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Abstract

This article proposes two types of degradation models that are suitable for describing mul-
tivariate degrading systems subject to time-variant covariates and imperfect maintenance
activities. A multivariate Wiener process is constructed as a baseline model, on top of which
two types of models are developed to meaningfully characterize the time-variant covariates
and imperfect maintenance effects. The underlying difference between the two models lies in
the way of capturing the influences of covariates and maintenance: The first model reflects
these impacts in the degradation rates/paths directly, whereas the second one describes
the impacts by modifying the time scales governing the degradation processes. In each
model, two particular imperfect maintenance models are presented, which differ in the ex-
tent of reduction in degradation level or virtual age. The two degradation models are then
compared in certain special cases. The proposed multivariate degradation models pertain
to complex industrial systems whose health deterioration can be characterized by multiple
performance characteristics and can be altered or affected by maintenance activities and
operating/environmental conditions.

Keywords: degradation path adjustment, imperfect maintenance, multivariate Wiener
process, piece-wise constant covariates, time scale adjustment

1. Introduction

1.1. Background and motivation

Reliability and maintenance are crucial issues for many industrial systems, which have
led to the development of associated theories and methodologies. Traditional reliability anal-
ysis relies heavily on failure data for choosing appropriate lifetime models, based on which
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various maintenance models are developed [1, 2]. In recent years, due to the advances in
low-cost sensoring and monitoring techniques, degradation models have become a prevailing
alternative to traditional lifetime models [3, 4]. The rationale of degradation-based reliability
analysis is that aging failures of most systems can be attributed to the stochastic deteriora-
tion of some key performance characteristics (PCs) such as wear of machinery, capacity of
batteries, and depth of tire tread [5]. In this regard, degradation-based maintenance models
can be developed by meaningfully characterizing the influence of maintenance activities on
the underlying degradation processes; see, e.g., Kahle [6] and Mercier and Castro [7], for
recent references.

This article is interested in degradation and maintenance modeling for complex industrial
systems. For such systems, there are three important features that should be considered in
the modeling process:

(i) Multiple performance characteristics. Most existing research on degradation modeling
presumes that system deterioration can be well captured by only one PC. In reality,
however, there are numerous industrial systems exhibiting degradation for multiple
PCs, such as wear, crack, and vibration [4]. The degradation processes of a com-
plex system are often statistically dependent, since they reflect the health condition
of the same system. Another scenario leading to degradation dependency is that the
same PC of a system is observed by multiple identical indicators (sensors) from dif-
ferent locations. In this scenario, the associated degradation processes shall be highly
dependent.

(ii) Time-variant covariates. The operating and environmental conditions that systems
operate in—referred to as covariates or explanatory variables in statistics—are aux-
iliary information that is closely related to system degradation processes. This is
because operating and environmental conditions can induce internal stresses in a sys-
tem that affect the rate or mode of system degradation [8, 9]. Temperature, humidity,
and operational profile are typical examples of such covariates. Quite often, the values
of covariates are not constant all the time. We consider here that the covariates are
piece-wise constant, which is a reasonable and mathematically tractable approximation
of real scenarios.

(iii) Imperfect maintenance effects. Maintenance activities, either in a corrective or pre-
ventive manner, are indispensable for complex industrial systems, in terms of restoring
a failed system to an operational status or mitigating the deterioration of a working
system [2]. In particular, preventive maintenance (PM) programs are widely imple-
mented to sustain continuous, cost-effective operations of industrial systems. Realistic
maintenance activities are mostly imperfect in the sense that the system state after
maintenance is between as-good-as-new and as-bad-as-old—the corresponding system
states after perfect maintenance (or replacement) and minimal maintenance [1].

The three features above are quite common yet essential for complex industrial systems;
however, reported research that incorporates all of them into degradation modeling problems
is surprisingly rare. This article intends to bridge this gap by developing two multivariate

2



degradation models taking into account time-variant (more precisely, piece-wise constant)
covariates and imperfect maintenance effects.

1.2. Related literature

There are three streams of research closely related to our work—that is, multivariate
degradation modeling, degradation-based imperfect maintenance modeling, and degradation
modeling with time-variant (dynamic) covariates. As a side note, recent literature reviews
on degradation and maintenance modeling can be found in van Noortwijk [10], Ye and Xie
[3], Alaswad and Xiang [11], Zhang et al. [4], and de Jonge and Scarf [12], among others.

Reliability modeling, inference, and testing for systems/products subject to multiple
degradation processes have attracted considerable attentions. In this stream of research,
how to capture the dependency structure among individual degradation processes is a key
issue. Many studies adopt copula functions for this purpose; see Sari et al. [13], Pan et
al. [14], Wang et al. [15, 16], Peng et al. [17, 18, 19], Fang et al. [20], Liu et al. [21],
and Palayangoda and Ng [22], for example. The prevalence of copula methods is largely
attributed to its capability of separately modeling the dependency structure and univariate
marginals; however, copula methods bear one drawback: Direct modeling of degradation
increments by using a copula function does not preserve the infinite divisibility property
[23]. On the other hand, some studies directly adopt either multivariate general path models
[24, 25] or multivariate stochastic processes such as Wiener [26, 27, 28, 29, 30, 31] and gamma
[32, 33] to describe multivariate degradation processes. In addition, Mercier and Pham [34]
and Mercier et al. [35] introduce the so-called tri-variate reduction method to construct a
bivariate gamma process. It is worth pointing out that most studies above focus on two
PCs, resulting in various bivariate degradation processes. There are indeed a few exceptions
that consider more than two PCs, including Hong et al. [36], Si et al. [24], Sun et al.
[37, 38], Hajiha et al. [31], and Lu et al. [25]. Another point noteworthy is that Hong et
al. [36], inspired by the idea in Iyengar [39], construct a bivariate Wiener process from two
univariate Wiener processes sharing a common noise. This idea of constructing multivariate
degradation processes is adopted in the present article.

Moreover, maintenance modeling, inference, and planning for multivariate degrading
systems are also prevailing research topics. Barker and Newby [40] and Ahmadi [41] study
optimal inspection and replacement planning problems, respectively, for systems subject to
a multivariate Wiener process. Mercier and Pham [34] and Mercier et al. [35] investigate
similar problems for systems whose state is described by a bivariate Lévy process. Wu
and Castro [42] develop optimal PM policies for a system with a weighted linear combina-
tion of multiple degradation processes. In addition, Castanier et al. [43], Li et al. [44],
Liu et al. [45], and Sun et al. [38] contribute to this field by studying condition-based
replacement strategies for systems subject to multiple degradation processes. The above-
summarized studies focus predominately on inspection or preventive replacement strategies.
Imperfect maintenance, however, receives very few investigations in the context of multi-
variate degradation processes, though there are indeed some studies dealing with univariate
degradation processes (see, e.g., Castanier et al. [46]; Mercier and Castro [47]; Zhang et al.
[48]; Kahle [6]; Mercier and Castro [7]; Zhao et al. [49]; Salles et al. [50]). Basically, the
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extant degradation-based imperfect maintenance models, e.g., (virtual) age reduction[6, 47]
and degradation level reduction[6, 7, 49], are created by mimicking the ideas of associated
lifetime-based imperfect maintenance models. Nevertheless, developing imperfect mainte-
nance models for multivariate degradation processes remains an open problem.

Furthermore, existing research on modeling multivariate degradation processes with
time-variant/dynamic covariates is quite scarce. Singpurwalla [8] provides a seminal overview
on stochastic process-based failure models that are suitable to characterize dynamic envi-
ronments. Meeker and Hong [51] and Hong et al. [23] discuss how to link big operating and
environmental data as covariates to traditional reliability responses, including degradation
signals. Peng et al. [9] further summarize previous degradation-based reliability models
that involve multiple degradation indicators and dynamic environments. Hong et al. [52]
and Xu et al. [53] adopt a non-parametric model, precisely, shape-restricted splines, to es-
timate the influences of dynamic covariates on the degradation path. Peng et al. [17] deal
with multivariate degradation analysis of complex systems under dynamic operating and
environmental conditions from a Bayesian perspective. Hajiha et al. [31] investigate multi-
variate degradation modeling under dynamic operating conditions with both parametric and
non-parametric approaches. Lu et al. [25] propose a multivariate general path model with
covariates and random effects to describe degradation data with multiple PCs. In addition,
as we are dealing with piece-wise constant covariates, research on step-stress accelerated
degradation test (ADT) is relevant and inspiring; see, e.g., Tseng and Wen [54], Liao and
Tseng [55], Peng and Tseng [56], Pan and Sun [33], and Zhao et al. [57]. In particular,
Pan and Sun [33] study optimal step-stress ADT design for products subject to a bivari-
ate gamma process. Generally speaking, the dominant approach to modeling covariates is
to represent some parameters in the degradation model as functions of the covariates of
interest, known as the link functions ; see Ye and Xie [3] and Zhang et al. [4] for overviews.

To the best of our knowledge, no studies can be found to consider all of the three
features mentioned earlier in degradation and maintenance modeling problems, despite its
significance from both practical and academic perspectives.

1.3. Overview of this work

This article contributes to the literature by providing two integrated frameworks of mod-
eling multivariate degradation processes with imperfect maintenance effects and time-variant
covariates. The multivariate Wiener process is adopted as a baseline model because it retains
the independent increment and infinite divisibility properties. A method of constructing
multivariate Wiener processes is first introduced, based on which two types of new models
are further developed to incorporate the influences of imperfect PM and piece-wise con-
stant covariates. In particular, the first model reflects these influences in the degradation
rates/paths directly (referred to as the degradation path adjustment model), whereas the
second one captures the influences by modifying the time scales governing the degrada-
tion processes (called the time scale adjustment model). Simulated degradation paths are
sketched to illustrate the two types of degradation models. Comparisons between the two
models in some special cases are also provided.
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The focus of this article is on probabilistic modeling and simulation illustration. Infer-
ential issues are beyond the scope of this article and, indeed, require further investigations.
Section 2 formulates the piece-wise constant covariate process and introduces a new approach
to constructing multivariate Wiener processes. The degradation path adjustment and time
scale adjustment models are developed, respectively, in Sections 3 and 4, and schematic
illustrations are presented therein. Section 5 compares the proposed models in some special
cases. Finally, Section 6 concludes this article and suggests some topics for future research.

2. Model formulation

In this section, we introduce the characterization of piece-wise constant covariates and
the construction of multivariate Wiener processes, so as to form the basis for subsequent
modeling efforts.

2.1. Piece-wise constant covariates

Suppose there are M covariates that have significant impacts on system degradation,
and their values are piece-wise constant. Specifically, the covariates remain constant under
a given operating and/or environmental stress, but might change their values upon the shift
of stress. Let τj, j = 1, 2, . . . , J , be the time point at which the operating/environmental
stress shifts (τ0 = 0), i.e., when at least one of the covariates changes its value. Let sm,j
denote the constant value of the mth covariate during the jth time interval [τj−1, τj), m =
1, 2, . . . ,M ; j = 1, 2, . . . , J . Note that the covariates might be subject to normalization or
transformation; see, e.g., Lim and Yum [58], Sun et al. [37], and Zhao et al. [59]. Further
define sj = [s1,j, s2,j, . . . , sM,j]

T. In essence, sj contains all information on the M covariates
during [τj−1, τj). Note also that the values of some covariates may not keep changing in
every single period. In other words, not all corresponding elements in vectors sj and sj+l
(l = 1, 2, . . . ) are necessarily different, namely, there may exist some m ∈ {1, 2, . . . ,M} such
that sm,j = sm,j+l.

In this manner, the piece-wise constant covariates at time t can be fully described by

J∑
j=1

sj1[τj−1,τj)(t) =


s1, 0 ≤ t < τ1,

s2, τ1 ≤ t < τ2,
...

...

sJ , τJ−1 ≤ t < τJ ,

(1)

where 1A(t) is an indicator function: if t ∈ A is true, then it is equal to 1; otherwise, it
becomes 0. Further let St represent the entire history of the piece-wise constant covariate
process from 0 to t.

Figure 1 illustrates the evolution of two covariates in five equal-length periods (i.e.,
M = 2, J = 5). We suppose that the shift of covariate value(s) occurs every 20 time units
(i.e., τj = 20 × j, j = 1, . . . , 5). The covariates are normalized so that their values are
between zero and one. The value of covariate 1 keeps changing in every period (s1,1 = 0.50,
s1,2 = 0.00, s1,3 = 1.00, s1,4 = 0.75, s1,5 = 0.25), whereas covariate 2 remains constant
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Figure 1: Schematic illustration of the evolution of two covariates (τj = 20× j, j = 1, . . . , 5).

in all the five periods (s2,j = 0.50, j = 1, . . . , 5). Possible examples of covariate 1 include
workload, temperature, and humidity, whereas covariate 2 may be geographic location and
system type, among others.

2.2. Multivariate degradation processes

Consider a complex industrial system whose degradation is captured by n PCs. Let Xi(t),
i = 1, 2, . . . , n, be the baseline degradation process of PC i under some nominal covariates
s0. When actual covariate values differ from the nominal ones, the system’s degradation
processes can be affected. Note that in real applications, Xi(t) might be subject to certain
type of transformation (e.g., logarithm transformation) for data preprocessing purposes.
As Xi(t)’s describe the PCs of the same system, there should exist certain dependency
among them. Following Iyengar [39] and Hong et al. [36], we consider that Xi(t)’s share a
common noise process, but have their own noise processes as well. In essence, the common
noise process characterizes the dependency among the n degradation processes, whereas the
distinct noise processes describe the uncertainty within individual degradation processes.
To capture the time-varying volatility, we use Brownian motions to model these noises.
Specifically, the baseline degradation process of PC i is described by

Xi(t) = µiΛ(t) + ξ0B
(0)(Λ(t)) + ξiB

(i)(Λ(t)), i = 1, 2, . . . , n, (2)

where µi is the drift parameter indicating the rate of degradation, ξ0 and ξi are diffusion
parameters, B(0)(·) and B(i)(·) are independent standard Brownian motions, and Λ(t) is a
monotone increasing function capturing the nonlinearity in degradation processes [26]. A
commonly used form of Λ(t) is Λ(t) = tβ, where β is a positive parameter. When Λ(t) = t,
Xi(t) has a linear mean path µit; otherwise, its mean path is non-linear.

It is easy to verify that E[Xi(t)] = µiΛ(t), Var(Xi(t)) = (ξ2
0+ξ2

i )Λ(t), and Cov(Xi(t), Xi′ (t)) =
ξ2

0Λ(t), i 6= i
′
. Thus, the correlation coefficient between any Xi(t) and Xi′ (t), i 6= i

′
, is given

by

ρi,i′ =
ξ2

0√
(ξ2

0 + ξ2
i )(ξ

2
0 + ξ2

i′
)
∈ [0, 1], (3)
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Figure 2: Simulated baseline degradation paths of three PCs in weak and strong correlation scenarios.

which is independent of t. Note that when ξ0 → 0, Xi(t) and Xi′ (t) tend to be independent;
whereas when ξ0 � ξi, i = 1, . . . , n, the correlation between Xi(t) and Xi′ (t) would be
positive and strong.

In this sense, the proposed multivariate Wiener process, constructed from multiple uni-
variate Wiener processes sharing a common noise, is quite flexible in terms of describing
various extents of dependency. This property is quite important for practical implementa-
tion: The operator may install multiple identical sensors (say, vibration sensors) in different
locations of the same system, in which case the dependency among associated indicators
shall be high; on the other hand, the dependency among indicators from different types of
sensors (say, tension and vibration sensors) shall be relatively low. The two scenarios can
be well characterized by sensibly estimating the values of drift and diffusion parameters.

Figure 2 illustrates three simulated baseline degradation paths in weak and strong cor-
relation scenarios, respectively. The parameter setting used to generate this figure is as
follows: µ1 = 0.437, µ2 = 0.312, µ3 = 0.095, ξ1 = 0.068, ξ2 = 0.179, ξ3 = 0.238, and
Λ(t) = t1.2. In addition, ξ0 is set to 0.25 in panel (a) and 0.75 in panel (b), representing
weak and strong correlation scenarios, respectively. The degradation paths are simulated by
the random walk approximation method; see Kahle et al. [60] for details on this method.
Note that the baseline degradation paths in panel (a) will be used throughout Sections 3
and 4 for illustrative purposes.

Remark 1. An equivalent way of constructing model (2) is through the so-called (n + 1)-
variate reduction method [34, 35]. Suppose that we have n+1 independent univariate Wiener
process: Y0(t) = µ0Λ(t)+ξ0B

(0)(Λ(t)) and Yi(t) = (µi−µ0)Λ(t)+ξiB
(i)(Λ(t)), i = 1, 2, . . . , n.

Then, Xi(t) in (2) can be expressed as Xi(t) = Y0(t) + Yi(t) for i = 1, 2, . . . , n.

Remark 2. Let X(t) = [X1(t), . . . , Xn(t)]T. The baseline degradation model in (2) is
equivalent to a multivariate Wiener process [36]:

X(t) = µΛ(t) + Σ1/2B(Λ(t)), (4)
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where µ = [µ1, . . . , µn]T, B(·) is the standard n-dimensional Brownian motion, and Σ is the
associated covariance matrix, which is positive definite. In particular, the (i, i

′
)th entry of

Σ is σ2
i,i = ξ2

0 + ξ2
i for i = i

′
, and σ2

i,i′
= ξ2

0 for i 6= i
′
. Thus, the correlation coefficient in (3)

can be rewritten as ρi,i′ = σ2
i,i′
/(σi,iσi′ ,i′ ). Also, it is clear that X(t) follows a multivariate

normal distribution, i.e., X(t) ∼ N (µΛ(t),ΣΛ(t)).

The baseline multivariate Wiener process will be used in Sections 3 and 4 to incorporate
the influences of time-variant covariates and imperfect PM effects. It is well known that
the Wiener process is not strictly monotone. This property is important for some self-
healing cases such as the healing of cracks (caused by fatigue) and battery capacities. If a
multivariate degradation process is believed to be monotonically increasing/decreasing, then
one may resort to a multivariate gamma or inverse Gaussian process, possibly constructed
via the (n+ 1)-variate reduction method.

3. Degradation path adjustment model

In this section, we consider the degradation path adjustment model which assumes that
covariates and imperfect PM activities influence system degradation by directly adjusting
the rates/paths of individual degradation processes.

3.1. Modeling the effect of piece-wise constant covariates

Let Xi(t|sj) denote the degradation process of PC i within [τj−1, τj), during which the
system operates under covariates sj, i = 1, 2, . . . , n; j = 1, 2, . . . , J . Incorporating the co-
variates in an appropriate way requires a good understanding about how these factors affect
the parameters of the degradation model [8]. In the degradation path adjustment model, we
assume that the influences of piece-wise constant covariates on the individual degradation
processes are reflected in the corresponding alterations of their drift parameters. Specifically,
the drift parameters are modeled as link functions of the covariates. Let µi(sj;γi) be the
drift parameter associated with Xi(t|sj), where γi is the coefficient vector. Candidate forms
of link functions include the linear relation, the Arrhenius relation, the exponential relation,
and the power law relation [3, 4]. Among them, the latter three can be unified in a common
form of

µi(sj;γi) = exp

{
γi,0 +

M∑
m=1

γi,msm,j

}
(5)

after some transformations [58], where γi = [γi,0, γi,1, . . . , γi,M ]T is the coefficient vector.
Notice that if we define s0 = 0, then we would have µi(s0;γi) = exp{γi,0}, which can be
treated as the baseline drift parameter µi in (2).

Denote Xi(t;St) as the degradation process of PC i subject to the piece-wise constant
covariate process St. Analogous to Liao and Tseng [55] and Zhao et al. [57], the relationships
between Xi(t;St) and {Xi(t|sj), j = 1, 2, . . . , J} are modeled as follows. Under covariates
s1, it is clear that Xi(t;St) = Xi(t|s1) = µi(s1;γi)Λ(t) + ξ0B

(0)(Λ(t)) + ξiB
(i)(Λ(t)) for
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t ∈ [0, τ1). Likewise, for t ∈ [τ1, τ2) and under covariates s2, the degradation process of PC
i becomes

Xi(t;St) = Xi(τ1|s1) +Xi(t|s2)−Xi(τ1|s2)

= µi(s1;γi)Λ(τ1) + ξ0B
(0)(Λ(τ1)) + ξiB

(i)(Λ(τ1)) + µi(s2;γi)Λ(t) + ξ0B
(0)(Λ(t)) + ξiB

(i)(Λ(t))

− µi(s2;γi)Λ(τ1)− ξ0B
(0)(Λ(τ1))− ξiB(i)(Λ(τ1))

= µi(s1;γi)Λ(τ1) + µi(s2;γi)(Λ(t)− Λ(τ1)) + ξ0B
(0)(Λ(t)) + ξiB

(i)(Λ(t)).
(6)

By doing so, an underlying assumption here is that the degradation process exhibits a
memoryless property, which means that the rate of degradation—represented by the drift
parameter µi(sj;γi)—depends only on the current covariates sj but not on the entire history
St of the covariate process [61]. Therefore, for general j ≥ 1 and t ∈ [τj−1, τj), we have

Xi(t;St) = Xi(t|sj)−Xi(τj−1|sj) +

j−1∑
l=1

(
Xi(τl|sl)−Xi(τl−1|sl)

)
= µi(sj;γi)(Λ(t)− Λ(τj−1)) +

j−1∑
l=1

µi(sl;γi)(Λ(τl)− Λ(τl−1)) + ξ0B
(0)(Λ(t)) + ξiB

(i)(Λ(t)).

(7)
By defining an adjusted mean degradation path as di(t;St) = µi(sj;γi)(Λ(t)−Λ(τj−1)) +∑j−1
l=1 µi(sl;γi)(Λ(τl) − Λ(τl−1)), which is continuous over time, the degradation process of

PC i involving the piece-wise constant covariate process St can be rewritten as

Xi(t; St) = di(t;St) + ξ0B
(0)(Λ(t)) + ξiB

(i)(Λ(t)), i = 1, . . . , n. (8)

Figure 3 shows the baseline and adjusted degradation paths of three PCs subject to
piece-wise constant covariates under the degradation path adjustment model. We assume
µi(sj;γi) = µi exp{γi,1s1,j + γi,2s2,j}, and the associated parameters are set to γ1,1 = 0.156,
γ1,2 = 0.320, γ2,1 = 0.535, γ2,2 = 0.115, γ3,1 = 0.093, and γ3,2 = −0.415. The values of µi
(i = 1, 2, 3), sj (j = 1, . . . , 5), and other parameters follow directly from Figures 1 and 2.
In this figure, the baseline degradation paths (dotted lines) are the same as those in Figure
2(a). As can be seen, the piece-wise constant covariates could pull the baseline degradation
paths up or down, depending on their positive or negative effects on the rates of degradation,
and the rates change upon the shift of covariate values.

3.2. Modeling the effect of imperfect PM actions

Suppose that imperfect PM actions are performed at time instants t1, t2, . . . , tk, . . . , with
t0 = 0. The maintenance instants tk and covariate shift instants τj are not necessarily
identical for any k and j. We further assume that if any failure occurs between two successive
PM actions, then the system will be minimally repaired; after a minimal repair, the system
is restored to an operational status, without any impact on its degradation processes.

In the degradation path adjustment model, the influence of imperfect PM activities is
captured by the amount of degradation reduction before and after each PM activity. For con-
venience of notation, let Xi,k = Xi(t

−
k ;St−k ) represent the intrinsic (i.e., without maintenance)
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Figure 3: Baseline and adjusted degradation paths of three PCs with time-variant covariates under the
degradation path adjustment model.

degradation level of PC i at time t−k , k = 1, 2, . . . ; let ηi,k be the associated degradation
level immediately after the kth PM activity. Define δi,k ∈ [0, 1] as the degradation reduction
factor of the kth PM action for PC i. A larger value of δi,k corresponds to a higher main-
tenance efficiency. If δi,k = 0, then the maintenance effect is minimal; if δi,k = 1, then the
maintenance effect is perfect; whereas δi,k ∈ (0, 1) corresponds to an imperfect maintenance
effect. In practice, for a specific PM action k, the degradation reduction factor δi,k for all
i might be correlated, as maintaining a system usually results in simultaneous degradation
reduction for all of its PCs. A possible way of capturing this type of correlation is to model
δi,k, i = 1, 2, . . . , n, as functions of the maintenance effort ek, e.g., δi,k = δi(ek), where δi(·)
is a PC-specific function.

In principle, we might have the following two assumptions on the maintenance effi-
ciency—following the ideas in Doyen and Gaudoin [1], Kahle [6], Mercier and Castro [7],
and Salles et al. [50], which lead to two different imperfect maintenance models:

(i) ARD1 model. The first model is called the Arithmetic Reduction of Degradation
with memory one (ARD1). The idea is that an imperfect maintenance action only removes
a proportion of the degradation accumulated since the last maintenance. As a result, the
degradation level right after the kth PM action can be formulated as

ηi,k = ηi,k−1 + (Xi,k −Xi,k−1)(1− δi,k), (9)

which can be iteratively derived as ηi,k =
∑k

l=1(1 − δi,l)(Xi,l − Xi,l−1), k = 1, 2, . . . . Let
X̃i(t;St) represent the degradation path of PC i at t ∈ [tk, tk+1), after the kth PM action.
Then, we have

X̃i(t;St) = ηi,k +Xi(t;St)−Xi,k

=
k∑
l=1

(1− δi,l)(Xi,l −Xi,l−1) +Xi(t; St)−Xi,k, k = 1, 2, . . . ,
(10)
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where Xi(t;St) is given by (8).
(ii) ARD∞ model. Another idea is that an imperfect maintenance action reduces the

degradation of an amount proportional to the current degradation level. The corresponding
model is called the Arithmetic Reduction of Degradation with infinite memory (ARD∞).
According to this assumption, one has

ηi,k = (ηi,k−1 +Xi,k −Xi,k−1)(1− δi,k), (11)

which can be iteratively derived as ηi,k =
∑k

l=1

∏k+1−l
l′=1

(1− δi,l′ )(Xi,l −Xi,l−1), k = 1, 2, . . . .
The corresponding degradation path of PC i at t ∈ [tk, tk+1), after the kth PM, becomes

X̃i(t; St) =
k∑
l=1

k+1−l∏
l′=1

(1− δi,l′ )(Xi,l −Xi,l−1) +Xi(t; St)−Xi,k, k = 1, 2, . . . (12)

This way, X̃i(t;St) in (10) or (12)—depending on which imperfect maintenance model
is applied—is able to fully characterize the influences of both piece-wise constant covariates
and imperfect PM activities on the degradation process. Figure 4 shows the simulated
degradation paths of three PCs with both covariates and imperfect PM effects under the
degradation path adjustment model. To generate this figure, we suppose that the PM
interval is 25 time units and the degradation reduction factor is equal to 0.5 for all cases,
namely, tk = 25 × k, δi,k = 0.5, i, k = 1, 2, 3. The dotted lines represent the degradation
paths involving covariates only (i.e., the same as those red lines in Figure 3); the red and blue
lines indicate the degradation paths with both covariates and imperfect maintenance (red:
ARD1 model; blue: ARD∞ model). As can be seen, between two successive PM actions,
the degradation paths adjusted by imperfect maintenance are vertically parallel to the paths
without maintenance. That is to say, if we move the red or blue paths upwards, then they
would coincide with those dotted lines. This is because an imperfect PM action reduces the
current degradation level to a lower level, and the degradation process then develops in the
same rate as that without maintenance.

3.3. Further discussions

It is worth mentioning that the proposed model can be reduced to a model with pure
covariates or imperfect maintenance effects. More specifically, when µi(sj;γi) = µi for all j,
then the proposed model reduces to a model with only imperfect maintenance effect; when
δi,k = 0 for all k, then there is only time-variant covariate effect; whereas when µi(sl;γi) = µi
and δi,k = 0 for all j and k, then the proposed model simplifies to the original one in (2).

We now explore the probabilistic properties of the increments of individual degradation
processes. Consider any time instant t and time step ∆t that satisfy tk ≤ t < t+ ∆t < tk+1.
Define ∆X̃i = X̃i(t + ∆t;St+∆t) − X̃i(t;St), ∆di = di(t + ∆t;St+∆t) − di(t;St), and ∆Λ =
Λ(t+ ∆t)− Λ(t). Then, for both ARD1 and ARD∞ models, we have the following results.

Property 1. E[∆X̃i] = ∆di, Var(∆X̃i) = (ξ2
0 + ξ2

i )∆Λ, and Cov(∆X̃i,∆X̃i′ ) = ξ2
0∆Λ for

i 6= i
′
.

11
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Figure 4: Degradation paths of three PCs involving time-variant covariates and imperfect PM actions under
the degradation path adjustment model.

All proofs in this article can be found in the Appendix. Based on the results in Prop-
erty 1, the correlation coefficient between any ∆X̃i and ∆X̃i′ , i 6= i

′
, can be derived as

ρ̃i,i′ = ξ2
0/
√

(ξ2
0 + ξ2

i )(ξ
2
0 + ξ2

i′
), which is exactly the same as ρi,i′ in (3). This implies

that the incorporation of covariates and imperfect maintenance effects via the degrada-
tion path adjustment model does not change the dependency structure among individ-
ual degradation processes; also, the infinite divisibility property is well preserved. Let
∆X̃ = [∆X̃1, . . . ,∆X̃n]T and ∆d̃ = [∆d̃1, . . . ,∆d̃n]T. Then, for any tk ≤ t ≤ t+ ∆t ≤ tk+1,
the increment of the multivariate degradation process, i.e., ∆X̃, follows a multivariate nor-
mal distribution with mean ∆d̃ and covariance matrix Σ∆Λ, where Σ is the same as that
in Remark 2. This result is helpful for parameter estimation of the model.

Remark 3. In addition to degradation reduction, an imperfect maintenance action might
have another key effect: Practical observations suggest that the degradation path after an
imperfect maintenance action might increase faster than before [48, 49]. This hybrid effect
of imperfect maintenance can be captured by a degradation-rate increase factor φk (φk ≥ 1,
k = 1, 2, . . . ), with φ0 = 1. After the kth PM action, the degradation path can be modified
to X̃i(t;St) = ηi,k + φk[di(t;St) − di(tk;St)] + ξ0[B(0)(Λ(t)) − B(0)(Λ(tk))] + ξi[B

(i)(Λ(t)) −
B(i)(Λ(tk))], t ∈ [tk, tk+1), k = 1, 2, . . . . Nevertheless, the modified degradation path X̃i(t;St)
should be fed back to (7) to revise Xi(t;St), which complicate the problem. We thus leave
this issue for future research.

4. Time scale adjustment model

In this section, we introduce the time scale adjustment model. The principle of this
model is to consider that covariates and imperfect maintenance activities modify the time
scales governing the degradation processes.

12
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Figure 5: Schematic illustration of the concept of equivalent operating time.

4.1. Modeling the effect of piece-wise constant covariates

Again, let Xi(t|sj) represent the ith degradation process under covariates sj, during
the time interval [τj−1, τj). In the time scale adjustment model, the influences of piece-wise
constant covariates on system degradation is characterized by the modification of time scales.
As the system is supposed to operate under different covariates one period after another,
actual (chronological) operating time is not capable to reflect system degradation under
different covariate levels [62]. In order to facilitate degradation correspondence in different
regimes, we introduce the concept of equivalent operating time. The rationale of this concept
is that for a degradation process exposed under a specific covariate level for a certain time
period, there exists an equivalent operating time for this process under another covariate
level. In particular, the existence of such an equivalent operating time is obvious when
the covariate of interest is usage rate; while for other types of covariates, the cumulative
exposure model [61] guarantees the existence of an equivalent operating time.

Let θi,j represent the equivalent operating time of degradation process i when the system
starts operating under covariates sj (θi,1 = 0). With the concept of equivalent operating
time, exposing PC i under covariates sj for θi,j time units is equivalent to exposing it under
covariates sj−1 for τj−1 − τj−2 + θi,j−1 time units [54, 56]; see Figure 5 for demonstration.
From the degradation perspective, this statement corresponds to

Xi(θi,j|sj) = Xi(τj−1 − τj−2 + θi,j−1|sj−1), j ≥ 2. (13)

In this manner, during [τj−1, τj) and under covariates sj, the ith degradation process at
time t can be expressed in terms of θi,j, as

Xi(t;St) = Xi(t|s1), j = 1;

Xi(t;St) = Xi(t− τj−1 + θi,j|sj), j ≥ 1.
(14)

In order to obtain an explicit expression of Xi(t;St), we need to specify a detailed for-
mulation for Xi(t|sj). Following Peng and Tseng [56], we assume here that Xi(t|sj) =
Xi(ζi(sj;κi)t), where Xi(·) is given by (2) and ζi(sj;κi) is a time-scale adjustment function
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Figure 6: Conversion to equivalent operating time under nominal covariates s0 (ζi,j stands for ζi(sj ;κi),
j = 1, 2).

with κi being its coefficient vector. In essence, if ζi(sj;κi) > 1 (resp. < 1), then degra-
dation process i is accelerated (resp. decelerated) by the stresses induced by covariates. A
candidate form of the time-scale adjustment function is ζi(sj;κi) = exp{

∑M
m=1 κi,msm,j},

where κi = [κi,1, κi,2, . . . , κi,M ]T. According to this form, we have ζi(s0;κi) = 1 for s0 = 0,
namely, the time scale remains unchanged under nominal covariates s0 and the correspond-
ing degradation process reduces to the baseline model in (2).

Substituting Xi(t|sj) = Xi(ζi(sj;κi)t) into (13) yields

ζi(sj;κi)θi,j = ζi(sj−1;κi)(τj−1 − τj−2 + θi,j−1), j ≥ 2, (15)

which can be iteratively derived as

ζi(sj;κi)θi,j =

j∑
l=2

ζi(sl−1;κi)(τl−1 − τl−2), j ≥ 2. (16)

This way, we can convert the actual operating time periods under all covariate levels
sj, i.e., τj − τj−1, j = 1, 2, . . . , J , to the corresponding equivalent operating time periods
under nominal covariates s0, i.e., ζi(sj;κi)(τj − τj−1). For illustrative purposes, Figure
6 shows that the degradation amount of process i accumulated under covariate s1 for τ1

time units is equivalent to that under covariate s0 for ζi(s1;κi)τ1 time units; similarly,
the degradation amount at τ2 is equivalent to that accumulated under covariate s0 for
ζi(s1;κi)τ1 + ζi(s2;κi)(τ2 − τ1) time units.

By introducing an adjusted time scale ωi(t;St) as

ωi(t;St) =



ζi(s1;κi)t, 0 ≤ t < τ1,

ζi(s2;κi)(t− τ1) + ζi(s1;κi)τ1, τ1 ≤ t < τ2,
...

...

ζi(sj;κi)(t− τj−1) +
∑j

l=2 ζi(sl−1;κi)(τl−1 − τl−2), τj−1 ≤ t < τj,
...

...,

(17)
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Figure 7: Baseline and adjusted degradation paths of three PCs with time-variant covariates under the time
scale adjustment model.

the ith degradation process with the piece-wise constant covariate process St can be refor-
mulated as

Xi(t;St) = µiΛ(ωi(t; St)) + ξ0B
(0)(Λ(ωi(t;St))) + ξiB

(i)(Λ(ωi(t;St))), i = 1, 2, . . . , n. (18)

Notice that ωi(t;St) is a piece-wise, continuous function. Figure 7 shows the baseline and
adjusted degradation paths of three PCs subject to piece-wise constant covariates under
the time scale adjustment model. We assume ζi(sj;κi) = exp{κi,1s1,j + κi,2s2,j}, and its
parameters are set to κ1,1 = 0.156, κ1,2 = 0.320, κ2,1 = 0.535, κ2,2 = 0.115, κ3,1 = 0.093,
and κ3,2 = −0.415. The values of other parameters follow directly from Figures 1 and 2.
In this figure, the baseline degradation paths (dotted lines) are again the same as those
in Figure 2(a). Unlike the degradation path adjustment model in which covariates lead to
either increase or decrease in the degradation rates, the time scale adjustment model reflects
the influence of covariates in the stretching of the time scales. As the Wiener process is non-
monotone, the adjusted degradation paths may intersect with the baseline paths. This
explains the phenomenon that the two curves are crossing in Figure 7(c).

4.2. Modeling the effect of imperfect PM actions

Suppose again that imperfect PM actions are performed at time instants t1, t2, . . . , tk, . . . .
For convenience of notation, let ωi,k represent the equivalent operating time of degradation
process i at time t−k (say, under certain sj and tk ∈ [τj−1, τj)). The value of ωi,k can be easily
obtained by substituting t−k into (17). Further let υi,k denote the virtual age of degradation
process i immediately after the kth PM action. The virtual age concept is initially introduced
by Kijima [63] in the context of recurrent events, and then adapted to maintenance modeling
of deteriorating systems [6, 7]; see Finkelstein and Cha [62] for a recent discussion on virtual
age in reliability context. In the time scale adjustment model, the effect of an imperfect PM
activity is described by the amount of age reduction between ωi,k and υi,k. By mimicking
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the virtual age reduction ideas in Doyen and Gaudoin [1], Mercier and Castro [7, 47], and
Kahle [6], below we introduce two imperfect maintenance models—the Arithmetic Reduction
of Age with memory one (ARA1) and Arithmetic Reduction of Age with infinite memory
(ARA∞).

(i) ARA1 model. This model assumes that an imperfect maintenance action only removes
a proportion of the age accumulated since the last maintenance. As a result, the virtual age
of degradation process i right after the kth PM action is given by

υi,k = υi,k−1 + (ωi,k − ωi,k−1)(1− δi,k), (19)

which can be iteratively derived as υi,k =
∑k

l=1(1− δi,l)(ωi,l − ωi,l−1), k = 1, 2, . . . .
Let ω̃i(t;St) represent the virtual time scale of degradation process i at t ∈ [tk, tk+1) after

the kth imperfect PM action. Then, ω̃i(t; St) evolves as follows:

ω̃i(t;St) = υi,k + ωi(t;St)− ωi,k

=
k∑
l=1

(1− δi,l)(ωi,l − ωi,l−1) + ωi(t; St)− ωi,k, k = 1, 2, . . . ,
(20)

where ωi(t; St) is given by (17).
(ii) ARA∞ model. The assumption of this model is that an imperfect maintenance action

reduces the virtual age of an amount proportional to its age just before maintenance. This
leads to

υi,k = (υi,k−1 + ωi,k − ωi,k−1)(1− δi,k), (21)

which is equivalent to υi,k =
∑k

l=1

∏k+1−l
l′=1

(1 − δi,l′ )(ωi,l − ωi,l−1), k = 1, 2, . . . . In this case,
the virtual time scale ω̃i(t;St) at t ∈ [tk, tk+1) evolves as follows:

ω̃i(t;St) =
k∑
l=1

k+1−l∏
l′=1

(1− δi,l′ )(ωi,l − ωi,l−1) + ωi(t;St)− ωi,k, k = 1, 2, . . . . (22)

Finally, the overall degradation process of PC i subject to piece-wise constant covariates
and imperfect PM is given by

X̃i(t;St) = µiΛ(ω̃i(t;St)) + ξ0B
(0)(Λ(ω̃i(t; St))) + ξiB

(i)(Λ(ω̃i(t;St))), (23)

where ω̃i(t;St) is given by (20) or (22), depending on which imperfect maintenance model
is applied.

Figure 8 shows the simulated degradation paths of three PCs with both covariates and
imperfect PM effects under the time scale adjustment model. The dotted lines represent the
degradation paths involving covariates only (i.e., the same as those red lines in Figure 7);
the red and blue lines represent the degradation paths with both covariates and imperfect
maintenance (red: ARA1 model; blue: ARA∞ model). One can observe that between
two successive PM actions, the degradation paths adjusted by imperfect maintenance are
horizontally parallel to the paths without maintenance. That is to say, if we move the
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Figure 8: Degradation paths of three PCs involving time-variant covariates and imperfect PM effects under
the time scale adjustment model.

red or blue paths to the left, then they would coincide with those dotted lines. This is
because an imperfect PM action reduces the current virtual age to an earlier age, and the
degradation process then evolves along the same path as that without maintenance. Another
observation noteworthy is that in Figure 8(c) the blue line is even above the red line in some
cases, although the corresponding ARA∞ model reduces the virtual age to a lower level
than the ARA1 model. This is also attributed to the non-monotone property of the Wiener
process.

4.3. Further discussions

Analogous to the degradation path adjustment model, the proposed time scale adjust-
ment model can also be reduced to a model with pure covariates or imperfect maintenance
effects. More specifically, when ζi(sj;κi) = 1 for all j, then the proposed model reduces to
a model with only imperfect maintenance effects; when δi,k = 0 for all k, then there is only
time-variant covariate effect; whereas when ζi(sl;κi) = 1 and δi,k = 0 for all j and k, then
the proposed model simplifies to the original model in (2).

In this model, the virtual time scales ω̃i(t;St) of noise processes B(i)(Λ(·)), i = 0, 1, . . . , n,
are different due to the influences of covariates and imperfect PM actions. We re-order the
n virtual time scales at any t ∈ [tk, tk+1) in an ascending order, i.e., ω̃(1)(t;St) ≤ ω̃(2)(t;St) ≤
· · · ≤ ω̃(n)(t;St), and let X̃(i)(t; St) be the overall degradation process corresponding to

ω̃(i)(t;St). Further define ∆X̃(i) = X̃(i)(t + ∆t;St+∆t) − X̃(i)(t;St) and ∆Λ(i) = Λ(ω̃(i)(t +
∆t;St+∆t)) − Λ(ω̃(i)(t; St)) for any ∆t > 0. In some mild conditions, we have the following
probabilistic properties on the increments of degradation processes.

Property 2. E[∆X̃(i)] = µ(i)∆Λ(i), and Var(∆X̃(i)) = (ξ2
0 + ξ2

(i))∆Λ(i). If the ascending
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order of ω̃(i)(t;St) well preserves over [t, t+ ∆t], then for i ≤ i
′

we have

Cov(∆X̃(i),∆X̃(i′ )) =

{
0, if ω̃(i)(t+ ∆t;St+∆t) ≤ ω̃(i′ )(t;St);
ξ2

0

[
Λ(ω̃(i)(t+ ∆t;St+∆t))− Λ(ω̃(i′ )(t;St))

]
, if ω̃(i)(t+ ∆t;St+∆t) > ω̃(i′ )(t;St).

(24)

Based on the results above, the correlation coefficient between any ∆X̃(i) and ∆X̃(i′ ),

i 6= i
′
, is either ρ̃(i),(i′ ) = 0 or

ρ̃(i),(i′ ) =
ξ2

0

[
Λ(ω̃(i)(t+ ∆t;St+∆t))− Λ(ω̃(i′ )(t; St))

]
√

(ξ2
0 + ξ2

i )∆Λ(i)(ξ2
0 + ξ2

i′
)∆Λ(i

′
)

,

which is different from ρi,i′ in (3) and dependent on time t. Property 2 shows that un-
like the degradation path adjustment model, the incorporation of covariates and imperfect
maintenance effects via the time scale adjustment model changes the dependency structure
among individual degradation processes; also, the infinite divisibility property is no longer
preserved.

5. Comparisons of the proposed models

In this section, we compare the degradation paths for the degradation path adjustment
and time scale adjustment models both analytically and graphically.

We first look at the degradation paths involving only piece-wise constant covariates in
(8) and (18). The following result on the mean degradation paths can be obtained.

Property 3. When Λ(t) = t and µi(sj;γi) = µi · ζi(sj;κi) for all j, the mean degradation
paths E[Xi(t;St)] for the degradation path adjustment and time scale adjustment models are
identical.

By further examining the overall degradation paths involving both covariates and im-
perfect maintenance in (10), (12), and (23), we have the following result about the mean
degradation paths.

Property 4. When Λ(t) = t, µi(sj;γi) = µi · ζi(sj;κi) for all j, and the same δi,k for all
k are applied, the mean degradation paths E[X̃i(t; St)] for the degradation path adjustment
and time scale adjustment models are identical.

Basically, the validity of Properties 3 and 4 is built upon the linearity of the mean
baseline paths in (2). If the baseline processes’ mean paths are not linear, then Properties 3
and 4 would no longer hold. Moreover, the actual degradation paths under the two models
are not necessarily identical, though the associated mean degradation paths are the same.
This is stemmed from the influence of their distinct noise processes.

We then demonstrate and compare the two models through simulated degradation paths.
For this purpose, we use the same parameter values (unless specified otherwise) as in Sections
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Figure 9: Baseline and adjusted degradation paths of three PCs with time-variant covariates for β = 1.0
and β = 1.2, respectively.

3 and 4, but simulate a new dataset for generating the degradation paths. Figure 9 shows
the baseline and adjusted degradation paths of three PCs with time-variant covariates. In
this figure, we specify two values for β, i.e., β = 1.0 and β = 1.2, to represent linear
and non-linear mean baseline paths, respectively. The dotted lines represent the baseline
degradation paths, whereas the red and blue lines indicate the adjusted degradation paths
with covariates, under the degradation path adjustment and time scale adjustment models,
respectively. One can see that the adjusted degradation paths under the two models are
quite close when the mean baseline path is linear (i.e., β = 1.0) and the uncertainty level
is low (i.e., for PCs 1 and 2); moreover, the gap between the two paths tends to enlarge as
time goes by.

We further demonstrate the overall degradation paths of the three PCs with time-variant
covariates and imperfect maintenance effects (see Figure 10 for ARD1 and ARA1 models;
Figure 11 for ARD∞ and ARA∞). In addition to β, we specify two values for the mainte-
nance efficiency δi,k, i.e., δi,k = 0.25 and δi,k = 0.75, to indicate small and large maintenance
efficiencies, respectively. One can observe that the overall degradation paths under the
ARD1 and ARA1 models (as well as the ARD∞ and ARA∞ models) are close when the
mean baseline path is linear, the uncertainty level is low, and the maintenance efficiency δi,k
is small.
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Figure 10: Overall degradation paths of three PCs involving time-variant covariates and imperfect PM
effects (ARD1 and ARA1).

6. Concluding remarks

Degradation and maintenance modeling of complex industrial systems often faces impor-
tant features such as multiple dependent PCs, time-variant covariates, and imperfect main-
tenance interventions. This article developed two types of multivariate degradation models
subject to time-variant (precisely, piece-wise constant) covariates and imperfect maintenance
effects. A multivariate Wiener process was first constructed from multiple univariate Wiener
processes sharing a common noise. Then, the degradation path adjustment and time scale
adjustment models were developed to unify the modeling of covariates and imperfect main-
tenance. In particular, two imperfect maintenance models—reduction of degradation level
and reduction of virtual age, of both memory one and infinite memory, were proposed. We
showed that the proposed models contain some models as special cases; under certain con-
ditions, the proposed two models can generate identical mean degradation paths. However,
a drawback of the time scale adjustment model is that when the degradation process is
non-monotone, like the Wiener process, the degradation level after maintenance might be
even higher than that before maintenance, especially when the variability of the degradation
process is high.

Nevertheless, the modeling frameworks developed in this article represent an initial step
towards multivariate degradation modeling with time-variant covariates and imperfect main-
tenance effects. A lot of research work can be done in the next steps, which are briefly
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Figure 11: Overall degradation paths of the three PCs involving time-variant covariates and imperfect PM
effects (ARD∞ and ARA∞).

discussed below.

(i) Stochastic properties. The stochastic properties of the proposed models, e.g., higher
order moments, ergodicity, and asymptotic behaviors, would be of interest and need
further research. For example, what are the asymptotic behaviors of the proposed
models when t → ∞. In addition to the simple comparisons in Section 5, in-depth
stochastic comparisons of the two modeling frameworks as in Mercier and Castro [7]
would be another interesting research topic.

(ii) Statistical inference. The complexity of the two modeling frameworks poses challenges
for statistical inference. Parameter estimation of the degradation path adjustment
model is relatively simple, since the degradation increments between any two suc-
cessive PM actions follow a multivariate normal distribution (see Property 1 and re-
lated discussions). The log-likelihood function can then be formulated using dataset
of degradation increments, and various methods, like Bayesian Markov chain Monte
Carlo, can be employed to solve the problem [14, 15]. However, parameter estimation
of the time scale adjustment model is rather complicated, since the incorporation of co-
variates and imperfect maintenance alters the dependency structure among individual
degradation processes (see Property 2 and related discussions). Additional difficulty
arises when the PCs are not always measured at the same time. In addition to the
point estimation, interval estimation is usually of more interest in practice, since it
quantifies uncertainties in the estimation; the generalized pivots concept in Hong et
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al. [36] might be helpful for interval estimation. Effective statistical tests should also
be developed for model discrimination and selection purposes [64].

(iii) Reliability analysis. In accordance with the convention, the failure of a multivariate
degrading system can be defined upon threshold Di for each PC i, i = 1, 2, . . . , n.
Specifically, the system is considered to be failed if any of the n PCs exceeds the
corresponding failure threshold Di. The probability of system failure at time t thus
becomes

F (t) = 1− Pr{X̃1(t;St) < D1, . . . , X̃n(t;St) < Dn}. (25)

According to (25), F (t) can be evaluated by integrating X̃i(t;St) over (0,Di) for all i =
1, 2, . . . , n [36, 25]. Again, this is relatively easy for the degradation path adjustment
model, but not for the other one. As the closed-form expression of F (t) (or R(t) =
1− F (t)) is difficult to obtain, the semiparametric and nonparametric approximation
methods in Palayangoda and Ng [22] might be helpful.

(iv) Maintenance planning. Condition-based inspection and maintenance planning for mul-
tivariate degrading systems remains under-explored [11, 12]. It is of academic and prac-
tical interests to determine the optimal condition-based inspection plan and imperfect
PM strategy (maintenance thresholds and degrees) to balance the inspection cost, PM
cost, and failure cost; the dependency among individual degradation processes should
be well incorporated in this problem. In particular, Markov decision process can be
employed to formulate the maintenance planning problem and dynamic programming
can be adopted to solve the problem, as in Liu et al. [45] In view of the problem
complexity, approximation and simulation techniques might be helpful.

Nevertheless, we hope that this article opens up opportunities for future research in
the development of multivariate degradation models wherein the mechanisms of imperfect
maintenance and the characteristics of operating/environmental factors play a key role.
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Appendix A. Technical proofs

Proof of Property 1. From (10) and (12), we know that ∆X̃i = X̃i(t+∆t;St+∆t)−X̃i(t;St) =
Xi(t+ ∆t; St+∆t)−Xi(t; St) for any tk ≤ t < t+ ∆t < tk+1, where Xi(t;St) is given by (8).
Then, it is clear that E[∆X̃i] = ∆di, Var(∆X̃i) = (ξ2

0 +ξ2
i )∆Λ, and Cov(∆X̃i,∆X̃i′ ) = ξ2

0∆Λ
for i 6= i

′
.

Proof of Property 2. The mean and variance of ∆X̃(i) are straightforward to derive. For the
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covariance, we have

Cov
(

∆X̃(i),∆X̃(i′ )

)
= Cov

(
X̃(i)(t+ ∆t;St+∆t)− X̃(i)(t;St), X̃(i′ )(t+ ∆t;St+∆t)− X̃(i′ )(t;St)

)
= Cov

(
X̃(i)(t+ ∆t;St+∆t), X̃(i′ )(t+ ∆t; St+∆t)

)
− Cov

(
X̃(i)(t+ ∆t; St+∆t), X̃(i′ )(t; St)

)
− Cov

(
X̃(i)(t;St), X̃(i′ )(t+ ∆t;St+∆t)

)
+ Cov

(
X̃(i)(t; St), X̃(i′ )(t;St)

)
.

For i ≤ i
′
, we have ω̃(i)(t;St) ≤ ω̃(i′ )(t; St), and Λ(ω̃(i)(t;St)) ≤ Λ(ω̃(i′ )(t; St)) as Λ(·) is an

increasing function. Then, the fourth term in the equation above can be further derived as

Cov
(
X̃(i)(t;St), X̃(i′ )(t;St)

)
= ξ2

0Cov
(
B(0)(Λ(ω̃(i)(t;St))), B(0)(Λ(ω̃(i′ )(t;St)))

)
= ξ2

0Λ(ω̃(i)(t;St)).

The second equality holds because for a standard Brownian motionB(·), we have Cov(B(s), B(t)) =
s if s ≤ t.

Likewise, we can easily obtain Cov
(
X̃(i)(t;St), X̃(i′ )(t + ∆t; St+∆t)

)
= ξ2

0Λ(ω̃(i)(t;St)).
Moreover, if the order of ω̃(i)(t;St) well preserves over [t, t + ∆t], i.e., ω̃(i)(t + ∆t;St+∆t) <

ω̃(i′ )(t+∆t;St+∆t) for i < i
′
, then Cov

(
X̃(i)(t+∆t;St+∆t), X̃(i′ )(t+∆t;St+∆t)

)
= ξ2

0Λ(ω̃(i)(t+

∆t;St+∆t)). However, for Cov
(
X̃(i)(t + ∆t;St+∆t), X̃(i′ )(t;St)

)
, we need to consider the fol-

lowing two cases:

(i) If ω̃(i)(t+∆t;St+∆t) ≤ ω̃(i′ )(t;St) then Cov
(
X̃(i)(t+∆t;St+∆t), X̃(i′ )(t;St)

)
= ξ2

0Λ(ω̃(i)(t+
∆t;St+∆t));

(ii) If ω̃(i)(t+∆t;St+∆t) > ω̃(i
′
)(t;St) then Cov

(
X̃(i)(t+∆t;St+∆t), X̃(i′ )(t;St)

)
= ξ2

0Λ(ω̃(i′ )(t; St)).

In the former case, Cov(∆X̃(i),∆X̃(i′ )) = 0, whereas in the latter case, Cov(∆X̃(i),∆X̃(i′ )) =

ξ2
0 [Λ(ω̃(i)(t+ ∆t; St+∆t))− Λ(ω̃(i′ )(t;St))]. This completes the proof.

Proof of Property 3. From (8), we know that when Λ(t) = t, the mean of Xi(t;St) in
the degradation path adjustment model is E[Xi(t;St)] = di(t;St) = µi(sj;γi)(t − τj−1) +∑j−1

l=1 µi(sl;γi)(τl − τl−1) for any t ∈ [τj−1, τj). Similarly, in the time scale adjustment
model, the mean of Xi(t;St) in (18) is given by E[Xi(t;St)] = µiωi(t; St) = µiζi(sj;κi)(t −
τj−1)+

∑j
l=2 µiζi(sl−1;κi)(τl−1−τl−2) for any t ∈ [τj−1, τj). It is clear that when Λ(t) = t and

µi(sj;γi) = µi ·ζi(sj;κi) for all j, we have di(t;St) = µiωi(t;St) and thus the two expressions
of E[Xi(t;St)] are identical.

Proof of Property 4. We first examine the ARD1 and ARA1 models. Recall that di,k =
di(tk;Stk). According to (10), it is known that the mean of X̃i(t;St) in the degradation

path adjustment model is E[X̃i(t;St)] =
∑k

l=1(1− δi,l)(di,l − di,l−1) + di(t;St)− di,k for any
t ∈ [tk, tk+1); in the time scale adjustment model, the mean of X̃i(t;St) in (23) is given
by E[X̃i(t;St)] =

∑k
l=1(1 − δi,l)µi(ωi,l − ωi,l−1) + µi(ωi(t;St) − ωi,k) for any t ∈ [tk, tk+1).

In Property 3, we know that di(t;St) = µiωi(t;St) for any t ∈ [tk, tk+1). Combining the
condition that the same δi,k for all k are applied, the expressions of E[X̃i(t;St)] for the
ARD1 and ARA1 models are exactly the same.

The case for the ARD∞ and ARA∞ models is very similar and thus omitted.
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