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Abstract

This paper proposes a double time-scale model to capture the day-to-day evolution along with the within-day variability of travel
time. The proposed model can be used to evaluate short-term to long-term effects of new transport policies and construction of
critical infrastructures, and to analyze the resilience of road networks under disruptions. The within-day travel time variability is
modeled using the functional data analysis, in which the effects of road traffic congestion and noise of traffic data are considered
explicitly. The within-day process is then regarded as the local volatility (or the noise process) to drive the day-to-day process while
the latter is described by a modified geometric Brownian motion (GBM). Then, the day-to-day travel time process is obtained by
the statistics of the modified GBM. The model probabilistically captures the evolution of day-to-day and within-day travel time
processes analytically. Moreover, an efficient method based on the cross-entropy method is developed for calibrating the model
parameters. A lasso-like regularization is employed to guarantee a small bias between the model estimations and the measurement
counterparts. Finally, two empirical studies are carried out to validate the proposed model at different scales with different traffic
scenarios, i.e., a case study on the Guangzhou Airport Expressway (link to path scale) under traffic accident conditions and a
case study in New York City (city-scale) to analyze the network resilience under Hurricane Sandy. Both case studies adopted
probe vehicle data but with different configurations (fine versus coarse, small versus big data). The empirical studies confirm that
the proposed model can accommodate the inherent variability in traffic conditions and data meanwhile being computationally
tractable. The numerical results illustrate the applicability of the proposed model as a powerful tool in practice for analyzing the
short-term and long-term impacts of disruptions and systematic changes in the performance of road networks.
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1. Introduction

The steady-state equilibrium paradigm was adopted as the basis for predicting the impacts of transport measures
for decades. However, transportation systems do not always operate at steady state but suffer from a range of intrinsic
and exogenous factors, such as daily demand fluctuations, special social events, adverse weather conditions, traffic
accidents, road maintenance works, and new transport policies. These uncertainties may cause irregular transportation
system disruptions and degradations while making the network vulnerable and lead to dynamic variability of traffic
flow patterns and travel costs. The dynamic traffic assignment (DTA) focusing on the within-day traffic dynamic
extensions of the equilibrium paradigm implicitly assumes the between-day scale to be constant, or the day-to-day
variation of the general pattern of traffic, especially the travel demand pattern, is not significant, see, e.g., Friesz
et al. (1993); Chow (2009); Zhong et al. (2011, 2012). The static assumption of the day-to-day traffic pattern limits
the within-day models to take into account the between-day variation of travel demand and other exogenous factors
induced by the ever-changing external environment, e.g., demand variation and supply disturbances (Cantarella and
Watling, 2016).

On the other hand, a growing body of day-to-day dynamics research assumes the traffic in the within-day scale is
static while it is dynamic in the between-day scale. The day-to-day dynamics refers to the evolution of traffic between
successive reference periods (the whole day or part of it, e.g., the morning peak period), see, e.g. Smith (1984); Friesz
et al. (1994, 1996); Nagurney and Zhang (1997); Sandholm (2010); He et al. (2010); He and Liu (2012); Guo et al.
(2015) in the deterministic setting; Cascetta and Cantarella (1991); Cantarella and Watling (2016) in the stochastic
setting. The within-day static traffic assumption enables the day-to-day models analytically tractable at the price of
losing important characteristics of congestion and thus decreasing the accuracy of the day-to-day models. However, it
is known that transportation systems are not memory-less. For example, travel time is a consequence of travelers’ route
and departure time choices subject to the stochastic network supply (e.g., disruptions). Initial states of the system will
affect the actual travel time under the same demand/flow. Real-time information/prediction of within-day dynamics
could affect the travelers’ decisions on departure time and route choice (which yields the within-day dynamic traffic)
and thus influence travelers’ trip-to-trip learning which results in day-to-day evolutions of network flow pattern and
travel time (Guo et al., 2018).

To capture the interaction between the within-day and day-to-day scales and to remedy the drawbacks of the above
individual approach, several recent studies, e.g., Friesz et al. (2011); Liu et al. (2017); Liu and Geroliminis (2017);
Guo et al. (2018), have made efforts in developing double time-scale dynamic traffic models. However, all these
models rely on simplified deterministic (within-day) traffic flow models. Nevertheless, these models involve plenty of
model parameters and are not ready for model calibration and validation from field traffic data. Developing a double
time-scale dynamic model that can be calibrated, validated and driven by real-world traffic data is an emerging task.
Moreover, it is also necessary to incorporate the uncertainties and noise in traffic data in the double time-scale dynamic
traffic model. These will enable us to deal with many aspects of both dynamic change and uncertainty/variability while
representing the time evolution as a stochastic process driven by real-time traffic data.

Most of the existing day-to-day, within-day, and double time-scale dynamic models (if not all) use flow measures
(Crawford et al., 2017). On the other hand, travel time is a standard measure for evaluating the performance of trans-
portation systems. Modeling dynamic travel time plays a vital role in travelers’ information systems, traffic control and
management. In the literature, travel time is also a direct measure for assessing the network reliability/vulnerability.
An extensive amount of literature devised risk measures to evaluate the variability in travel time based on within-day
travel time estimates. However, little attention is paid to investigate the day-to-day travel time evolution. Therefore, it
is of great significance to consider the travel time variability within a day when evaluating the day-to-day traffic con-
ditions. In this study, we first propose a double time-scale travel time model to consider the day-to-day and within-day
travel time evolution under uncertainties.

Characterizing travel time variability by the statistical properties provides a powerful means for understanding its
reliability and quantifying traffic network performance. State-of-art practice often adopts the mean and variance of
travel time to define its reliability and to develop indices such as the Buffer Time and Planning Time based on the
Gaussian assumption of travel time distribution. However, empirical studies have shown that travel time distributions
were not symmetrical but with high skewness and heavy tails especially under traffic disruptions such as accidents
and adverse weather conditions (Kim and Mahmassani, 2015; Sumalee et al., 2013). These common indices may not
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be informative for assessing the heavily skewed distributions (Kim, 2014). To this end, various probability distribu-
tions have been proposed to model the variability of travel time, and the suggestions of these models under different
circumstances have been discussed. Some most widely used distributions are the Log-normal, Gamma and Weibull
distributions (Fosgerau and Fukuda, 2012; Taylor, 2013; Kim and Mahmassani, 2015). Al-Deek and Emam (2006)
analyzed the loop detector data to investigate four kinds of distributions, i.e., Lognormal, Weibull, Normal and Ex-
ponential. It was found that the Lognormal distribution best fits the travel time distribution. Kim and Mahmassani
(2015) proposed a compound Gamma representation for modeling both the within-day (or vehicle-to-vehicle) and
day-to-day travel time variability under the linearity assumption of the relationship between mean and standard devi-
ation. However, Yildirimoglu et al. (2015) commented that this relationship could not be captured by a linear curve
in the day-to-day time-scale. Nevertheless, most of the risk measures do not capture the effect of the heavy tails in
dynamic travel time distributions induced by rare extreme traffic events. It is important to understand the transporta-
tion system performance in terms of risk for the total system cost to develop control strategies for risk management
in traffic network under uncertainties. In terms of risks, vulnerability analysis could be connected with the reliabil-
ity analysis of travel time distributions with heavy tails. Thus, we introduce a double time-scale risk measure for
characterizing travel time variability and identifying the most vulnerable links (or regions).

This study addresses the need of double time-scale (within-day and day-to-day) travel time model to describe the
overall travel time variability, which allows evaluating the short-term to long-term impacts of traffic disruptions and
systematic changes on the performance of traffic networks. Firstly, the within-day travel time variability that captures
the effects of traffic congestion and noise in traffic data is established via functional data analysis (FDA) (Guardiola
et al., 2014; Wang et al., 2016; Crawford et al., 2017; Zhong et al., 2017). The FDA is used as a data filtering
tool and a dictionary-based data compression method to identify travel time features of both spatial and temporal
dimensions. To this end, the within-day process can be regarded as a data-driven component of the proposed model
that enables the model to take in the raw traffic data with dynamic and noisy nature, which is unlike the conventional
day-to-day models. Secondly, the day-to-day travel time process is modeled via a discretized version of a modified
Geometric Brownian Motion (GBM) by incorporating the within-day process as local volatility to yield a double time-
scale model. Given the statistics of the within-day travel time process, analytic results that probabilistically capture
the evolution of day-to-day travel time process are derived. The modified GBM can be regarded as a model-driven
component of the proposed model. In this sense the proposed double time-scale travel time model can be viewed as
an integration of data-driven and model-driven approaches.

Similar to Watling and Hazelton (2018), the proposed double time-scale travel time model can describe the vari-
ability of the day-to-day evolution from the transient impact to the steady-state behavior (if any) of some systematic
changes in traffic network, e.g., bridge collapse, hurricane, and new traffic policy measures. Meanwhile, the proposed
model can capture the variability of within-day travel time process and the effect of noise in traffic data. To our best
knowledge, conventional dynamic evolution models are often built on traffic assignment models and without model
calibration using real traffic data. For example, conventional day-to-day models cannot take in raw traffic data with
dynamic and noisy nature directly but have to aggregate the raw traffic data collected within a day into a “point”
because of the within-day static traffic assumption. This data preprocessing requires an expert level of experience and
causes bias to the conventional day-to-day models while inducing difficulty in model calibration with traffic data apart
from the behavior realism. In this respect, a relative entropy-based (also known as Kullback-Leibler (KL) distance)
method is proposed for calibrating the proposed double time-scale travel time model, leading to proper distributions of
interest. Finally, we apply the double time-scale travel time model for resilience analysis by introducing a risk-based
measure that adapts the heavy-tailed travel time distributions to quantify the deterioration of network performance.
For a better grasp and understanding of this paper, a precedence diagram for the proposed double time-scale dynamic
travel time model and its application on network resilience analysis is depicted in Figure 1.

The rest of this paper is organized as follows. Section 2 presents the derivation of the double time-scale travel
time processes. Section 3 proposes a model calibration scheme for the proposed double time-scale travel time model.
Two empirical studies are conducted in Section 4 to validate the proposed model at different scales under different
traffic scenarios. Application of the proposed model for the resilience analysis is also discussed in the empirical
studies. Finally, Section 5 concludes the paper. Companion materials and proofs are provided in the online appendix
at https://www.dropbox.com/sh/ul6df71pg3pggbc/AABVwKZHHYKBVSkF_9PKgnBPa?dl=0. At the end of this
section, we summarize the key notations throughout this paper in Table 1.
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Fig. 1. Framework for modeling the double time-scale dynamic travel time variability.

Table 1: List of notations.

Notations Descriptions

Tm Discretized time interval within one day, m = 1, · · · ,M
Vm A matrix of travel time samplings
Wm A vector of daily realizations
Xm(i) Day-to-day travel time process at time slot m where days are indexed by i = 1, · · · ,N
Xim Within-day travel time process of day i at time interval Tm
ni The number of data samples collected in day i
eim The noise term under independent identically Gaussian distribution
t, s Time variable
µ(t) Mean function of travel time
λk Eigenvalue from the orthonormal expansions of the covariance function of travel time
ψk(t) Eigenfunctions from the orthonormal expansions of the covariance function of travel time subject to orthonormal

constraints, i.e.
∫

Tm
ψ2

k (s)ds = 1 and
∫

Tm
ψy(s)ψk(s)ds = 0, ∀y < k

ξik Scores of principal components
κ The accuracy level
µim, σim The mean and standard deviation of travel time function of day i during time interval Tm
ε Standard Gaussian distribution, i.e. N(0, 1)
αm Drift parameter of stochastic process Xm
βm Volatility parameter of stochastic process Xm
∆Fm(i) A discrete stochastic process
E[∆Fm(i)] The mean of ∆Fm(i)
D[∆Fm(i)] The variance of ∆Fm(i)
δ Width of the bounding box
φ1, φ2 Sample size for the random sampling and importance sampling
U Parameter set
Rm(i) Network-scale pace distribution
d The trip type, d = 1, · · · ,D
Xd

m(i) The pace distribution of trip type d at time interval Tm in day i
ad Importance weighting of trip type d

2. Modeling dynamic travel time distributions in both within-day & day-to-day time-scales

The dynamic travel time variability is defined from two perspectives: (1) the day-to-day travel time variability that
concerns the travel time variation over different days along a particular route at a given departure time interval; and
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be informative for assessing the heavily skewed distributions (Kim, 2014). To this end, various probability distribu-
tions have been proposed to model the variability of travel time, and the suggestions of these models under different
circumstances have been discussed. Some most widely used distributions are the Log-normal, Gamma and Weibull
distributions (Fosgerau and Fukuda, 2012; Taylor, 2013; Kim and Mahmassani, 2015). Al-Deek and Emam (2006)
analyzed the loop detector data to investigate four kinds of distributions, i.e., Lognormal, Weibull, Normal and Ex-
ponential. It was found that the Lognormal distribution best fits the travel time distribution. Kim and Mahmassani
(2015) proposed a compound Gamma representation for modeling both the within-day (or vehicle-to-vehicle) and
day-to-day travel time variability under the linearity assumption of the relationship between mean and standard devi-
ation. However, Yildirimoglu et al. (2015) commented that this relationship could not be captured by a linear curve
in the day-to-day time-scale. Nevertheless, most of the risk measures do not capture the effect of the heavy tails in
dynamic travel time distributions induced by rare extreme traffic events. It is important to understand the transporta-
tion system performance in terms of risk for the total system cost to develop control strategies for risk management
in traffic network under uncertainties. In terms of risks, vulnerability analysis could be connected with the reliabil-
ity analysis of travel time distributions with heavy tails. Thus, we introduce a double time-scale risk measure for
characterizing travel time variability and identifying the most vulnerable links (or regions).

This study addresses the need of double time-scale (within-day and day-to-day) travel time model to describe the
overall travel time variability, which allows evaluating the short-term to long-term impacts of traffic disruptions and
systematic changes on the performance of traffic networks. Firstly, the within-day travel time variability that captures
the effects of traffic congestion and noise in traffic data is established via functional data analysis (FDA) (Guardiola
et al., 2014; Wang et al., 2016; Crawford et al., 2017; Zhong et al., 2017). The FDA is used as a data filtering
tool and a dictionary-based data compression method to identify travel time features of both spatial and temporal
dimensions. To this end, the within-day process can be regarded as a data-driven component of the proposed model
that enables the model to take in the raw traffic data with dynamic and noisy nature, which is unlike the conventional
day-to-day models. Secondly, the day-to-day travel time process is modeled via a discretized version of a modified
Geometric Brownian Motion (GBM) by incorporating the within-day process as local volatility to yield a double time-
scale model. Given the statistics of the within-day travel time process, analytic results that probabilistically capture
the evolution of day-to-day travel time process are derived. The modified GBM can be regarded as a model-driven
component of the proposed model. In this sense the proposed double time-scale travel time model can be viewed as
an integration of data-driven and model-driven approaches.

Similar to Watling and Hazelton (2018), the proposed double time-scale travel time model can describe the vari-
ability of the day-to-day evolution from the transient impact to the steady-state behavior (if any) of some systematic
changes in traffic network, e.g., bridge collapse, hurricane, and new traffic policy measures. Meanwhile, the proposed
model can capture the variability of within-day travel time process and the effect of noise in traffic data. To our best
knowledge, conventional dynamic evolution models are often built on traffic assignment models and without model
calibration using real traffic data. For example, conventional day-to-day models cannot take in raw traffic data with
dynamic and noisy nature directly but have to aggregate the raw traffic data collected within a day into a “point”
because of the within-day static traffic assumption. This data preprocessing requires an expert level of experience and
causes bias to the conventional day-to-day models while inducing difficulty in model calibration with traffic data apart
from the behavior realism. In this respect, a relative entropy-based (also known as Kullback-Leibler (KL) distance)
method is proposed for calibrating the proposed double time-scale travel time model, leading to proper distributions of
interest. Finally, we apply the double time-scale travel time model for resilience analysis by introducing a risk-based
measure that adapts the heavy-tailed travel time distributions to quantify the deterioration of network performance.
For a better grasp and understanding of this paper, a precedence diagram for the proposed double time-scale dynamic
travel time model and its application on network resilience analysis is depicted in Figure 1.

The rest of this paper is organized as follows. Section 2 presents the derivation of the double time-scale travel
time processes. Section 3 proposes a model calibration scheme for the proposed double time-scale travel time model.
Two empirical studies are conducted in Section 4 to validate the proposed model at different scales under different
traffic scenarios. Application of the proposed model for the resilience analysis is also discussed in the empirical
studies. Finally, Section 5 concludes the paper. Companion materials and proofs are provided in the online appendix
at https://www.dropbox.com/sh/ul6df71pg3pggbc/AABVwKZHHYKBVSkF_9PKgnBPa?dl=0. At the end of this
section, we summarize the key notations throughout this paper in Table 1.
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Fig. 1. Framework for modeling the double time-scale dynamic travel time variability.

Table 1: List of notations.

Notations Descriptions

Tm Discretized time interval within one day, m = 1, · · · ,M
Vm A matrix of travel time samplings
Wm A vector of daily realizations
Xm(i) Day-to-day travel time process at time slot m where days are indexed by i = 1, · · · ,N
Xim Within-day travel time process of day i at time interval Tm
ni The number of data samples collected in day i
eim The noise term under independent identically Gaussian distribution
t, s Time variable
µ(t) Mean function of travel time
λk Eigenvalue from the orthonormal expansions of the covariance function of travel time
ψk(t) Eigenfunctions from the orthonormal expansions of the covariance function of travel time subject to orthonormal

constraints, i.e.
∫

Tm
ψ2

k (s)ds = 1 and
∫

Tm
ψy(s)ψk(s)ds = 0, ∀y < k

ξik Scores of principal components
κ The accuracy level
µim, σim The mean and standard deviation of travel time function of day i during time interval Tm
ε Standard Gaussian distribution, i.e. N(0, 1)
αm Drift parameter of stochastic process Xm
βm Volatility parameter of stochastic process Xm
∆Fm(i) A discrete stochastic process
E[∆Fm(i)] The mean of ∆Fm(i)
D[∆Fm(i)] The variance of ∆Fm(i)
δ Width of the bounding box
φ1, φ2 Sample size for the random sampling and importance sampling
U Parameter set
Rm(i) Network-scale pace distribution
d The trip type, d = 1, · · · ,D
Xd

m(i) The pace distribution of trip type d at time interval Tm in day i
ad Importance weighting of trip type d

2. Modeling dynamic travel time distributions in both within-day & day-to-day time-scales

The dynamic travel time variability is defined from two perspectives: (1) the day-to-day travel time variability that
concerns the travel time variation over different days along a particular route at a given departure time interval; and
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Fig. 2. An illustration of dynamic travel time processes and distributions. The blue curves are realizations of Xim (the within-
day process of day i) and yellow curves are realizations of Xm(i) (the day-to-day process observed during time interval Tm, e.g.,
8 : 00 − 8 : 05 AM), while the red curves depict the confidence interval of Xm(i). The mean process of the double time-scale travel
time model and its confidence intervals can be described by a three-dimensional image as it will be shown in the empirical studies.

(2) the within-day travel time variability that refers to the travel time experienced by different drivers who depart
within the same time slot or the dynamics of travel time with respect to different departure time. Figure 2 illustrates
the definition and relationship of travel time in double time-scales. Within-day travel time process is denoted by
Xi(t) for day i = 1, · · · ,N where t denotes the (within-day) time instant. Raw traffic data collected every day may
be with irregular sampling rates. For example, probe vehicles upload their GPS data1 with noise to the system with
irregular sampling rates ranging from 15s to 120s. Therefore, it is possible that we do not have any data record
for a certain time instant. To avoid this, we discretize the (within-day) time instant t to M time intervals Tm, the
within-day process within each discretization interval is denoted as {Xim : m = 1, · · · ,M}. Day-to-day travel time
process observed at time interval Tm is denoted by {Xm(i) : i = 1, · · · ,N}. Raw measurements are denoted as a matrix
Vm = [V1m, · · · ,VNm]T , where Vim is a vector of measurements observed in day i during time interval Tm, i.e.,
Vim = {Vim(t j) : t j ∈ Tm, j = 1, · · · , ni}, with t j the time instant that the data sample j is recorded.

2.1. Within-day travel time estimation

The within-day process Xi(t) is assumed to follow a Gaussian process that it can be specified by its mean function
µi(t) = E (Xi(t)) and covariance function G(t, s) = cov (Xi(t), Xi(s)), respectively. Suppose G(t, s) = cov (Xi(t), Xi(s)),
∀s, t, has orthonormal expansions as follows:

G(t, s) =
∞∑

k=1

λkψk(t)ψk(s) (1)

where {λk, ∀k} is a set of eigenvalues in non-ascending order and {ψk} is the corresponding set of eigenfunctions that
form an orthonormal set of basis with a unit norm. According to the Karhunen-Loève representation, process Xi(t) can
be expanded as

Xi(t) = µ(t) +
∞∑

k=1

ξikψk(t) (2)

1 Although we mainly use GPS data of probe vehicles in this paper, the proposed methodology can be applied to other data sources as well.
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where ξik is a random coefficient (known as a functional principal component (FPC)), satisfying E(ξik) = 0 and
var(ξik) = λk. The raw traffic data collected everyday can be regarded as discrete observations sampled from the
within-day stochastic traffic process. Considering the data availability and the within-day time discretization Tm, the
measurement Vim(t j) of the within-day travel time process as a function of time t ∈ Tm, i.e., Xim(t), at sampling time
t j, ∀t j ∈ Tm, is polluted by random noise eim, we have

Vim(t j) = Xim(t j) + eim = µ(t j) +
∞∑

k=1

ξikψk(t j) + eim, t j ∈ Tm (3)

where eim are assumed to be uncorrelated with each other and are independent of ξik with E(eim) = 0, var(eim) = ω2.
This assumption is not strictly necessary if ω2

im = var(eim) can be regarded as the discretization of a smooth variance
function ω2(t) such that ω2

im = ω
2(t j).

The FDA is claimed to be a powerful tool for analyzing noisy data with irregular sample rates in the statistics
literature (Yao et al., 2005; Wang et al., 2016). On the other hand, The FDA can act as a dictionary-based data
compression method to identify the features of both spatial and temporal traffic patterns using the eigenfunctions
extracted from the training data. Zhong et al. (2017) applied the FDA for within-day travel time prediction under
abnormal traffic conditions and showed its computational efficiency for real-time applications. Therefore, we adopt
the FDA to generate useful knowledge (or the set of eigenfunctions) of within-day travel time distributions of all
sample days to reduce the “redundancy” of the raw data. The algorithm for estimating the within-day travel time
process by the FDA is summarized in terms of Pseudocode as presented in Table 2.

In the FDA, the Karhunen-Loève decomposition is used for the eigenanalysis of general linear operators, which
is essentially the singular value decomposition in the functional context. The functional principal component anal-
ysis (FPCA) can be regarded as an extension of the PCA for multivariate data to functional data. The underlying
stochastic process Xim(t) can be represented by a linear combination of a countable sequence of FPCs (or scores)
ξik, k = 1, · · · ,∞, which are uncorrelated random variables, and the corresponding orthogonal eigenfunctions (i.e., the
basis functions) ψk(t), k = 1, · · · ,∞. In practice, the FPCs are truncated to a finite vector accomplishing the goal of
dimension reduction. The FPCA “converts” the functional data (of infinite-dimension) to a vector of random scores of
dimension K with each process represented by their vector of scores on this basis. Then the analysis concerning the
resulting random vector of FPCs can be accomplished using the tools of multivariate statistical analysis.

2.2. Double time-scale model

Note that the within-day travel time processes are evaluated independently day by day. Real-time traffic condi-
tion disseminated through advanced traveler information systems (ATIS) in conjunction with travelers’ day-to-day
experience would affect their choices and thus will affect the day-to-day traffic evolution, which further complicates
the travel time dynamics. How these two time-scale dynamics are coupled has been rarely modeled and explored in
the literature. The Gaussian process is often used in the literature for capturing the day-to-day transient traffic phe-
nomenon to steady-state traffic behavior (see e.g. Watling and Hazelton (2018) and the references therein) and also the
within-day traffic dynamics (see e.g. Yeon et al. (2008); Zhong et al. (2017) and the references therein). As reviewed,
Lognormal distribution is widely used to fit travel time distribution in the literature. The geometric Brownian motion
(GBM)2, which is a powerful tool in the stock pricing context, offers a bridge to connect these two observations.
Moreover, the GBM is analytically tractable for modeling stochastic processes described by Lognormal distributions.
Therefore, we proposed a modified GBM to model the double time-scale travel time process. On the other hand, as
mentioned in the introduction, conventional day-to-day models cannot use the raw traffic data directly but have to
aggregate the raw traffic data into a “point” for each day due to the within-day static traffic assumption. The FDA
presented in the last section can take in raw traffic data to capture the variability of within-day travel time process and
the effect of noise in traffic data. Inspired by the GBM model, the geometric transformation is adopted to transform
the Gaussian within-day process into a Lognormal one, so as to capture the skewed distributions of travel time under

2 The model of geometric Brownian motion is dXt(i) = αtXt(i)di + βtXt(i)dBi where αt , βt are the drift (trend) and volatility parameters of the
stochastic process Xt and the Brownian motion (or Wiener process) Bt ∼ N(0, t). The initial value of the Wiener process is B0 = 0 yielding X(0) = 1.
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Fig. 2. An illustration of dynamic travel time processes and distributions. The blue curves are realizations of Xim (the within-
day process of day i) and yellow curves are realizations of Xm(i) (the day-to-day process observed during time interval Tm, e.g.,
8 : 00 − 8 : 05 AM), while the red curves depict the confidence interval of Xm(i). The mean process of the double time-scale travel
time model and its confidence intervals can be described by a three-dimensional image as it will be shown in the empirical studies.

(2) the within-day travel time variability that refers to the travel time experienced by different drivers who depart
within the same time slot or the dynamics of travel time with respect to different departure time. Figure 2 illustrates
the definition and relationship of travel time in double time-scales. Within-day travel time process is denoted by
Xi(t) for day i = 1, · · · ,N where t denotes the (within-day) time instant. Raw traffic data collected every day may
be with irregular sampling rates. For example, probe vehicles upload their GPS data1 with noise to the system with
irregular sampling rates ranging from 15s to 120s. Therefore, it is possible that we do not have any data record
for a certain time instant. To avoid this, we discretize the (within-day) time instant t to M time intervals Tm, the
within-day process within each discretization interval is denoted as {Xim : m = 1, · · · ,M}. Day-to-day travel time
process observed at time interval Tm is denoted by {Xm(i) : i = 1, · · · ,N}. Raw measurements are denoted as a matrix
Vm = [V1m, · · · ,VNm]T , where Vim is a vector of measurements observed in day i during time interval Tm, i.e.,
Vim = {Vim(t j) : t j ∈ Tm, j = 1, · · · , ni}, with t j the time instant that the data sample j is recorded.

2.1. Within-day travel time estimation

The within-day process Xi(t) is assumed to follow a Gaussian process that it can be specified by its mean function
µi(t) = E (Xi(t)) and covariance function G(t, s) = cov (Xi(t), Xi(s)), respectively. Suppose G(t, s) = cov (Xi(t), Xi(s)),
∀s, t, has orthonormal expansions as follows:

G(t, s) =
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k=1

λkψk(t)ψk(s) (1)

where {λk, ∀k} is a set of eigenvalues in non-ascending order and {ψk} is the corresponding set of eigenfunctions that
form an orthonormal set of basis with a unit norm. According to the Karhunen-Loève representation, process Xi(t) can
be expanded as

Xi(t) = µ(t) +
∞∑

k=1

ξikψk(t) (2)

1 Although we mainly use GPS data of probe vehicles in this paper, the proposed methodology can be applied to other data sources as well.
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where ξik is a random coefficient (known as a functional principal component (FPC)), satisfying E(ξik) = 0 and
var(ξik) = λk. The raw traffic data collected everyday can be regarded as discrete observations sampled from the
within-day stochastic traffic process. Considering the data availability and the within-day time discretization Tm, the
measurement Vim(t j) of the within-day travel time process as a function of time t ∈ Tm, i.e., Xim(t), at sampling time
t j, ∀t j ∈ Tm, is polluted by random noise eim, we have

Vim(t j) = Xim(t j) + eim = µ(t j) +
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ξikψk(t j) + eim, t j ∈ Tm (3)

where eim are assumed to be uncorrelated with each other and are independent of ξik with E(eim) = 0, var(eim) = ω2.
This assumption is not strictly necessary if ω2

im = var(eim) can be regarded as the discretization of a smooth variance
function ω2(t) such that ω2
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2(t j).

The FDA is claimed to be a powerful tool for analyzing noisy data with irregular sample rates in the statistics
literature (Yao et al., 2005; Wang et al., 2016). On the other hand, The FDA can act as a dictionary-based data
compression method to identify the features of both spatial and temporal traffic patterns using the eigenfunctions
extracted from the training data. Zhong et al. (2017) applied the FDA for within-day travel time prediction under
abnormal traffic conditions and showed its computational efficiency for real-time applications. Therefore, we adopt
the FDA to generate useful knowledge (or the set of eigenfunctions) of within-day travel time distributions of all
sample days to reduce the “redundancy” of the raw data. The algorithm for estimating the within-day travel time
process by the FDA is summarized in terms of Pseudocode as presented in Table 2.

In the FDA, the Karhunen-Loève decomposition is used for the eigenanalysis of general linear operators, which
is essentially the singular value decomposition in the functional context. The functional principal component anal-
ysis (FPCA) can be regarded as an extension of the PCA for multivariate data to functional data. The underlying
stochastic process Xim(t) can be represented by a linear combination of a countable sequence of FPCs (or scores)
ξik, k = 1, · · · ,∞, which are uncorrelated random variables, and the corresponding orthogonal eigenfunctions (i.e., the
basis functions) ψk(t), k = 1, · · · ,∞. In practice, the FPCs are truncated to a finite vector accomplishing the goal of
dimension reduction. The FPCA “converts” the functional data (of infinite-dimension) to a vector of random scores of
dimension K with each process represented by their vector of scores on this basis. Then the analysis concerning the
resulting random vector of FPCs can be accomplished using the tools of multivariate statistical analysis.

2.2. Double time-scale model

Note that the within-day travel time processes are evaluated independently day by day. Real-time traffic condi-
tion disseminated through advanced traveler information systems (ATIS) in conjunction with travelers’ day-to-day
experience would affect their choices and thus will affect the day-to-day traffic evolution, which further complicates
the travel time dynamics. How these two time-scale dynamics are coupled has been rarely modeled and explored in
the literature. The Gaussian process is often used in the literature for capturing the day-to-day transient traffic phe-
nomenon to steady-state traffic behavior (see e.g. Watling and Hazelton (2018) and the references therein) and also the
within-day traffic dynamics (see e.g. Yeon et al. (2008); Zhong et al. (2017) and the references therein). As reviewed,
Lognormal distribution is widely used to fit travel time distribution in the literature. The geometric Brownian motion
(GBM)2, which is a powerful tool in the stock pricing context, offers a bridge to connect these two observations.
Moreover, the GBM is analytically tractable for modeling stochastic processes described by Lognormal distributions.
Therefore, we proposed a modified GBM to model the double time-scale travel time process. On the other hand, as
mentioned in the introduction, conventional day-to-day models cannot use the raw traffic data directly but have to
aggregate the raw traffic data into a “point” for each day due to the within-day static traffic assumption. The FDA
presented in the last section can take in raw traffic data to capture the variability of within-day travel time process and
the effect of noise in traffic data. Inspired by the GBM model, the geometric transformation is adopted to transform
the Gaussian within-day process into a Lognormal one, so as to capture the skewed distributions of travel time under

2 The model of geometric Brownian motion is dXt(i) = αtXt(i)di + βtXt(i)dBi where αt , βt are the drift (trend) and volatility parameters of the
stochastic process Xt and the Brownian motion (or Wiener process) Bt ∼ N(0, t). The initial value of the Wiener process is B0 = 0 yielding X(0) = 1.
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Table 2: Within-day travel time estimation using functional data analysis.

Functional Data Analysis Algorithm in Pseudocode

Start
Input: Load data Vm (the input time grid could be irregular, i.e. {ti j : i = 1, · · · ,N, j = 1, · · · , ni});
Initialization:

Set the threshold κ = 95% for model selection.
Kernel type: Gaussian; Bandwidth selection: Generalized Cross-Validation (GCV)

(Mean function):
Apply locally weighted least square (LWLS) to scatterplots

{
(ti j,Vm(ti j)) : i = 1, · · · ,N, j = 1, · · · , ni

}
:

min
β0 ,β1

N∑
i=1

ni∑
j=1

K1

(
ti j − t

hµ

)
{Vm(ti j) − β0 − β1(t − ti j)}2

(K1 is a univariate kernel function. hµ is the bandwidth.)
=⇒ a smooth mean function µ̂(t) = β̂0(t), t ∈ Tm

(Covariance surface):
Apply two-dimensional LWLS to scatterplots

{
(ti j, til), (Vm(ti j) − µ̂(t j))((Vm(til) − µ̂(tl)) : i = 1, · · · ,N, j, l = 1, · · · , ni, j � l

}
:

min
β0 ,β11 ,β12

N∑
i=1

ni∑
j=1, j�l

K2

(
ti j − t
hC1

,
til − s
hC2

)
{(Vm(ti j) − µ̂(t j))((Vm(til) − µ̂(tl)) − (β0 + β11(t − ti j) + β12(s − til))}2

(K2 is a bivariate density. hC1 , hC2 are bandwidths.)
=⇒ a smooth covariance surface ĉov(Xim(t), Xim(s)) = β̂0(t, s), t, s ∈ Tm

(Principal components):
Spectral decomposition to covariance: cov(Xim(t), Xim(s)) =

∑∞
k=1 λkψk(t)ψk(s)

Discretizing ĉov(Xim(t), Xim(s)) in a regular output time grid;

Solve the eigenequations
∫

Tm

cov(Xim(t), Xim(s)) ψk(s) ds = λkψk(t);

Sort λk in descending order and rearrange k
=⇒ eigenvalues λ̂k and eigenfunctions ψ̂k(t)
Determine the number of principal components K: (Take the fraction of variance explained (FVE) method as an example.)

Evaluate: FVE =
K∑

k=1

(λ̂k)/
H∑

k=1

(λ̂k) > κ, (H is the number of λ̂k .)

=⇒ the number of principal components K
(Scores of principal components):

Apply principal analysis by conditional expectation (PACE):
ξ̂ik = E(ξ̂ik |Vim) = λ̂kψ̂

T
ikΣ̂
−1
Vim

(Vim − µ̂im), where µ̂im = (µ̂(t1), · · · , µ̂(tni ))
T , Σ̂Vim = ĉov(Vm(ti j),Vm(til))

=⇒ scores {ξ̂ik}
Output:

Xim(t) = µ̂(t) +
K∑

k=1
ξ̂ikψ̂k(t) =⇒ within-day travel time function Xim(t), i = 1, · · · ,N,m = 1, · · · ,M, whose mean and covariance functions

are µim(t) = µ̂(t) +
K∑

k=1
ξ̂ikψ̂k(t), σ2

im(t) =
K∑

k=1
λ̂kψ̂k(t)ψ̂k(t), with λ̂k = var(ξ̂ik)

End

abnormal traffic conditions. The double time-scale travel time process is modeled as:

dXm(i) = αmXm(i)dµim + βmXm(i)dσimε, ε ∼ N(0, 1) (4)

where αm, βm are drift and volatility parameters of the stochastic process Xm and µim, σim are the mean and standard
deviation of Xim obtained from the FDA. The first component describes the day-to-day process under a risk-free
condition, while the second component describes the uncertainties induced by external effects.

Let Fm(i) = log Xm(i), then we have

dFm(i) = d log Xm(i) =
1

Xm(i)
(dXm(i)) = αmdµim + βmdσimε (5)

Note that the discrete-time nature of the day-to-day process and in line with Cantarella and Watling (2016), we use
a difference version to replace the above differential process (in continuous-time) to yield a discrete-time day-to-day
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process as:

∆ log Xm(i) = log Xm(i) − log Xm(i − 1) = log
(

Xm(i)
Xm(i − 1)

)
∼ GP (E[∆Fm(i)],D[∆Fm(i)]) (6)

where GP(·, ·) denotes the Gaussian process, E[∆Fm(i)] and D[∆Fm(i)] are the mean and variance of ∆Fm(i), respec-
tively.

According to the properties of Lognormal distribution (Please kindly refer to the online appendix for details), we
have

E
[

Xm(i)
Xm(i−1)

]
= exp

(
E[∆Fm(i)] + D[∆Fm(i)]

2

)

D
[

Xm(i)
Xm(i−1)

]
= E
[

Xm(i)
Xm(i−1)

]2 −
(
E
[

Xm(i)
Xm(i−1)

])2
= exp (2E[∆Fm(i)] + D[∆Fm(i)])

(
exp (D[∆Fm(i)]) − 1

) (7)

for each day i. As the stochastic process Xm evolves from day to day, we could obtain the probability density function
(PDF) of Xm(i − 1) by recursive iteration. Given a realization Xm(i − 1) of Xm(i − 1), and its PDF p(Xm(i − 1)), we can
derive the conditional mean and variance of Xm(i) as:

E[Xm(i)|Xm(i − 1)] = Xm(i − 1) exp
(
E[∆Fm(i)] + D[∆Fm(i)]

2

)

D[Xm(i)|Xm(i − 1)] =
(
Xm(i − 1)

)2
exp (2E[∆Fm(i)] + D[∆Fm(i)])

(
exp(D[∆Fm(i)]) − 1

)

E[Xm(i)] =
∫

E[Xm(i)|Xm(i − 1)]p(Xm(i − 1))dXm(i − 1)

(8)

According to the transformation of normal and Lognormal distributions, we take the medians as the realizations
of day-to-day travel time under Lognormal assumptions while the mean values are for within-day travel time under
Gaussian assumptions. Under this assumption, the realization of Xm(i) is given by

Xm(i) = Xm(i − 1) exp (E[∆Fm(i)]) , (9)

where we have used median value of Xm(i − 1) to proceed the calculation that renders D[∆Fm(i)]/2 = 0.
Let Xm(i) ∼ Lognormal(aim, b2

im), then the parameters could be evaluated by

aim = ln


E[Xm(i)]√

1 + D[Xm(i)]
(E[Xm(i)])2

 , b2
im = ln

(
1 +

D[Xm(i)]
(E[Xm(i)])2

)
(10)

3. Model calibration

Model calibration can be regarded as an optimization problem.

u∗ = arg min
u∈U

S (F(u),O) (11)

where S (F(u),O) is the objective function that evaluates the difference between a model F(u), u ∈ U output and its
observation counterpart O. As the travel time distributions could be skewed under abnormal traffic conditions, it would
be biased when one chooses to minimize the mean squared error. Thus, we introduce the relative entropy (also known
as Kullback-Leibler (KL) divergence/distance) to measure the difference between the estimated distribution and the
empirical distribution.

The relative entropy is often used to measure the dissimilarity of two probability distributions, e.g., p(x) and q(x).
To be specific, the KL distance of q from p, denoted DKL(p||q), measures loss/change of information when q(x) is
used to approximate p(x). For discrete probability distributions pk and qk, the KL distance of q from p is defined as

DKL(p‖q) =
K∑

k=1

pk ln
pk

qk
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Table 2: Within-day travel time estimation using functional data analysis.

Functional Data Analysis Algorithm in Pseudocode
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Input: Load data Vm (the input time grid could be irregular, i.e. {ti j : i = 1, · · · ,N, j = 1, · · · , ni});
Initialization:
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Kernel type: Gaussian; Bandwidth selection: Generalized Cross-Validation (GCV)

(Mean function):
Apply locally weighted least square (LWLS) to scatterplots

{
(ti j,Vm(ti j)) : i = 1, · · · ,N, j = 1, · · · , ni

}
:

min
β0 ,β1

N∑
i=1

ni∑
j=1

K1

(
ti j − t

hµ

)
{Vm(ti j) − β0 − β1(t − ti j)}2

(K1 is a univariate kernel function. hµ is the bandwidth.)
=⇒ a smooth mean function µ̂(t) = β̂0(t), t ∈ Tm

(Covariance surface):
Apply two-dimensional LWLS to scatterplots

{
(ti j, til), (Vm(ti j) − µ̂(t j))((Vm(til) − µ̂(tl)) : i = 1, · · · ,N, j, l = 1, · · · , ni, j � l

}
:

min
β0 ,β11 ,β12

N∑
i=1

ni∑
j=1, j�l

K2

(
ti j − t
hC1

,
til − s
hC2

)
{(Vm(ti j) − µ̂(t j))((Vm(til) − µ̂(tl)) − (β0 + β11(t − ti j) + β12(s − til))}2

(K2 is a bivariate density. hC1 , hC2 are bandwidths.)
=⇒ a smooth covariance surface ĉov(Xim(t), Xim(s)) = β̂0(t, s), t, s ∈ Tm
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Discretizing ĉov(Xim(t), Xim(s)) in a regular output time grid;
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k=1

(λ̂k) > κ, (H is the number of λ̂k .)
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T
ikΣ̂
−1
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(Vim − µ̂im), where µ̂im = (µ̂(t1), · · · , µ̂(tni ))
T , Σ̂Vim = ĉov(Vm(ti j),Vm(til))
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Xim(t) = µ̂(t) +
K∑

k=1
ξ̂ikψ̂k(t) =⇒ within-day travel time function Xim(t), i = 1, · · · ,N,m = 1, · · · ,M, whose mean and covariance functions

are µim(t) = µ̂(t) +
K∑

k=1
ξ̂ikψ̂k(t), σ2

im(t) =
K∑

k=1
λ̂kψ̂k(t)ψ̂k(t), with λ̂k = var(ξ̂ik)

End

abnormal traffic conditions. The double time-scale travel time process is modeled as:

dXm(i) = αmXm(i)dµim + βmXm(i)dσimε, ε ∼ N(0, 1) (4)

where αm, βm are drift and volatility parameters of the stochastic process Xm and µim, σim are the mean and standard
deviation of Xim obtained from the FDA. The first component describes the day-to-day process under a risk-free
condition, while the second component describes the uncertainties induced by external effects.

Let Fm(i) = log Xm(i), then we have

dFm(i) = d log Xm(i) =
1

Xm(i)
(dXm(i)) = αmdµim + βmdσimε (5)

Note that the discrete-time nature of the day-to-day process and in line with Cantarella and Watling (2016), we use
a difference version to replace the above differential process (in continuous-time) to yield a discrete-time day-to-day
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process as:

∆ log Xm(i) = log Xm(i) − log Xm(i − 1) = log
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Xm(i − 1)
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∼ GP (E[∆Fm(i)],D[∆Fm(i)]) (6)

where GP(·, ·) denotes the Gaussian process, E[∆Fm(i)] and D[∆Fm(i)] are the mean and variance of ∆Fm(i), respec-
tively.
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for each day i. As the stochastic process Xm evolves from day to day, we could obtain the probability density function
(PDF) of Xm(i − 1) by recursive iteration. Given a realization Xm(i − 1) of Xm(i − 1), and its PDF p(Xm(i − 1)), we can
derive the conditional mean and variance of Xm(i) as:

E[Xm(i)|Xm(i − 1)] = Xm(i − 1) exp
(
E[∆Fm(i)] + D[∆Fm(i)]

2

)

D[Xm(i)|Xm(i − 1)] =
(
Xm(i − 1)

)2
exp (2E[∆Fm(i)] + D[∆Fm(i)])

(
exp(D[∆Fm(i)]) − 1

)

E[Xm(i)] =
∫

E[Xm(i)|Xm(i − 1)]p(Xm(i − 1))dXm(i − 1)

(8)

According to the transformation of normal and Lognormal distributions, we take the medians as the realizations
of day-to-day travel time under Lognormal assumptions while the mean values are for within-day travel time under
Gaussian assumptions. Under this assumption, the realization of Xm(i) is given by

Xm(i) = Xm(i − 1) exp (E[∆Fm(i)]) , (9)

where we have used median value of Xm(i − 1) to proceed the calculation that renders D[∆Fm(i)]/2 = 0.
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3. Model calibration

Model calibration can be regarded as an optimization problem.

u∗ = arg min
u∈U

S (F(u),O) (11)

where S (F(u),O) is the objective function that evaluates the difference between a model F(u), u ∈ U output and its
observation counterpart O. As the travel time distributions could be skewed under abnormal traffic conditions, it would
be biased when one chooses to minimize the mean squared error. Thus, we introduce the relative entropy (also known
as Kullback-Leibler (KL) divergence/distance) to measure the difference between the estimated distribution and the
empirical distribution.

The relative entropy is often used to measure the dissimilarity of two probability distributions, e.g., p(x) and q(x).
To be specific, the KL distance of q from p, denoted DKL(p||q), measures loss/change of information when q(x) is
used to approximate p(x). For discrete probability distributions pk and qk, the KL distance of q from p is defined as

DKL(p‖q) =
K∑

k=1

pk ln
pk
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For continuous distributions p(x) and q(x), the KL distance is defined as:

DKL(p‖q) =
∫ ∞
−∞

p(x) ln
p(x)
q(x)

dx

It can be shown that the KL distance is connected to the cross entropy H(p, q) (for the distributions p and q) through
the following relationship:

H(p, q) = H(p) + DKL(p‖q)

where H(p) is the entropy of p, which is defined as

H(p) = −E(ln(p)) = −
∫

p(x) ln(p(x))dx

The objective function for calibrating the modified GBM is

min
αm,βm

1
N

N∑
i=1

Ep(Vim)

(
ln

p(Vim)
p(Xm(i);αm, βm)

)
+

1
N

N∑
i=1


∣∣∣Vim − Xm(i)

∣∣∣
Vim

 (12)

where the median Xm(i) (used to replace the mean for skewed distributions) and probability density function (PDF)
p(Xm(i);αm, βm) are model outputs under parameters αm, βm. The first component in the objective function is the mean
of relative entropy where Ep(Vim)(·) denotes the expectation under the PDF p(Vim). The second component is a penalty
term (a lasso-like regularization term) using the mean absolute percentage error (MAPE) (again using median rather
than mean) to guarantee a small bias between the model realizations and empirical measurements.

For calibration purpose, we bin the irregular data samples of day i during time interval Tm to their mean value
Vim

3. Stacking Vim yields a vector of day-to-day observations during time interval Tm as Wm =
(
V1m, · · · ,VNm

)T
.

Considering the larger volatility of travel time under abnormal traffic conditions, we firstly group the sample days
before calibration. The travel time patterns can be very different in regular and abnormal traffic conditions. The days
separated into the same group will have similar travel time patterns so that the double time-scale travel time model for
the days in each group is calibrated independently. The bounding boxes for data grouping are defined as:

2(r − 1) · δ <Wm −min(Wm) ≤ 2r · δ, r = 1, · · · ,R (13)

where δ is the difference between the median value and minimum value of Wm. As shown in Figure 3, the sample
days are classified into R groups according to the deviation of realizations from the median value of empirical day-
to-day distributions. Further, we apply a cross-entropy method (CEM) to search for the optimal solution following
the model calibration method proposed by Zhong et al. (2016). Assume the unknown parameters following Gaussian
distributions with large variance so as to cover a large enough sampling range, an importance sampling technique is
adopted for effective and fast convergence. The model calibration algorithm is summarized in terms of pseudocode as
presented in Table 3.

4. Empirical studies

In this section, we conducted two empirical studies with different network scales to validate the proposed model
under different traffic scenarios, i.e., a long expressway in Guangzhou under traffic accidents and the urban network of
New York City under Hurricane Sandy. Both case studies adopted probe vehicle data but with different configurations.
The GPS data of the expressway case is for traffic monitoring purpose that contains the location of probe vehicles with
sampling rates up to seconds. On the other hand, the taxi data of New York City is coarse in the sense that it contains
only OD coordinates for each trip.

3 The data grouping is inspired by the idea of data binning used in calibrating freeway fundamental diagrams when there is significant data
scattering. The data is grouped because of the large volatility of travel time under abnormal traffic conditions. The travel time patterns can be very
different under recurrent and abnormal traffic conditions (or day-of-the-week). To be specific, travel time under traffic disruptions would admit
a sharp increase. In contrast, travel time is relatively stable and with small fluctuation under recurrent circumstances. To ensure the accuracy of
calibration, the daily travel time profiles have similar patterns are grouped.
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Fig. 3. Data grouping with a bounding box.

Table 3: Algorithm for model calibration.

Model Calibration Algorithm in Pseudocode

Start
Grouping: sample days are separated into R groups using bounding boxes
Initialization:

the sample size for the random sampling: φ1; the sample size for the importance sampling: φ2;
updating rate: ρ; threshold for convergence (a very small value): o;
parameters ar

m, b
r
m follow Gaussian distributions with PDFs f0(ar

m), g0(br
m);

Initialize r = 0:
Do r = r + 1

Initialize l = 0:
Do l = l + 1

Random sampling: randomly sample from fl−1(ar
m), gl−1(br

m)
=⇒ a series of parameter sets uφ1

Importance sampling:
evaluate the objective function;
sort the objective values in ascending order;
determine a small subset of “good” samples uφ2 that derive the smallest objective value;

=⇒ “good” samples uφ2

Update distribution:
new distribution: uφ2 =⇒ f new

l (αn
m), gnew

l (βn
m)

smooth updating law:
fl(ar

m) = ρ fl−1(ar
m) + (1 − ρ) f new

l (ar
m); gl(br

m) = ρgl−1(br
m) + (1 − ρ)gnew

l (br
m)

=⇒ updated distribution fl(ar
m), gl(br

m)
Until parameters’ standard deviations ≤ o

Until r = R
End

4.1. Double time-scale travel time analysis for an expressway corridor under traffic accidents

To validate the effectiveness of the proposed model, we conducted a case study on the Guangzhou Airport South
Expressway from Ping Sha to Airport South as shown in Figure 4. The expressway is of 16.693-km in length and is
divided into 17 links of equal length (1 km) except for link 10, which is 693 m in length. Note that links 1, 2 and
14 are the weaving sections. This expressway has a monthly average daily traffic of over 50,000 vehicles, wherein
the probe vehicles account for about 3.7%. One month GPS data of probe vehicles between March 1 and April 2 in
2014 was adopted in this empirical study. The dataset is extracted from the floating car trajectory data of the open data
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For continuous distributions p(x) and q(x), the KL distance is defined as:

DKL(p‖q) =
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p(x) ln
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It can be shown that the KL distance is connected to the cross entropy H(p, q) (for the distributions p and q) through
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where H(p) is the entropy of p, which is defined as

H(p) = −E(ln(p)) = −
∫
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ln

p(Vim)
p(Xm(i);αm, βm)

)
+

1
N
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Vim
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where the median Xm(i) (used to replace the mean for skewed distributions) and probability density function (PDF)
p(Xm(i);αm, βm) are model outputs under parameters αm, βm. The first component in the objective function is the mean
of relative entropy where Ep(Vim)(·) denotes the expectation under the PDF p(Vim). The second component is a penalty
term (a lasso-like regularization term) using the mean absolute percentage error (MAPE) (again using median rather
than mean) to guarantee a small bias between the model realizations and empirical measurements.

For calibration purpose, we bin the irregular data samples of day i during time interval Tm to their mean value
Vim

3. Stacking Vim yields a vector of day-to-day observations during time interval Tm as Wm =
(
V1m, · · · ,VNm

)T
.

Considering the larger volatility of travel time under abnormal traffic conditions, we firstly group the sample days
before calibration. The travel time patterns can be very different in regular and abnormal traffic conditions. The days
separated into the same group will have similar travel time patterns so that the double time-scale travel time model for
the days in each group is calibrated independently. The bounding boxes for data grouping are defined as:

2(r − 1) · δ <Wm −min(Wm) ≤ 2r · δ, r = 1, · · · ,R (13)

where δ is the difference between the median value and minimum value of Wm. As shown in Figure 3, the sample
days are classified into R groups according to the deviation of realizations from the median value of empirical day-
to-day distributions. Further, we apply a cross-entropy method (CEM) to search for the optimal solution following
the model calibration method proposed by Zhong et al. (2016). Assume the unknown parameters following Gaussian
distributions with large variance so as to cover a large enough sampling range, an importance sampling technique is
adopted for effective and fast convergence. The model calibration algorithm is summarized in terms of pseudocode as
presented in Table 3.

4. Empirical studies

In this section, we conducted two empirical studies with different network scales to validate the proposed model
under different traffic scenarios, i.e., a long expressway in Guangzhou under traffic accidents and the urban network of
New York City under Hurricane Sandy. Both case studies adopted probe vehicle data but with different configurations.
The GPS data of the expressway case is for traffic monitoring purpose that contains the location of probe vehicles with
sampling rates up to seconds. On the other hand, the taxi data of New York City is coarse in the sense that it contains
only OD coordinates for each trip.

3 The data grouping is inspired by the idea of data binning used in calibrating freeway fundamental diagrams when there is significant data
scattering. The data is grouped because of the large volatility of travel time under abnormal traffic conditions. The travel time patterns can be very
different under recurrent and abnormal traffic conditions (or day-of-the-week). To be specific, travel time under traffic disruptions would admit
a sharp increase. In contrast, travel time is relatively stable and with small fluctuation under recurrent circumstances. To ensure the accuracy of
calibration, the daily travel time profiles have similar patterns are grouped.
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Table 3: Algorithm for model calibration.

Model Calibration Algorithm in Pseudocode

Start
Grouping: sample days are separated into R groups using bounding boxes
Initialization:

the sample size for the random sampling: φ1; the sample size for the importance sampling: φ2;
updating rate: ρ; threshold for convergence (a very small value): o;
parameters ar

m, b
r
m follow Gaussian distributions with PDFs f0(ar

m), g0(br
m);

Initialize r = 0:
Do r = r + 1

Initialize l = 0:
Do l = l + 1

Random sampling: randomly sample from fl−1(ar
m), gl−1(br

m)
=⇒ a series of parameter sets uφ1

Importance sampling:
evaluate the objective function;
sort the objective values in ascending order;
determine a small subset of “good” samples uφ2 that derive the smallest objective value;

=⇒ “good” samples uφ2

Update distribution:
new distribution: uφ2 =⇒ f new

l (αn
m), gnew

l (βn
m)

smooth updating law:
fl(ar

m) = ρ fl−1(ar
m) + (1 − ρ) f new

l (ar
m); gl(br

m) = ρgl−1(br
m) + (1 − ρ)gnew

l (br
m)

=⇒ updated distribution fl(ar
m), gl(br

m)
Until parameters’ standard deviations ≤ o

Until r = R
End

4.1. Double time-scale travel time analysis for an expressway corridor under traffic accidents

To validate the effectiveness of the proposed model, we conducted a case study on the Guangzhou Airport South
Expressway from Ping Sha to Airport South as shown in Figure 4. The expressway is of 16.693-km in length and is
divided into 17 links of equal length (1 km) except for link 10, which is 693 m in length. Note that links 1, 2 and
14 are the weaving sections. This expressway has a monthly average daily traffic of over 50,000 vehicles, wherein
the probe vehicles account for about 3.7%. One month GPS data of probe vehicles between March 1 and April 2 in
2014 was adopted in this empirical study. The dataset is extracted from the floating car trajectory data of the open data
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program provided by the OpenITS project 4. The sampling rate ranges from 15s to 120s. March 18 was excluded due
to data incompleteness. Within this one-month study period, there were four traffic accidents as shown in Table 4. We
chose the FVE to determine the best number of principal components and set the threshold as 0.95, which means the
principal components should at least account for 95% travel time variation.

(a) Google map of the test site

..
.

link 1

link 2

link 10

link 17

link 16

..
.

1 km

1 km

1 km

693 m

1 km

(b) Sketch map

Fig. 4. The segment of Guangzhou Airport Expressway under consideration. The origin and destination are marked to indicate the
direction of traffic flow considered in this empirical study.

Firstly, the estimations of within-day travel time functions of four cases in line with the incident records are pre-
sented. From the results in Figure 5, two traffic accidents induced significant increases to link travel times. The FDA
method is adaptive to the travel time patterns under abnormal traffic conditions including the congestion onset and
offset. The FDA captures the variability of within-day travel time process and is robust to the noise in traffic data.
It is also noted that the recorded time of traffic incidents in Table 4 is usually delayed when compared to the time
that traffic states were affected by the incidents. Although the discrete samples from the estimated within-day travel
time functions in accordance with the within-day time discretization Tm (the red circles) are close to the aggregated
observations (the blue squares), the estimated travel time functions (the cyan lines) are insufficient to account for the
travel time variability (the black dots). Therefore, we applied the proposed double time-scale model to derive both the
within-day dynamics and the day-to-day dynamic travel time distributions.

The double time-scale travel time dynamics are shown in Figure 6. The within-day time instant was divided into
time intervals every 5 minutes. To make the results more visible, logarithmic coordinates were used for drawing. The
gray surface is the evolutionary process of the medians of the travel time dynamics produced by the proposed model

4 The data can be downloaded from http://www.openits.cn/datadownload.php?dsid=2
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Table 4: Incident records.

Date Recorded time Clearance time Cause Link
(24-hour clock) (24-hour clock)

March 8, 2014 9:05 10:10 Loss of vehicle control Link 6
March 23, 2014 13:17 14:20 Loss of vehicle control Link 8
March 25, 2014 10:02 10:20 Rear-end collision Link 3
April 2, 2014 12:00 12:24 Rear-end collision Link 12
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Fig. 5. The estimated within-day travel time functions and the measurements for four incident days.

against the measurement counterparts (i.e., the black dots). The pink and purple surfaces are the upper- and lower-
bounds of travel time distributions accounting for 95% variability, i.e., the 95% confidence intervals. Taking one of
the cross sections as an example, Figure 7 presents the day-to-day travel time process in 10:00-10:05 AM along with
the within-day uncertainties. As shown in the figure, the proposed double time-scale travel time process can describe
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program provided by the OpenITS project 4. The sampling rate ranges from 15s to 120s. March 18 was excluded due
to data incompleteness. Within this one-month study period, there were four traffic accidents as shown in Table 4. We
chose the FVE to determine the best number of principal components and set the threshold as 0.95, which means the
principal components should at least account for 95% travel time variation.

(a) Google map of the test site

..
.

link 1

link 2

link 10

link 17

link 16

..
.

1 km

1 km

1 km

693 m

1 km

(b) Sketch map

Fig. 4. The segment of Guangzhou Airport Expressway under consideration. The origin and destination are marked to indicate the
direction of traffic flow considered in this empirical study.

Firstly, the estimations of within-day travel time functions of four cases in line with the incident records are pre-
sented. From the results in Figure 5, two traffic accidents induced significant increases to link travel times. The FDA
method is adaptive to the travel time patterns under abnormal traffic conditions including the congestion onset and
offset. The FDA captures the variability of within-day travel time process and is robust to the noise in traffic data.
It is also noted that the recorded time of traffic incidents in Table 4 is usually delayed when compared to the time
that traffic states were affected by the incidents. Although the discrete samples from the estimated within-day travel
time functions in accordance with the within-day time discretization Tm (the red circles) are close to the aggregated
observations (the blue squares), the estimated travel time functions (the cyan lines) are insufficient to account for the
travel time variability (the black dots). Therefore, we applied the proposed double time-scale model to derive both the
within-day dynamics and the day-to-day dynamic travel time distributions.

The double time-scale travel time dynamics are shown in Figure 6. The within-day time instant was divided into
time intervals every 5 minutes. To make the results more visible, logarithmic coordinates were used for drawing. The
gray surface is the evolutionary process of the medians of the travel time dynamics produced by the proposed model

4 The data can be downloaded from http://www.openits.cn/datadownload.php?dsid=2
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Table 4: Incident records.

Date Recorded time Clearance time Cause Link
(24-hour clock) (24-hour clock)

March 8, 2014 9:05 10:10 Loss of vehicle control Link 6
March 23, 2014 13:17 14:20 Loss of vehicle control Link 8
March 25, 2014 10:02 10:20 Rear-end collision Link 3
April 2, 2014 12:00 12:24 Rear-end collision Link 12
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Fig. 5. The estimated within-day travel time functions and the measurements for four incident days.

against the measurement counterparts (i.e., the black dots). The pink and purple surfaces are the upper- and lower-
bounds of travel time distributions accounting for 95% variability, i.e., the 95% confidence intervals. Taking one of
the cross sections as an example, Figure 7 presents the day-to-day travel time process in 10:00-10:05 AM along with
the within-day uncertainties. As shown in the figure, the proposed double time-scale travel time process can describe
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Fig. 6. 3D visualization of double time-scale travel time process.
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Fig. 7. Double time-scale travel time processes in 10:00-10:05 AM with 95% confidence level.
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Fig. 8. Overall travel time distributions in 10:00-10:05 AM.

the variability of the day-to-day evolution of travel time from the transient impact caused by the traffic accidents to the
normal steady state. The freeway traffic recovered to recurrent states within a day under these accidents. The impact
of the weaving section in link 14 on the traffic states could be identified by high fluctuations of travel time. Moreover,
Figure 8 depicts the mixture distributions that represent the probability distributions of the overall travel time. Irregular
traffic incidents would lead to heavy tails on the right side of travel time distributions, whereas recurrent fluctuations
would induce a skewed distribution.

In order to quantify the accuracy of these processes, two indices5 were evaluated, i.e., the relative entropy between
the estimated travel time distributions and the distributions derived from the raw data, and the proportion of inclusions,
i.e., the ratio of raw measurements within the upper and lower bounds of the estimation to the total measurements.
From the results in Table 5, we found that the proposed model could yield small values of relative entropy and large
enough proportion of inclusions with 95% confidence level, which indicates reliable probability distributions.

The KL distance is small indicating good performance in terms of data and distribution fitting. The proportion of
inclusions indicates the proposed model estimates the uncertainty in a satisfactory manner. This can also be observed
from the distribution fitting process as indicated in Figure 8.

4.2. Double time-scale travel time analysis for an urban network under hurricane

In this example, we applied the proposed method to study the impacts of Hurricane Sandy on a large-scale traffic
network with New York City taxi data6. The dataset includes four years of operation and details of nearly 700 million

5 These indices are presented in the online appendix due to the page limit.
6 This dataset is an open dataset available at http://dx.doi.org/10.13012/J8PN93H8.
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Fig. 7. Double time-scale travel time processes in 10:00-10:05 AM with 95% confidence level.
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Fig. 8. Overall travel time distributions in 10:00-10:05 AM.

the variability of the day-to-day evolution of travel time from the transient impact caused by the traffic accidents to the
normal steady state. The freeway traffic recovered to recurrent states within a day under these accidents. The impact
of the weaving section in link 14 on the traffic states could be identified by high fluctuations of travel time. Moreover,
Figure 8 depicts the mixture distributions that represent the probability distributions of the overall travel time. Irregular
traffic incidents would lead to heavy tails on the right side of travel time distributions, whereas recurrent fluctuations
would induce a skewed distribution.

In order to quantify the accuracy of these processes, two indices5 were evaluated, i.e., the relative entropy between
the estimated travel time distributions and the distributions derived from the raw data, and the proportion of inclusions,
i.e., the ratio of raw measurements within the upper and lower bounds of the estimation to the total measurements.
From the results in Table 5, we found that the proposed model could yield small values of relative entropy and large
enough proportion of inclusions with 95% confidence level, which indicates reliable probability distributions.

The KL distance is small indicating good performance in terms of data and distribution fitting. The proportion of
inclusions indicates the proposed model estimates the uncertainty in a satisfactory manner. This can also be observed
from the distribution fitting process as indicated in Figure 8.

4.2. Double time-scale travel time analysis for an urban network under hurricane

In this example, we applied the proposed method to study the impacts of Hurricane Sandy on a large-scale traffic
network with New York City taxi data6. The dataset includes four years of operation and details of nearly 700 million

5 These indices are presented in the online appendix due to the page limit.
6 This dataset is an open dataset available at http://dx.doi.org/10.13012/J8PN93H8.
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Table 5: Performance of the double time-scale model for the expressway case.

Link KL distance Proportion of inclusions(%) Link KL distance Proportion of inclusions(%)
1 0.1081 98.41 10 0.0876 94.92
2 0.0520 93.05 11 0.1102 95.22
3 0.2881 97.58 12 0.0722 94.02
4 0.1666 98.49 13 0.1324 93.80
5 0.2622 98.55 14 0.1927 97.45
6 0.1243 97.08 15 0.0826 84.75
7 0.0770 91.44 16 0.0706 92.94
8 0.0690 92.29 17 0.0357 93.04
9 0.1222 91.34

trips of yellow taxi trips in New York City between 2010 and 2013. The data is organized by month, and each row
represents a completed taxi trip. A sample of the raw trip data is shown in Table 6. It contains: pickup and dropoff
times (start and end time of the trip), pickup longitude and pickup latitude (GPS coordinates at the origin of the
trip) and dropoff longitude and dropoff latitude (GPS coordinates at the destination of the trip), trip duration (trip
time measured by the taximeter in seconds) and trip distance (trip distance measured by the taximeter in miles). This
dataset is regarded as coarse in the sense that it contains only two coordinates for each trip. The quality is lower than
GPS data collected for traffic monitoring purpose such as that in the previous empirical study, which contains the
location of vehicles with sampling rates up to seconds. However, it is still possible to analyze the city-scale resilience
of the traffic conditions by the proposed method.

Table 6: A sample of raw data.

medallion hack vendor rate store and pickup dropoff passenger trip time trip pickup pickup dropoff dropoff
license id code fwd flag datetime datetime count in secs distance longitude latitude longitude latitude

2012000001 2012000001 CMT 1 N 2012/1/1 0:00:01 2012/1/1 0:05:49 1 348 1.2 -73.988945 40.726818 -74.004524 40.721397
2012005187 2012015775 CMT 1 N 2012/1/2 8:49:02 2012/1/2 8:57:20 1 497 3 -73.954659 40.780872 -73.978546 40.756702
2012008703 2012012505 VTS 2 2012/1/2 8:50:00 2012/1/2 9:17:00 2 1620 14.99 -73.815254 40.700146 -74.009247 40.738762
2012006692 2012010162 VTS 4 2012/1/2 13:19:00 2012/1/2 13:29:00 5 600 2.11 -73.952942 40.776421 -73.978241 40.764828
2012006280 2012024293 VTS 1 2012/1/3 22:35:00 2012/1/3 22:45:00 1 600 1.64 -73.981468 40.746417 -73.983841 40.760818

Following Donovan and Work (2017), the New York City was partitioned into four regions: East of the Hudson
River (E), Upper Manhattan (U), Midtown (M), and Lower Manhattan (L), as demonstrated in Figure 9. To our
purpose, we selected 47 days from October 15, 2012, to November 30, 2012, covering the periods before, during and
after the Hurricane Sandy that hit New York City on October 29, flooding streets, tunnels and subway lines and cutting
power in and around the city. We grouped the origins and destinations of trips by regions via matching their latitudes
and longitudes. The trips were categorized into 16 travel types according to their OD pairs as shown in Table 7. In this
study, we defined the pace as the normalized travel time, i.e., the ratio of trip travel time to trip distance. Discarding
unreasonable trip records (accounting for about 8% of the records), we then evaluated the pace of each trip. In addition,
there were much fewer trips during the period from October 29 and November 2 under the influence of the Hurricane
Sandy. After applying the proposed method to derive the double time-scale pace (normalized travel time) processes,
the model performance is presented in Table 8 using the two indices as previously explained. The KL distance is
small indicating good performance in terms of data and distribution fitting for the New York case. The proportion of
inclusions indicates the proposed model well estimates the uncertainty.

Figure 10 illustrates two examples of the double time-scale pace process in 3D visualization. A time increment
of one hour was used to discretize the within-day time horizon. As indicated in Figure 10, compared with that of
trip type 16 (trips from Lower Manhattan to Lower Manhattan), a larger variation of the pace of trip type 4 (trips
from East of the Hudson River to Lower Manhattan) can be observed. Intuitively, trip type 4 is more susceptible
to the Hurricane Sandy than trip type 16 as the trip crosses the harbor. On the other hand, trip type 16 has larger

16 Zhong et al. / Transportation Research Procedia 00 (2019) 000–000

Fig. 9. The New York City network is partitioned into four regions denoted as East of the Hudson River (E), Upper Manhattan (U),
Midtown (M), and Lower Manhattan (L) in line with Donovan and Work (2017).

Table 7: Trip types.

Pickup region E E E E U U U U M M M M L L L L

Dropoff region E U M L E U M L E U M L E U M L

Trip type E-E E-U E-M E-L U-E U-U U-M U-L M-E M-U M-M M-L L-E L-U L-M L-L
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Table 8: Performance of the double time-scale model for the New York case.

Type KL distance Proportion of inclusions(%) Type KL distance Proportion of inclusions(%)
1 0.0757 98.10 9 0.0961 96.01
2 0.0899 96.62 10 0.0616 86.53
3 0.0532 86.40 11 0.0842 86.74
4 0.1614 87.26 12 0.0639 97.36
5 0.1021 96.95 13 0.1065 98.80
6 0.0474 95.89 14 0.1220 97.87
7 0.0794 86.82 15 0.0814 96.33
8 0.0653 92.33 16 0.0650 96.25

uncertainty under recurrent traffic conditions as Lower Manhattan is the central borough for business and finance. To
observe the impact of the Hurricane Sandy on the pace evolution under day-to-day time-scale, we selected the time
interval 12:00-13:00 (off-peak hour) to separate the congestion impact of the rush hours. As depicted in Figure 11,
the day-to-day pace process of trip type 4 indicates that the disruption caused by the Hurricane Sandy lasted for
several days since the statewide state of emergency was declared on 26 October till 5 November (3 days after it was
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Table 5: Performance of the double time-scale model for the expressway case.

Link KL distance Proportion of inclusions(%) Link KL distance Proportion of inclusions(%)
1 0.1081 98.41 10 0.0876 94.92
2 0.0520 93.05 11 0.1102 95.22
3 0.2881 97.58 12 0.0722 94.02
4 0.1666 98.49 13 0.1324 93.80
5 0.2622 98.55 14 0.1927 97.45
6 0.1243 97.08 15 0.0826 84.75
7 0.0770 91.44 16 0.0706 92.94
8 0.0690 92.29 17 0.0357 93.04
9 0.1222 91.34

trips of yellow taxi trips in New York City between 2010 and 2013. The data is organized by month, and each row
represents a completed taxi trip. A sample of the raw trip data is shown in Table 6. It contains: pickup and dropoff
times (start and end time of the trip), pickup longitude and pickup latitude (GPS coordinates at the origin of the
trip) and dropoff longitude and dropoff latitude (GPS coordinates at the destination of the trip), trip duration (trip
time measured by the taximeter in seconds) and trip distance (trip distance measured by the taximeter in miles). This
dataset is regarded as coarse in the sense that it contains only two coordinates for each trip. The quality is lower than
GPS data collected for traffic monitoring purpose such as that in the previous empirical study, which contains the
location of vehicles with sampling rates up to seconds. However, it is still possible to analyze the city-scale resilience
of the traffic conditions by the proposed method.

Table 6: A sample of raw data.

medallion hack vendor rate store and pickup dropoff passenger trip time trip pickup pickup dropoff dropoff
license id code fwd flag datetime datetime count in secs distance longitude latitude longitude latitude

2012000001 2012000001 CMT 1 N 2012/1/1 0:00:01 2012/1/1 0:05:49 1 348 1.2 -73.988945 40.726818 -74.004524 40.721397
2012005187 2012015775 CMT 1 N 2012/1/2 8:49:02 2012/1/2 8:57:20 1 497 3 -73.954659 40.780872 -73.978546 40.756702
2012008703 2012012505 VTS 2 2012/1/2 8:50:00 2012/1/2 9:17:00 2 1620 14.99 -73.815254 40.700146 -74.009247 40.738762
2012006692 2012010162 VTS 4 2012/1/2 13:19:00 2012/1/2 13:29:00 5 600 2.11 -73.952942 40.776421 -73.978241 40.764828
2012006280 2012024293 VTS 1 2012/1/3 22:35:00 2012/1/3 22:45:00 1 600 1.64 -73.981468 40.746417 -73.983841 40.760818

Following Donovan and Work (2017), the New York City was partitioned into four regions: East of the Hudson
River (E), Upper Manhattan (U), Midtown (M), and Lower Manhattan (L), as demonstrated in Figure 9. To our
purpose, we selected 47 days from October 15, 2012, to November 30, 2012, covering the periods before, during and
after the Hurricane Sandy that hit New York City on October 29, flooding streets, tunnels and subway lines and cutting
power in and around the city. We grouped the origins and destinations of trips by regions via matching their latitudes
and longitudes. The trips were categorized into 16 travel types according to their OD pairs as shown in Table 7. In this
study, we defined the pace as the normalized travel time, i.e., the ratio of trip travel time to trip distance. Discarding
unreasonable trip records (accounting for about 8% of the records), we then evaluated the pace of each trip. In addition,
there were much fewer trips during the period from October 29 and November 2 under the influence of the Hurricane
Sandy. After applying the proposed method to derive the double time-scale pace (normalized travel time) processes,
the model performance is presented in Table 8 using the two indices as previously explained. The KL distance is
small indicating good performance in terms of data and distribution fitting for the New York case. The proportion of
inclusions indicates the proposed model well estimates the uncertainty.

Figure 10 illustrates two examples of the double time-scale pace process in 3D visualization. A time increment
of one hour was used to discretize the within-day time horizon. As indicated in Figure 10, compared with that of
trip type 16 (trips from Lower Manhattan to Lower Manhattan), a larger variation of the pace of trip type 4 (trips
from East of the Hudson River to Lower Manhattan) can be observed. Intuitively, trip type 4 is more susceptible
to the Hurricane Sandy than trip type 16 as the trip crosses the harbor. On the other hand, trip type 16 has larger
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Fig. 9. The New York City network is partitioned into four regions denoted as East of the Hudson River (E), Upper Manhattan (U),
Midtown (M), and Lower Manhattan (L) in line with Donovan and Work (2017).

Table 7: Trip types.

Pickup region E E E E U U U U M M M M L L L L

Dropoff region E U M L E U M L E U M L E U M L

Trip type E-E E-U E-M E-L U-E U-U U-M U-L M-E M-U M-M M-L L-E L-U L-M L-L
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Table 8: Performance of the double time-scale model for the New York case.

Type KL distance Proportion of inclusions(%) Type KL distance Proportion of inclusions(%)
1 0.0757 98.10 9 0.0961 96.01
2 0.0899 96.62 10 0.0616 86.53
3 0.0532 86.40 11 0.0842 86.74
4 0.1614 87.26 12 0.0639 97.36
5 0.1021 96.95 13 0.1065 98.80
6 0.0474 95.89 14 0.1220 97.87
7 0.0794 86.82 15 0.0814 96.33
8 0.0653 92.33 16 0.0650 96.25

uncertainty under recurrent traffic conditions as Lower Manhattan is the central borough for business and finance. To
observe the impact of the Hurricane Sandy on the pace evolution under day-to-day time-scale, we selected the time
interval 12:00-13:00 (off-peak hour) to separate the congestion impact of the rush hours. As depicted in Figure 11,
the day-to-day pace process of trip type 4 indicates that the disruption caused by the Hurricane Sandy lasted for
several days since the statewide state of emergency was declared on 26 October till 5 November (3 days after it was
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Fig. 10. 3D visualization of double time-scale pace process of trip type 4 and trip type 16.

Table 9: Impact of Hurricane Sandy on different trip types.

Type 1 2 3 4 5 6 7 8

Importance 0.0205 0.0162 0.0197 0.6973 0.0206 0.0206 0.0370 0.0209

Type 9 10 11 12 13 14 15 16

Importance 0.0232 0.0200 0.0094 0.0205 0.0125 0.0212 0.0198 0.0206

dissipated). The system gradually recovered to the recurrent traffic conditions. As shown in the probabilistic day-to-
day evolution of travel time, the travel time distributions of these days are much wider than those of normal days. The
travel time distributions of trip type 4 are spike during time interval 12:00-13:00 under recurrent traffic conditions
indicating the travel time is reliable during off-peak hours. On the other hand, trip type 16 (trips within the CBD)
under recurrent traffic conditions tends to admit a wide travel time distribution due to the heavy traffic in the CBD,
while the rare events (e.g., Hurricane Sandy in this experiment) would lead to heavy tail on the right side of the pace
distribution. The proposed double time-scale travel time model can provide reliable probabilistic distribution of the
pace and can describe the variability of the pace, which allows the analysis on the short-term to long-term impacts of
traffic disruptions on the performance of transportation systems.

4.2.1. Resilience analysis
Based on the overall pace distributions of all trip types, we quantify the importance of each trip type by estimating

the weights of each trip type contributing to the network performance. Given D trip types, denote Rm(i) as the network-
scale pace distribution and Xd

m(i) as the pace distribution of trip type d = 1, · · · ,D in the time interval Tm of day i. The
following optimization problem is to determine the importance for each type of trips on the network performance:

min
ad

N∑
i=1

M∑
m=1

E
Rm(i) −

D∑
d=1

ad · Xd
m(i)




2

(14)

where 0 ≤ ad ≤ 1,
∑D

d=1 ad = 1 is the importance weighting of trip type d. By solving this problem, the results of
trip importance are reported in Table 9. It is found that trip type 4 (E-M) contributes the most substantial impact on
the network performance.
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Fig. 11. Double time-scale pace process with 95% confidence levels, the probabilistic day-to-day evolution of travel time, and the
overall travel time distribution fitting in the model calibration process for time interval 12:00 AM - 13:00 PM of trip type 4 and trip
type 16.
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Table 9: Impact of Hurricane Sandy on different trip types.

Type 1 2 3 4 5 6 7 8

Importance 0.0205 0.0162 0.0197 0.6973 0.0206 0.0206 0.0370 0.0209

Type 9 10 11 12 13 14 15 16

Importance 0.0232 0.0200 0.0094 0.0205 0.0125 0.0212 0.0198 0.0206

dissipated). The system gradually recovered to the recurrent traffic conditions. As shown in the probabilistic day-to-
day evolution of travel time, the travel time distributions of these days are much wider than those of normal days. The
travel time distributions of trip type 4 are spike during time interval 12:00-13:00 under recurrent traffic conditions
indicating the travel time is reliable during off-peak hours. On the other hand, trip type 16 (trips within the CBD)
under recurrent traffic conditions tends to admit a wide travel time distribution due to the heavy traffic in the CBD,
while the rare events (e.g., Hurricane Sandy in this experiment) would lead to heavy tail on the right side of the pace
distribution. The proposed double time-scale travel time model can provide reliable probabilistic distribution of the
pace and can describe the variability of the pace, which allows the analysis on the short-term to long-term impacts of
traffic disruptions on the performance of transportation systems.

4.2.1. Resilience analysis
Based on the overall pace distributions of all trip types, we quantify the importance of each trip type by estimating

the weights of each trip type contributing to the network performance. Given D trip types, denote Rm(i) as the network-
scale pace distribution and Xd

m(i) as the pace distribution of trip type d = 1, · · · ,D in the time interval Tm of day i. The
following optimization problem is to determine the importance for each type of trips on the network performance:

min
ad

N∑
i=1

M∑
m=1

E
Rm(i) −

D∑
d=1

ad · Xd
m(i)




2

(14)

where 0 ≤ ad ≤ 1,
∑D

d=1 ad = 1 is the importance weighting of trip type d. By solving this problem, the results of
trip importance are reported in Table 9. It is found that trip type 4 (E-M) contributes the most substantial impact on
the network performance.
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Fig. 11. Double time-scale pace process with 95% confidence levels, the probabilistic day-to-day evolution of travel time, and the
overall travel time distribution fitting in the model calibration process for time interval 12:00 AM - 13:00 PM of trip type 4 and trip
type 16.
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5. Conclusion

This study integrated the data-driven and model-driven approaches to develop a double time-scale travel time model
to probabilistically capture the day-to-day evolution along with the within-day variability of travel time. The proposed
model extends the conventional day-to-day traffic models in the sense that the data-driven within-day process by the
FDA enables direct input of raw traffic data with dynamic and noisy nature reflecting the effects of traffic congestion
and external uncertainties. The within-day process was then regarded as the local volatility to drive the model-driven
day-to-day process described by a modified geometric Brownian motion (GBM). The proposed double time-scale
travel time model can describe the variability of the day-to-day evolution from the transient impact to the steady-
state behavior (if any) of traffic disruptions and systematic changes, e.g., bridge collapse, hurricane, and new traffic
policy measures, on the performance of traffic networks. Meanwhile, the proposed model can capture the variability
of within-day travel time process and the effect of noise in traffic data. A relative entropy-based method was proposed
for calibrating the double time-scale model, leading to proper distributions of interest. A lasso-like regularization was
employed to guarantee a small bias between the model estimations and the measurement counterparts. A risk-based
measure that adapts the heavy-tailed distribution of travel time was introduced to quantify the deterioration of network
performance.

Two empirical studies at different scales, from long expressway corridor to a city-scale network, under different
traffic scenarios, from traffic accidents to natural disaster, were conducted to validate the proposed model. As shown
in the empirical studies, the FDA can handle the noisy and irregular sampling nature of probe vehicle data while
considering the abnormal traffic conditions. The proposed model can capture the heavy tail characteristics of the
travel time under rare events. The model is robust to different data configurations from coarse to fine, and small to big
data. The proposed method can accommodate the inherent variability in traffic conditions and data meanwhile being
computationally tractable.
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5. Conclusion

This study integrated the data-driven and model-driven approaches to develop a double time-scale travel time model
to probabilistically capture the day-to-day evolution along with the within-day variability of travel time. The proposed
model extends the conventional day-to-day traffic models in the sense that the data-driven within-day process by the
FDA enables direct input of raw traffic data with dynamic and noisy nature reflecting the effects of traffic congestion
and external uncertainties. The within-day process was then regarded as the local volatility to drive the model-driven
day-to-day process described by a modified geometric Brownian motion (GBM). The proposed double time-scale
travel time model can describe the variability of the day-to-day evolution from the transient impact to the steady-
state behavior (if any) of traffic disruptions and systematic changes, e.g., bridge collapse, hurricane, and new traffic
policy measures, on the performance of traffic networks. Meanwhile, the proposed model can capture the variability
of within-day travel time process and the effect of noise in traffic data. A relative entropy-based method was proposed
for calibrating the double time-scale model, leading to proper distributions of interest. A lasso-like regularization was
employed to guarantee a small bias between the model estimations and the measurement counterparts. A risk-based
measure that adapts the heavy-tailed distribution of travel time was introduced to quantify the deterioration of network
performance.

Two empirical studies at different scales, from long expressway corridor to a city-scale network, under different
traffic scenarios, from traffic accidents to natural disaster, were conducted to validate the proposed model. As shown
in the empirical studies, the FDA can handle the noisy and irregular sampling nature of probe vehicle data while
considering the abnormal traffic conditions. The proposed model can capture the heavy tail characteristics of the
travel time under rare events. The model is robust to different data configurations from coarse to fine, and small to big
data. The proposed method can accommodate the inherent variability in traffic conditions and data meanwhile being
computationally tractable.
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