huge difference in people’s lives, especially for those who suffer 
from communication disorders, including aphasia due to stroke or other 
neurodegenerative diseases. 

A landmark study of brain decoding of language was conducted by 
Mitchell et al. (2008), which showed that it was possible to accurately 
predict which concrete concepts (e.g., celery) a participant was thinking 
of by analyzing the corresponding brain activations in response to the 
concepts (e.g., a picture of celery). The predictions were made based on 
a linear regression model that was trained to establish the mapping 
between the intermediate semantic features of the input nouns and the 
corresponding brain activation elicited by the nouns. The intermediate 
semantic features that were used to encodes the meaning of the nouns 
were defined by 25 verbs, such as eat, taste, smell, hear, see, touch and so 
on, and the feature values (the co-occurrence of the semantic features 
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and the stimulus words) were obtained from a very large corpus of text. 
The brain activations were recorded with fMRI while participants 
watched repeated images presented in the scanner. The model, with 
above-chance accuracy, not only reliably predicted the brain activation 
elicited by novel nouns but also decoded the nouns from a new dataset 
based on brain activation. 

An exciting new direction in recent years has been cross-language 
brain decoding, which is our focus here. This direction of research 
helps us to reveal how our brain represents multiple languages. Tradi
tional neuroimaging studies of bilingualism have compared neural ac
tivities elicited by different languages, and identified both common and 
distinct neural systems of multiple languages (see Li, 2009, for a dis
cussion). The cross-language brain decoding approach provides a new 
and powerful direction to address the issue of how two or more lan
guages are encoded through shared and distinct neural activities in the 
brain. These studies have significant practical implications for bilingual 
education and foreign language instruction. For example, the study of 
different ages of acquisition or proficiency levels of second language 
learners would allow us to disentangle whether and how much the lin
guistic background and experience might influence the success of cross- 
language decoding in the bilingual brain, which could potentially 
inform us about mechanisms underlying critical periods for language 
acquisition. However, so far it is unclear whether and how cross- 
language brain decoding works, given the extant evidence. Simply 
put, can we use models of brain decoding from language A and apply 
them successfully to decode language B, and vice versa? In this article, 
we provide a review of recent studies of brain decoding in different 
languages in an attempt to identify the various factors that may affect 
the success of cross-language decoding. We will focus on cross-language 
decoding at the word level, discuss sentence- and passage-level decod
ing, and conclude with a discussion of future directions. 

2. Cross-language brain decoding at the word level 

2.1. Approaches and findings 

A number of recent studies have demonstrated that it is possible to 
reliably decode semantic information at the word level across different 
languages from neuroimaging data using machine learning methods. 
The general approach is to first train a decoder to learn the mappings 
between stimuli in language A (e.g., English) and the corresponding 
brain activity elicited by the stimuli. Then, if the decoder is successful 
for language A, it is tested on a new set of data, this time the brain ac
tivity evoked by stimuli from a new language, language B (e.g., Chinese) 
(Fig. 2). Multivariate pattern analysis (MVPA) has been used in cross- 
language decoding with increasing popularity (Haxby, 2012). 
Compared to the traditional univariate method which examines brain 
voxels in isolation, MVPA takes into account the relationships across 
multiple voxels and has the potential to decode fine-grained patterns of 
brain activity. Table 1 presents a summary of the cross-language brain 
decoding studies that vary in the use of participants, materials, tasks, 
and data analytic methods (most of which had used MVPA). Variations 
along each of these dimensions could affect the predictive accuracy in 
the studies. In what follows, we take a detailed examination of these 
studies. 

Bilinguals are usually recruited as participants in cross-language 
brain decoding studies and the same participants need to receive stim
uli (words) from both languages (consecutively) while their brain re
sponses are collected during the processing of these stimuli. Buchweitz, 
Shinkareva, Mason, Mitchell, and Just (2012) used concrete nouns from 
two categories (tools and dwellings) as stimuli and presented the nouns 
in Portuguese and English (translation equivalents) consecutively to 
Portuguese-English bilinguals. Participants were required to read each 
noun silently and think about the properties of the noun while their 
brain activity was recorded using fMRI. Results showed that, when the 
decoder was trained on the fMRI signals elicited by the English nouns 
and tested on the fMRI activity elicited by the Portuguese nouns, the 
decoding accuracy reached 0.68. Likewise, when the decoder was 

Fig. 1. General approach for brain 
decoding of language. Brain activation 
of linguistic stimuli can be recorded 
when participants perform a language 
task in the scanner. Vector-based, high- 
dimensional representations of the lin
guistic stimuli can be derived from a 
large text corpus. A decoder is trained to 
map the semantic vectors of the stimuli 
and the corresponding brain activation. 
The decoder can then be applied to 
predict what brain activation may result 
given a stimulus, or predict which of the 
stimulus it is given the specific brain 
activation patterns.   
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trained with the Portuguese nouns and tested on the brain activity eli
cited by the English nouns, the decoding accuracy reached 0.72. Both 
were significantly higher than the chance level (i.e., 0.5). The authors 
suggested that the representation of the meanings of the same nouns 
may share the same neural substrates between English and Portuguese. 

Subsequent research further confirmed the feasibility of cross- 
language brain decoding at the word level. Correia et al. (2014) exam
ined the decoding of spoken words between Dutch and English. Dutch- 
English bilinguals were asked to listen to animate and inanimate 
nouns and press a button when they heard the inanimate nouns in the 
MRI scanner. The detection accuracy was 97.5%, indicating that par
ticipants knew the words in both languages. MVPA revealed several 
regions responsible for the cross-language word discrimination, 
including the anterior temporal lobe. Their follow-up study (Correia, 
Jansma, Hausfeld, Kikkert, & Bonte, 2015) measured EEG signals to 
identify the time course of Dutch-English cross-language decoding. 
Although within-language decoding might have taken place around 
50–620 ms after the word onset, cross-language decoding occurred later, 
around 550–600 ms after the word onset. According to the authors, this 
broad timeline for within-language decoding and narrow time window 
for cross-language decoding could be explained by the different mech
anisms underlying decoding: within-language decoding relies on the 
initial phonetic-phonological processing and the subsequent lexical se
mantic processing, whereas cross-language decoding could rely on the 
shared semantic-conceptual properties of the word across languages, 
therefore occurring within a narrow but fast time window. 

Cross-language decoding success in bilinguals reported in the above 
studies reflects the common neural representation of word meanings 
across two languages. However, since the participants recruited in these 

studies were proficient bilinguals who know the words in both lan
guages very well, it is likely that cross-language decoding reflects the 
association of translation equivalents in bilinguals rather than true 
similarities in the neural substrates of representation. This hypothesis is 
especially plausible given the Correia et al. (2015) finding that the cross- 
language decoding time window is significantly shorter than the within- 
language decoding time window. In contrast to the use of bilinguals, 
Zinszer, Anderson, Kang, Wheatley, and Raizada (2015) and Zinszer, 
Anderson, Kang, Wheatley, and Raizada (2016) tested only mono
linguals so that the Chinese-speaking participants read only Chinese 
words (e.g., ‘fu’ 斧) and English-speaking participants read only English 
words (e.g., ‘axe’). They were asked to determine whether the word was 
semantically related to the preceding word in the MRI scanner. Neural 
similarity matrices were calculated for each participant based on acti
vation patterns in their own language. Surprisingly, neural similarity 
matrices for English and Chinese were strongly correlated (r = 0.89, p <
0.001), thus allowing accurate cross-language decoding. For some brain 
regions the decoding accuracy reached 100% (Zinszer et al., 2015), 
including the anterior parahippocampal and postcentral gyrus in the left 
hemisphere and the frontal orbital cortex, anterior cingulate gyrus, 
anterior supramarginal gyrus and posterior inferior temporal gyrus in 
the right hemisphere. However, this study tested only seven Chinese- 
English words (translation equivalents) referring to concrete objects, 
and therefore its generalizability remains unclear. 

2.2. Applications to other domains 

The cross-language brain decoding approach has not only been 
applied to data from language comprehension (in which participants 

Fig. 2. An illustration for within- and cross-language brain decoding. Solid black arrows indicate within-language decoding, and dotted black arrows indicate cross- 
language decoding. 
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Table 1 
Summary of studies of cross-language brain decoding.  

Study Participant Mean 
Age 

AoA Proficiency in 
L2 

Method Stimuli and task Informative clusters Cross-language 
decoding 
accuracy 

Within- 
language 
decoding 
accuracy 

Buchweitz 
et al., 
2012 

11 Portuguese- 
English BI 

29.9 13.08 Proficient 
(Self-rated) 

fMRI; 
MVPA 

Concrete nouns; 
Thinking about 
the properties of 
nouns 

Left postcentral and 
supramarginal gyri, 
inferior/superior 
parietal lobes, inferior 
frontal gyrus and 
posterior superior 
temporal lobe 

English → 
Portuguese 
0.68, 
Portuguese → 
English 0.72 
(CL 0.5) 

English 0.60, 
Portuguese 
0.63 (CL 0.5) 

Correia 
et al., 
2014 

10 Dutch- 
English BI 

25.4 – Proficient 
(LexTALE*) 

fMRI; 
MVPA 

Concrete nouns; 
Pressing a button 
when they hear 
an inanimate 
noun 

Left anterior temporal 
lobe 

Above chance 
(CL 0.5) 

Above chance 
(CL 0.5) 

Correia 
et al., 
2015 

16 Dutch- 
English BI 

28.9 – Proficient 
(LexTALE) 

EEG; 
MVPA 

Concrete nouns; 
Pressing a button 
when hear an 
inanimate noun 

– Above chance 
during 
550–600 ms 
after word onset 
(CL 0.5) 

Above chance 
during 50–620 
ms after word 
onset (CL 0.5) 

Zinszer 
et al., 
2015 

11 English 
native 
speakers and 
11 Chinese- 
English BI 

– – – fMRI; 
MVPA 

Concrete nouns; 
Determining 
whether the noun 
was semantically 
related to the 
preceding word 

Left anterior 
parahippocampal and 
postcentral gyrus, right 
frontal orbital cortex, 
anterior cingulate, 
supramarginal and 
inferior temporal gyri 

The accuracy 
reached 1.0 for 
some ROIs (CL 
0.5) 

– 

Van de 
Putte 
et al., 
2017 

24 Dutch- 
French BI 

23.4 0 for early 
BI, 9 for 
late BI 

Different 
levels of 
proficiency 
(LexTALE, 
BNT** and 
self-rating) 

fMRI; 
MVPA 

Pictures; 
Naming the 
pictures 

Bilateral occipito- 
temporal cortex, 
inferior/middle 
temporal gyri 

0.110 (CL 0.1) – 

Van de 
Putte 
et al., 
2018 

22 Dutch- 
French BI 

23.6 0 for early 
BI, 9 for 
late BI 

Different 
levels of 
proficiency 
(LexTALE, 
BNT and self- 
rating) 

fMRI; 
MVPA 

Pictures and 
concrete nouns; 
Naming the 
pictures and 
determining the 
properties of the 
concepts 

Occipito-temporal 
cortex, rolandic 
operculum, pre- and 
postcentral, cerebellum 

Above chance 
(CL 0.1) 

– 

Sheikh 
et al., 
2019a 

30 Spanish- 
Basque BI 

24.2 0.24 for 
Spanish, 
1.17 for 
Basque 

Proficient, 
more 
proficient in 
Spanish 
(LexTALE, 
BEST***) 

fMRI; 
MVPA 

Words; 
Shallow 
processing task: 
reading and 
attending to the 
word; Deep 
processing task: 
thinking about 
the properties of 
the word 

Left inferior parietal 
lobe, lateral and 
ventromedial temporal 
lobe, inferior frontal 
and posterior cingulate 
gyri 

Deep 
processing: 
Spanish → 
Basque 0.550, 
Basque → 
Spanish 0.548, 
shallow 
processing: 
chance-level 
(CL 0.5) 

Deep 
processing: 
Spanish 0.597, 
Basque 0.600, 
shallow 
processing: 
Spanish 0.582, 
Basque 0.576 
(CL 0.5) 

Sheikh 
et al., 
2019b 

24 Spanish- 
Basque BI 

22.3 0.52 for 
Spanish, 
1.05 for 
Basque 

Proficient; 
more 
proficient in 
Spanish 
(LexTALE, 
BEST) 

fMRI; 
MVPA 

Words; 
Determining 
whether the word 
was animate or 
inanimate and 
rating the 
awareness of the 
word 

Left inferior parietal 
lobe, dorsomedial 
prefrontal cortex, 
inferior frontal, 
posterior cingulate and 
ventromedial temporal 
cortices 

Non-conscious 
trials: CL, 
partially 
conscious trials: 
CL (CL 0.5) 

Non-conscious: 
Spanish 0.546, 
Basque 0.546, 
partially 
conscious: 
Spanish 0.539, 
Basque 0.537 
(CL 0.5) 

Yang et al., 
2017a 

8 Portuguese- 
English BI and 
7 Portuguese 
MO 

28.1 12.9 Highly 
proficient 
(adapted 
TOEFL) 

fMRI; 
semantic 
features 

Sentences; 
Thinking about 
the properties of 
each phrase 

Multiple brain regions English → 
Portuguese 0.67 
(CL 0.5) 

– 

Yang et al., 
2017b 

7 English MO, 
4 Portuguese 
MO, 3 
Portuguese- 
English BI and 
7 Mandarin- 
English BI 

24.7 – – fMRI; 
semantic 
features 

Sentences; 
thinking about 
the sentences 

Multiple brain regions Two-to-one 
mappings 0.668 
on average, 
one-to-one 
mappings 0.624 
on average (CL 
0.5) 

English 0.66, 
Portuguese 
0.67, Chinese 
0.67 (CL 0.5) 

Dehghani 
et al., 
2017 

30 English 
MO, 30 
Chinese- 
English BI and 
30 Farsi- 
English BI 

24.7 – Fluent fMRI; 
story-level 
embeddings 
(doc2vec) 

Narrative stories; 
Reading the 
stories 

Default mode network 
(posterior medial 
cortices, medial 
prefrontal and lateral 
parietal cortices) 

One-to-one 
mappings 0.561 
on average (CL 
0.5) 

English 0.566, 
Farsi 0.549, 
Chinese 0.552 
(CL 0.5) 
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listened or read the stimulus words) as reported above, but also from 
language production (in which participants named the stimuli). For 
example, Van de Putte, De Baene, Brass, and Duyck (2017) asked Dutch- 
French bilinguals to name pictures of 10 concepts in Dutch and French 
consecutively. The order of presenting the two languages was counter
balanced across participants. Two different images were selected to 
represent each concept and each image was associated with one lan
guage in order to exclude the influence of visual similarity. For example, 
a moon was represented by a crescent moon in the Dutch naming blocks 
(e.g., 10 concepts to be named in Dutch) and a full moon in the French 
naming blocks. Their data indicated above-chance level accuracy for 
cross-language decoding in the left inferior and middle temporal gyrus 
and the bilateral occipitotemporal cortex, suggesting shared semantic 
representations of L1 and L2 word production in these regions. How
ever, this study didn’t find the involvement of frontal regions and 
anterior temporal regions, in contrast to the role of these regions for 
cross-language decoding in studies that have used comprehension tasks 
(Buchweitz et al., 2012; Correia et al., 2014). Such discrepancies may 
suggest different neural representations associated with production and 
comprehension, which affect accuracy of cross-language decoding. 

In the same spirit as brain decoding across languages, brain decoding 
has also been applied to different modalities. For example, Van de Putte, 
De Baene, Price, and Duyck (2018) investigated the decoding across 
visual and auditory modalities, in which Dutch-French bilinguals were 
instructed to complete three different tasks in Dutch and French 
consecutively. In essence, this is both cross-modality and cross-language 
decoding. The picture naming task was the same as that used in the 
above-mentioned study of Van de Putte et al. (2017), and the word 
reading task (visual) and word-listening task (auditory) required par
ticipants to make a judgement about the properties of the concept (e.g., 
whether the concept was bigger or smaller than a football). Significant 
cross-language predictions were observed in the rolandic operculum and 
some motor-related areas (pre- and post-central, the cerebellum) in both 
word reading and listening tasks. More interestingly, it was possible to 
identify the picture the participant was naming (auditory) in one lan
guage based on the brain activation elicited by the reading of the cor
responding word (visual) in the other language, and vice versa. The 
cross-modality decoding effect was most pronounced in the left lingual 
gyrus, suggesting its critical role in language-independent semantic 
processing. This result suggested the existence of both modality- 
independent and modality-dependent semantic representation, but the 
specific brain regions that support language-independent semantic 
processing may vary. According to the ‘hub-and-spoke’ model (Ralph, 
Jefferies, Patterson, & Rogers, 2017), modality-specific and modality- 
independent representations are realized in different neural circuits, in 
visual/auditory/motor areas versus anterior temporal lobe, respec
tively. The left lingual gyrus could be part of the modality-independent 
neural network responsible for visual and motoric information 
processing. 

Another potentially exciting domain of application of cross-language 
decoding is sign language (SL) vs. spoken language decoding, although 
there has been limited work so far on this topic. Despite the clear dif
ferences in input/output modes, the neural substrates of SL and spoken 
language appear to both involve a predominantly left-lateralized brain 
network as revealed by lesion and neuroimaging studies (Emmorey, 
Giezen, & Gollan, 2016; Macsweeney, Capek, Campbell, & Woll, 2008). 
By examining cross-language decoding between SL and spoken lan
guage, we can determine (a) the extent to which the neural represen
tations of language are dependent on (or independent of) the modality, 
and (b) if and how differences can arise due to modality-specific 

representations. Comparison between this new line of research with 
extant work from unimodal bilinguals could offer a unique opportunity 
to understand the nature of cross-modality conceptual representation. 

3. What factors affect cross-language decoding success? 

The above review suggests that cross-language brain decoding is a 
promising approach to understand how multiple languages are encoded 
in the human brain. However, the decoding accuracy varies across 
studies, and is affected by many factors. In what follows, we provide a 
synthesis of the potential factors that may underlie the degree of success 
in this approach. 

3.1. Cross-language similarity 

One factor that affects cross-language decoding is the distance or 
similarity between the two languages, which may involve systematic 
differences in vocabulary, grammar, phonology, script, and other 
characteristics. For instance, English and Chinese are distant in terms of 
both spoken and written forms (Li, Tan, Bates, & Tzeng, 2006). Chinese 
is a tonal language in which different pitches and duration of the sound 
convey different meanings of words, and is a non-inflectional language 
that relies heavily on contextual semantics. By contrast, English is a non- 
tonal language, and uses inflectional morphemes to assign grammatical 
properties to words (e.g., tense morphology). 

Understanding the extent to which there are shared or different as
pects across languages is an essential step in addressing the possible 
influences of language properties and linguistic experience on cross- 
language brain decoding. One well-studied example of crosslinguistic 
differences would be linguistic categories, including lexical categories 
and grammatical categories (e.g., Malt & Majid, 2013; Pavlenko, 2009). 
There are many cases in which the structure or boundaries of lexical 
categories do not neatly match across languages, even for concrete 
nouns referring to common objects whose appearances and functions are 
expected to be generally the same in different languages. For instance, 
clear cross-language differences have been shown in the naming of 
common household items (such as cups, dishes, bottles and jars) in 
speakers of English, Chinese, and Spanish (Malt, Sloman, Gennari, Shi, & 
Wang, 1999; Malt, Sloman, & Gennari, 2003) and French and Dutch 
(Ameel, Storms, Malt, & Sloman, 2005). Such differences also have 
direct influences on bilingual speakers’ naming performance, as shown 
in both behavioral studies and computational models (Fang, Zinszer, 
Malt, & Li, 2016; Malt, Jobe, Li, Pavlenko, & Ameel, 2016; Malt, Li, 
Pavlenko, Zhu, & Ameel, 2015). Besides, in the classic case of color 
terms, languages can differ in the size of color vocabularies in that some 
languages have a relatively larger set of color items that divide the color 
spectrum more finely than other languages. The English category blue, 
for example, is lexically differentiated by Russian and Greek speakers 
using different terms to describe dark blue and light blue (Athanaso
poulos, 2009; Pavlenko, 2009). 

With respect to grammatical categories like nouns and verbs, the 
distinction between noun and verb classes is transparent in some lan
guages (such as German), but it could be ambiguous in other languages 
because of the lack of inflectional morphology (e.g., no conjugation for 
verbs and no declension for nouns in Chinese; Li, Jin, & Tan, 2004). 
Studies of crosslinguistic comparisons of early lexical development have 
also indicated patterns of distinct noun–verb acquisition as a function of 
the specific types of language. For example, many studies report that 
there is a preponderance of nouns compared to other categories of words 
in English-speaking children’s early lexicon (Gentner, 1982; Bates et al., 

Note: →indicates the direction of cross-language brain decoding (e.g., English → Portuguese indicates the models for brain decoding English is applied to decode 
Portuguese). Abbreviations: AoA: age of acquisition; BI: bilinguals; MO: monolinguals; CL: chance level. 
*LexTALE is a vocabulary knowledge test (Lemhöfer & Broersma, 2012). 
**BNT (Boston Naming test) is a picture naming test that measures word retrieval ability (Kaplan, Goodglass, & Weintraub, 2001). 
***BEST (Basque, English, and Spanish tests) is a series of tests of language proficiency (De Bruin, Carreiras, & Duñabeitia, 2017). 
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1994), but there is no clear evidence of this noun bias in several Asian 
languages such as Chinese and Korean (Choi, 2000; Hao et al., 2015; 
Tardif, 1996, 2006; Xuan & Dollaghan, 2013). 

Diversity of linguistic categories may be influenced by sociocultural 
factors (Malt & Majid, 2013) and emerge dynamically from the inter
action between the learner and the learning environment (Elman, 2004; 
Li, 2009). The crosslinguistic differences in lexical and grammatical 
categories result in an absence of complete conceptual equivalence in 
the lexical vocabularies of different languages (Pavlenko, 2009). The 
degree to which a particular lexical concept varies across languages may 
result in different representations in the brain, which in turn may affect 
the success of cross-language brain decoding. Take grammatical cate
gories for example. Previous studies have demonstrated that nouns and 
verbs are represented and processed in separate brain regions, with 
nouns engaging the temporal cortex more strongly and verbs the pre
frontal areas more extensively (Shapiro & Caramazza, 2003; Vigliocco, 
Vinson, Druks, Barber, & Cappa, 2011). However, in languages where 
the distinction between nouns and verbs is less clear grammatically 
(such as Chinese), they do not evoke distinct cortical activity as in En
glish or other Indo-European languages (Li et al., 2004). Therefore, 
cross-linguistic differences in how grammatical class is expressed may 
affect cross-language brain decoding, particularly for decoding those 
words that are class-ambiguous in one language but not in the other 
language. 

Some previous research has examined the influence of cross- 
language similarity on the neural representation by directly 
comparing between languages (Chan et al., 2008; Jeong et al., 2007; 
Kim et al., 2016; Tolentino & Tokowicz, 2011). Differences in brain 
activation of L1 and L2 were observed as a function of cross-language 
similarity in terms of word order (Jeong et al., 2007) and ortho
graphic transparency (Kim et al., 2016). For example, Jeong et al. found 
that, in native Korean speakers who had learned two L2s (English and 
Japanese), there was greater neural similarity in the left inferior frontal 
gyrus, right superior temporal cortex and right cerebellum between 
Korean vs. Japanese sentence processing in comparison to Korean vs. 
English sentence processing. The results were interpreted as an effect of 
word-order similarity (e.g., Subject–Object–Verb in both Korean and 
Japanese as opposed to Subject–Verb–Object in English). In Kim et al.’s 
fMRI study (2016), Korean-Chinese-English trilinguals were tested using 
a word rhyming judgment task that tapped into the orthography- 
phonology mapping process. The distance of orthographic trans
parency was smaller between English and Korean than between Chinese 
and Korean. Results showed that Korean word processing activated 
largely overlapping brain areas as English word processing, whereas it 
led to substantial differential activations in bilateral frontal and tem
poral cortical areas as compared with Chinese word processing. A more 
recent study by Xu, Baldauf, Chang, Desimone, and Tan (2017) showed 
that despite overall overlapping brain activation, MVPA indicated 
distinct fine-grained patterns of neural representation between Chinese 
and English word processing. Therefore, it is important for future studies 
to take into consideration the degree of (dis)similarity between lan
guages and examine what aspects of language properties may influence 
the success of cross-language brain decoding. 

3.2. Age of acquisition (AoA) and proficiency 

AoA and proficiency of the second language have been found to be 
among the most important variables underlying the neural representa
tion of L1 and L2 in the bilingual brain (see Hernandez & Li, 2007; 
Perani & Abutalebi, 2005 for reviews). A recent meta-analysis by 
Cargnelutti, Tomasino, and Fabbro (2019) summarized 57 publications 
with regard to the brain activation patterns of L1 and L2 using activation 
likelihood estimation (ALE). They used age 6 as the AoA cutoff and 
found that late bilinguals (i.e., after age 6) consistently recruited more 
neural resources in the left inferior frontal gyrus and the posterior- 
medial frontal gyrus for processing L2 than processing L1, whereas 

this difference was not significant in early bilinguals (i.e., before age 6). 
The authors attributed the late bilinguals’ additional neural activation in 
the prefrontal cortex to more effortful executive function required for 
processing in the L2. On the other hand, there is also evidence showing 
that earlier L2 AoA was associated with greater neural dissimilarity 
between L1 and L2. A recent study by Ou, Li, Yang, Wang, and Xu (2020) 
used representational similarity analysis (RSA) to quantify the degree of 
neural similarity between L1 and L2 processing. It was found that earlier 
AoA was associated with higher pattern dissimilarity between L1 and L2 
in the left inferior gyrus and middle frontal gyrus. This AoA effect may 
be due to earlier bilinguals’ greater neural plasticity in promoting 
language-specific neural computations for different languages, espe
cially when learning two distant languages. This explanation was 
consistent with another recent study that used quantitative MRI (qMRI) 
in combination with fMRI techniques (Luo et al., 2019), in which early 
L2 AoA was associated with enhanced microstructural proliferation in 
Chinese-English bilinguals. 

Many studies have shown that L2 proficiency is an equally important 
factor (see Hernandez & Li, 2007; Li, 2013 for reviews). In another meta- 
analysis using ALE, Sebastian, Laird, and Kiran (2011) focused on the 
neural activation modulated by L2 proficiency. They found that high- 
proficiency bilinguals showed more similarity in L1 and L2 brain rep
resentations compared to moderate/low-proficiency bilinguals, partic
ularly in the left superior frontal gyrus and left middle temporal gyrus. 
Yang and Li (2019) also showed that the connectivity patterns in late L2 
learners’ brain network are moderated by L2 proficiency, among other 
abilities such as auditory pitch processing. There has also been recent 
work to identify the independent contributions of AoA vs. proficiency to 
neural representations and brain structures (see Nichols & Joanisse, 
2016 for example), as well as convergent multimodal imaging evidence 
from resting-state, functional, and structural MRI investigations (Wang 
et al., 2020). 

In Sheikh, Carreiras, and Soto (2019a) study, the influences of both 
AoA and L2 proficiency on cross-language decoding were examined. 
Although all participants were early bilinguals, their AoA of Spanish was 
earlier than that of Basque and they were also more proficient in Spanish 
than in Basque. It was hypothesized that more balanced bilinguals 
would exhibit increased cross-language decoding accuracy. They per
formed correlational analyses between cross-language decoding accu
racy and the proficiency levels in Basque vs. Spanish (using proficiency 
difference scores). Results showed a tendency that the smaller the dif
ference in proficiency between the bilingual’s two languages, the greater 
the brain decoding accuracy in the left lateral temporal lobe, inferior 
frontal gyrus and dorsomedial prefrontal cortex. However, the authors 
noted that the results should be taken with caution because the study 
was not designed to explore inter-individual differences and that the 
results did not survive multiple comparison corrections. 

3.3. Depth of language processing 

Brain decoding within and across languages depends on the quality 
of the neuroimaging data obtained, which is in turn dependent on the 
participant’s level of processing of the language stimuli. It is well known 
from classic memory theories that deeper, more elaborative, and richer 
semantic processing would lead to better memory (e.g., more successful 
retrieval) than shallow or surface-level processing of the same material 
(e.g., Craik & Lockhart, 1972). Some researchers propose that depth of 
processing during the processing task plays a critical role in the gener
alizability of semantic representations across languages. 

Sheikh et al. (2019a) tested the role of depth of processing in early 
and proficient Spanish-Basque bilinguals, who were asked to perform 
shallow or deep semantic processing tasks. In the shallow processing 
task, the participants were asked to read and attend to the word, 
whereas in the deep processing task, the participants were asked to think 
about the characteristics of the living/non-living object it represented 
(e.g., shape, color). MVPA analyses showed that cross-language 
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decoding of concepts was significant only in the context of deeper levels 
of processing, whereas the decoding of the word category within lan
guage was significant regardless of the level of depth of processing. This 
pattern of results indicates that deeper semantic processing (and the 
resulting brain patterns) is a necessary condition for cross-language 
decoding to be successful. The same researchers (Sheikh, Carreiras, & 
Soto, 2019b) further conducted a study to examine the influence of 
awareness of words on language decoding. Words were visually pre
sented to Spanish-Basque bilinguals briefly with masks such that par
ticipants could not be consciously aware of the word. Participants were 
instructed to determine whether the word was animate or inanimate and 
rate how conscious they were about the word (e.g., ‘didn’t see anything’ 
or ‘saw the word clearly’). It was shown that fully or partially conscious 
conditions elicited above-chance decoding accuracy in more regions of 
interest (ROIs) than non-conscious conditions: when participants were 
unaware of the specific words due to rapid presentation and masking, 
above-chance decoding was found in limited regions for both Spanish 
and Basque; when participants were partially aware or fully conscious 
about the words, all ROIs showed above-chance within-language 
decoding accuracy. Further, their findings suggested that brain decoding 
across languages requires not only a deeper language processing but also 
conscious perception of language stimuli. 

Given that depth of processing can significantly impact both cross- 
language and within-language decoding, many previous studies, in 
order to engage participants in deep processing, have presented the 
same word stimuli for multiple times during brain imaging (e.g., 
Buchweitz et al., 2012; Correia et al., 2014, 2015; Mitchell et al., 2008; 
Van de Putte et al., 2017, 2018; Zinszer et al., 2015). For example, in 
Mitchell et al.’s classic study, the participants viewed the same word/ 
picture six times and their task was to think about the properties of the 
objects/concepts to which the stimuli refer when the stimuli were pre
sented. The results could have been different if the stimuli were pre
sented only one time, leading to shallow processing. Moreover, L1 and 
L2 words can differ in the processes and contexts within which learning 
takes place, which may influence the depth of processing in different 
languages. During L1 learning, children build direct relations between 
the words and the objects/concepts by integrating the perceptual and 
sensorimotor experiences from the environment, interacting with the 
objects and people and performing actions in it, whereas during L2 
learning, the learners typically associate the words to an existing label in 
their native language (see Li & Jeong, 2020 for a review). The lack of 
embodied and social interaction during L2 learning may lead to a 
shallower and less elaborative processing of L2 words relative to L1, 
which may in turn affect the success of cross-language brain decoding in 
L2 vs. L1 stimuli (Jeong, Li, Suzuki, Kawashima, & Sugiura, 2020). 

4. Beyond words: Sentence- and discourse-level decoding 

So far, the cross-language decoding approach has been applied 
mostly to the word/concept level, as reviewed above. A few studies, 
with limited success, have extended the approach to the sentence and 
discourse levels. Yang, Wang, Bailer, Cherkassky, and Just (2017a) hy
pothesized that given the common neural substrates between languages, 
it is possible that the English-based model could also be applied to 
decode sentences in other languages. Therefore, the authors used the 
parameters from the English-based model of Wang, Cherkassky, and Just 
(2017), including brain locations associated with semantic dimensions, 
semantic features/thematic roles and trained model weights, to decode 
the Portuguese sentences that were translated from English (in Wang 
et al.’s study, each word in a sentence was encoded based on 42 semantic 
features, e.g., color/size/animacy, and 6 thematic roles, e.g., agent/ 
patient/predicate). Both Portuguese monolinguals and Portuguese- 
English bilinguals were recruited to read the translated sentences in 
Portuguese. The decoding accuracy of the English-based model on 
Portuguese sentences was significantly above chance. Yang et al.’s 
findings also showed that the cross-language decoding accuracy did not 

vary as a function of whether the participants were monolinguals or 
bilinguals (0.67 for Portuguese monolinguals versus 0.66 for 
Portuguese-English bilinguals), suggesting that knowing English did not 
facilitate the decoding accuracy of Portuguese even though the decoding 
model was based on English language stimuli. 

Yang, Wang, Bailer, Cherkassky, and Just (2017b) further extended 
their cross-language decoding across two languages to the decoding of 
sentences across three languages, i.e., English, Portuguese, and Chinese. 
Stimuli included sentences written in English, Portuguese and Chinese. 
English monolinguals, Portuguese monolinguals, Portuguese-English 
bilinguals and Mandarin-English bilinguals were asked to read senten
ces referring to both concrete and abstract concepts in their native 
language and think about the meanings of the sentences while in the 
scanner. The decoder was trained to map between sentences and the 
corresponding activations either in one language or in two languages (e. 
g., English and Chinese, English and Portuguese). The decoder trained 
on two languages (0.668 averaged across three language pairs) was 
more accurate when applied to the third language than the decoder 
trained on one language and then applied to either of the remaining 
languages (0.624 averaged across six one-to-one language pairs), and 
this advantage was especially pronounced with abstract concepts 
including social interactions and mental activity. 

Yang et al. (2017b) used RSA to show that the similarity of neural 
representation of sentences between English and Portuguese was 
slightly higher than that between Portuguese and Chinese. This may 
suggest that the neural semantic space was more similar between similar 
languages (e.g., Portuguese and English) than between distant language 
(e.g., Portuguese and Chinese; see 3.1 on the role of cross-language 
similarity). However, the pairwise language decoding accuracy among 
the three languages did not differ significantly (e.g., decoding accuracy 
from English to Portuguese and from Chinese to Portuguese was 0.63 
and 0.60, respectively). It is important to note that that the sample size 
of Yang et al.’s study was small (based on 7 participants from each 
language group) and the language experiences of the participants were 
not matched (e.g., all Chinese participants and 3 Portuguese participants 
were bilingual and the remainder were monolingual). These discrep
ancies may affect the decoding results and limit the generalization of 
their findings with regard to how language similarity may affect brain 
representations and decoding successes across languages. 

Given the encouraging findings from brain decoding of words and 
sentences, researchers recently have also been interested in how 
discourse-level narrative stories are represented in the brain and 
whether cross-language brain decoding of narratives is possible. Deh
ghani et al. (2017) recruited English monolinguals, Chinese-English bi
linguals, and Farsi-English bilinguals to perform in-scanner reading of 
translations of the same 40 stories in their native language (English, 
Chinese, Farsi, respectively). The 40 stories were chosen from an English 
corpus of over 20 million weblog story posts and were translated into 
Mandarin Chinese and Farsi. Doc2vec (Le & Mikolov, 2014) was used to 
model narrative-level semantic representations of the stimulus stories 
using a large weblog corpus for each language separately, and each of 
the stories in each language was represented as a 100-dimension se
mantic vector. Their result demonstrated that which specific story a 
participant was reading could be decoded using the fMRI signals from 
reading of these stories. Moreover, this decoding was successful even 
when the decoder based on a different language was applied to predict 
the story of the language the participant was reading. For example, the 
decoding accuracy of Chinese story was 0.55 when using the decoder of 
Farsi stories. The cross-language decoding accuracy was 0.564 averaged 
across all six language pairs. Searchlight-based MVPA indicated that 
informative clusters for cross-language and within-language story 
decoding were similar, mainly located in the default mode network 
including the posterior medial cortices, the medial prefrontal cortex, 
and the lateral parietal cortex. Although Dehghani et al.’s study pro
vided initial evidence that cross-language decoding of narrative stories 
is possible, the accuracy remained quite low (0.564 on average), as 
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compared with the accuracy seen with word or sentence-level decoding 
(typically in the 0.60-0.70 range). More work is needed in the future to 
examine discourse-level brain decoding across as well as within 
languages. 

5. General discussion and future directions 

5.1. Brain decoding in bilinguals vs. monolinguals 

Most of the previous studies of cross-language decoding have 
recruited bilingual speakers so as to decode L2 from L1 and vice versa. 
Many of these studies reported above-chance cross-language decoding 
accuracy, but the accuracy was still lower than that for within-language 
decoding (Correia et al., 2015; Sheikh et al., 2019b). This is especially 
the case when more complex language materials such as stories are 
involved (e.g., Dehghani et al. reported accuracy of 0.564 on average). 
Given this situation, it is necessary to compare brain decoding based on 
bilingual participants’ processing of two languages (L1 and L2) with 
brain decoding based on separate groups of monolinguals’ processing of 
the same languages (both L1). It is possible that proficient bilinguals 
know the words in both languages well, and brain decoding may reflect 
the effect of association of the word equivalents. In addition, the socio- 
cultural experiences produce greater cross-language consistency within 
the same participant (the bilingual) than that between participants (two 
different monolinguals), such that neural representations of different 
languages may overlap to a greater extent in bilinguals than in two 
monolingual groups. 

It is also important to note that bilingual imaging studies have shown 
that different languages are represented by both shared and distinct 
neural patterns, and cross-language decoding may fail when distinct 
neural representations occur in the first place. Given the previous 
findings on distinct neural patterns of representation (e.g., Li et al., 
2004; Xu et al., 2017; Yang, Tan, & Li, 2011) and given our earlier 
discussion of the impact of language similarity on cross-language 
decoding accuracy, further systematic investigations into different lan
guages are needed to more fully understand the extent to which cross- 
language decoding is feasible across similar and distinct languages (e. 
g., English vs. Chinese). 

5.2. Beyond concrete concepts and single words 

Studies of within-language decoding have shown that levels of 
concreteness may be an important factor for brain decoding: the higher 
the concreteness, the higher the decoding accuracy (e.g., Anderson, 
Murphy, & Poesio, 2014; Fernandino et al., 2015). Cross-language 
decoding studies have so far focused on decoding of a narrow range of 
concrete concepts (Buchweitz et al., 2012; Correia et al., 2014, 2015; 
Sheikh et al., 2019a, 2019b; Van de Putte et al., 2018; Zinszer et al., 
2015), partly because concrete concepts are easier to test both in neu
roimaging studies and computational modeling. The issue of whether 
cross-language decoding is feasible for abstract concepts remains largely 
unexplored. Unlike concrete concepts (e.g., “apple”), abstract concepts 
(e.g., “law”) do not have specific external referents, and it is unclear how 
cross-language decoding of abstract concepts might differ as a function 
of the variables discussed above (i.e., language similarity, AoA, profi
ciency, depth of processing). Further studies should address whether the 
similarity of neural representations of abstract concepts are sufficient for 
successful decoding across languages. Such studies would also advance 
our understanding of the brain organization of different word categories 
for different languages. 

Another important direction of research is to extend cross-language 
brain decoding from single word/concepts to higher levels of senten
ces and discourses. Moving beyond the single-word level to sentence- 
and text- levels should be an important direction for the neuroscience of 
language research in general (see Hagoort, 2019). Earlier we reviewed 
two previous studies focused on the sentence level (Yang et al., 2017a, 

2017b) and one on the discourse level (Dehghani et al., 2017), but many 
more studies on these levels are needed given their importance. Brain 
decoding at the sentence and discourse levels can be more complex and 
challenging than single word level, since higher-level language stimuli 
involve additional complexity and variations of the words’ thematic 
role, syntactic features, contextual information, and structured con
ceptual representation. 

We hypothesize that discourse-level brain decoding may be more 
language-independent, given that, unlike meanings of single words, 
meanings of text-based paragraphs and narratives may not differ 
significantly across languages. For example, language similarity may be 
more important to affect the accuracy of brain decoding at the word 
level, given the language-specific properties of word stimuli. In Chinese, 
for example, words may show different semantic relations due to their 
orthographic structures and similarities (氵‘water’ directly provides the 
semantic clues to all words that share this radical such as 河 ‘river’). At 
the discourse level, however, such language-specific properties are ab
sent. Discourse processing involves multiple levels of processing that are 
not language-specific, including coarse semantic processing, topical 
coherence monitoring, text integration, interpreting a protagonist’s 
perspective, mental model building and so on (see Mason & Just, 2006 
for a review). These processes activate a distributed network beyond the 
classical language areas (see Ferstl, Neumann, Bogler, & Von Cramon, 
2008; Li & Clariana, 2019 for reviews). Extant studies indicate that 
neural activity associated with isolated words is primary driven by the 
properties of stimuli and accumulates information over relatively short 
time scales, while neural activity associated with narrative-level pro
cessing in high-order areas can accumulate information over longer 
periods of time (e.g., in areas such as precuneus, inferior frontal gyrus, 
medial frontal gyrus, temporoparietal cortex; Hasson, Yang, Vallines, 
Heeger, & Rubin, 2008; Lerner, Honey, Silbert, & Hasson, 2011). Toneva 
and Wehbe (2019) recently showed that brain activities during reading 
of naturalistic texts in the frontal and parietal regions were mostly 
predicted by long-range contextual representations, which are distinct 
from brain activities predicted by word-level representations (Toneva & 
Wehbe, 2019). 

5.3. From pattern classification to computational modeling 

Previous studies of cross-language brain decoding have mainly been 
based on pattern classification methods such as the MVPA. Such 
methods have enabled us to predict patterns of brain activity for stimuli 
of a language using a training set of stimuli of another language and its 
associated neuroimaging data. An alternative approach for brain 
decoding is based on computational modeling (e.g., Mitchell et al., 
2008), which enables us to test competing computational models and 
elucidate the extent to which the models are consistent with the stimulus 
representations in the brain. For example, Seyfried and Li (2020) used 
RSA to test context-dependent models (e.g., BERT, Devlin et al., 2018) 
and context-independent models (e.g., fastText, Bojanowski, Grave, 
Joulin, & Mikolov, 2017), and examined the degree to which these 
computational models represented information processing in the brain. 
Future studies should perform brain decoding with many competing 
models, each explaining a portion of the response-pattern variance 
(Kriegeskorte, 2011). 

A related issue is how to capture and integrate language-specific and 
culture-specific properties into brain decoding models. The neural rep
resentations of specific concepts or relations between concepts can be 
affected by cultural factors associated with different languages. For 
example, discourse-level processing may involve background knowl
edge that is not part of the text content proper, but historical or cultural 
knowledge or information independent of the semantic content. 
Speakers of different languages and cultures have their own unique 
experience of the same word or concept due to different environments, 
including the concepts’ cognitive and affective properties (Kuang, Li, 
Chen, Jin, & Chen, 2012). For example, the word “red” refers to a visual 
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color in both English and Chinese, but in the Chinese culture it is also 
associated with celebration, enthusiasm, and happiness, while in 
Western cultures, it can be associated with debt, loss, and anguish. For 
these kinds of concepts, cross-language decoding accuracy may be 
influenced by the extent to which the bilingual materials share similar 
cognitive, affective, and emotionality properties (see Pavlenko, 2012 for 
discussion). At the same time, successes or failures of cross-language 
decoding could inform us of the significance of these nonlinguistic 
properties in the neural representation of language and concept. Previ
ous work (Yang et al., 2016) has shown that certain regions in the brain, 
such as the right angular gyrus, may become particularly activated when 
processing information related to cultural background knowledge in the 
case of Chinese idioms. Such language-specific and culture-specific cases 
and their neural correlates suggest that cross-language decoding (from 
English to Chinese or vice versa) may be more challenging than we 
think. 

6. Conclusions 

Recent advances in machine learning research have opened up new 
ways for investigating the neural representation of language in the 
brain. Brain decoding has been an exciting and rapidly developing topic 
in this regard. Cross-language brain decoding has the potential to pro
vide new insights into how our brain represents multiple languages. Our 
review of recent studies in cross-language brain decoding indicates that 
it is possible to decode semantic information across different languages 
from neuroimaging data, but there are also significant challenges to its 
success. Factors such as cross-language similarity, AoA/proficiency 
levels, depth of language processing may all affect the effectiveness of 
cross-language decoding. We expect to see continued progress in cross- 
language decoding, from a traditional focus on words and concrete 
concepts toward the use of naturalistic experimental tasks involving 
higher-level language processing (e.g., discourse processing). The cross- 
language decoding approach can also be applied to understand how 
cross-modal, cross-cultural, and other nonlinguistic cognitive and af
fective factors may influence neural representations of different lan
guages. We need to design such studies with theoretical frameworks and 
hypotheses, which will in turn inform and contribute to the under
standing of the cortical representations of different languages. Finally, 
future developments in both neuroimaging techniques and machine 
learning algorithms will allow us to capture highly detailed spatial and 
temporal information as language processing unfolds in real time, 
thereby enabling language and cross-language brain decoding with high 
fidelity. 
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