
applied  
sciences

Article

A Modified Shuffled Frog Leaping Algorithm for the
Topology Optimization of Electromagnet Devices

Wenjia Yang *, Siu Lau Ho and Weinong Fu *

Department of Electrical Engineering, The Hong Kong Polytechnic University; Hong Kong SAR, China;
siu-lau.ho@polyu.edu.hk
* Correspondence: wj.yang@connect.polyu.hk (W.Y.); weinong.fu@polyu.edu.hk (W.F.);

Tel.: +852-2766-6158 (W.F.); Fax: +852-2330-1544 (W.F.)

Received: 12 August 2020; Accepted: 4 September 2020; Published: 6 September 2020
����������
�������

Abstract: The memetic algorithms which employ population information spreading mechanism have
shown great potentials in solving complex three-dimensional black-box problems. In this paper,
a newly developed memetic meta-heuristic optimization method, known as shuffled frog leaping
algorithm (SFLA), is modified and applied to topology optimization of electromagnetic problems.
Compared to the conventional SFLA, the proposed algorithm has an extra local search step, which
allows it to escape from the local optimum, and hence avoid the problem of premature convergence
to continue its search for more accurate results. To validate the performance of the proposed method,
it was applied to solving the topology optimization of an interior permanent magnet motor. Two other
EAs, namely the conventional SFLA and local-search genetic algorithm, were applied to study the
same problem and their performances were compared with that of the proposed algorithm. The results
indicate that the proposed algorithm has the best trade-off between the results of objective values and
optimization time, and hence is more efficient in topology optimization of electromagnetic devices.

Keywords: topology optimization; numerical method; evolutionary algorithm; shuffled frog
leaping algorithm

1. Introduction

Topology optimization (TO) is the process of determining the material distribution for devices
that could yield the best performance under given constraints. TO has shown great potential in the
device design and optimization process and has become a new paradigm to provide a quantitative
design method for modern industries in multiple disciplines [1]. To enhance the speed of the TO
process, numerous modern mathematical algorithms have been proposed and developed, and proved
to be efficient in solving complicated three-dimensional (3D) problems [2]. Based on the optimization
searching methodologies, these methods can be categorized as the deterministic method, where
the searching process is based on the gradient information, such as the Newton method; and the
meta-heuristic method, where the searching process is guided by the information gathered from
random or designed population, such as the evolutionary algorithms, or those from the related
disciplines such as the bidirectional evolution structural optimization algorithm (BESO) [3,4].

Evolutionary algorithms (EA) imitate the evolution process of population existing in the natural
environment. The population could be species, flock of birds or fishes, or any other possible group of
candidates that could share experience and intelligence. EAs have been adopted widely in optimizing
the shape and size of electromagnetic devices because of their simplicity in applications and high
optimization efficiency [5]. For instance, genetic algorithms (GA) are applied together with the finite
element method (FEM) in the design and parameter optimization of interior permanent-magnet motors
in various studies [6–8], and they have proved to be efficient in solving these problems. However, in the
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case of TO, due to the large degree of freedoms in the design space, the inherit complexity of the problem
is much higher than those of the shape and size optimization problems, and hence the searching speed
of the algorithm plays an important role affecting the optimization time. One issue with respect to
the conventional EAs is the passage of genes is limited to the offsprings, because the generation of
children is based on the crossover of elite parents only, and hence the searching direction is limited,
resulting in a relatively poor searching efficiency. To overcome this issue, local search steps are often
added to the elite population or to the best candidate [9]. In the local search step, the neighborhood of
the feasible candidate is searched by adding randomly generated vectors to the candidate and with
their performances investigated accordingly. Another type of meta-heuristic algorithms is the memetic
algorithm, where memetic evolution is used as the searching mechanism. The entire population is
divided into subgroups called memeplex, and, within each memeplex, the searching direction, which
can also be regarded as the memes in the memeplex, is determined by the positions of the best solutions.
Each individual in the memeplex learns from both the local best solution in the memeplex and from
the global best solution in the entire population. Because the memes in the memetic algorithm can
spread freely through the population, this type of algorithms is associated with a stronger searching
efficiency with fewer objective function evaluations when solving problems with higher degree of
freedom and larger number of control variables [10–12].

The Shuffled Frog-Leaping Algorithm (SFLA), formulated in 2006, has been successfully applied
to scheduling problems, network design problems, and parameter estimation of electromagnetic
devices [13–15], and it has shown great potential in handling high dimension problems. The SFLA can
be viewed as an extension of the classical particle-swarm optimization (PSO) algorithm, with certain
newly added features such as the usage of memeplex. In this paper, the SFLA together with the
Gaussian radial basis function (RBF) modeling method is employed to optimize the two-dimensional
(2D) design of the rotor in a conventional interior permanent-magnet motor (IPM). To further improve
the efficiency of the SFLA and avoid the problem of finding false optima, a local search step is added
to the algorithm to add randomness to the optimization process. The design space of the optimization
problem is discretized into small elements that will be filled with either iron or air, and Gaussian RBFs
are used to calculate the topology function of each element to create the topology. The finite element
method (FEM) is employed to evaluate the objective function of the TO problem. To showcase the
prominent efficiency of the SFLA in the electromagnetic TO problems, three algorithms were employed
for the same IPM TO problem: the local-search GA (LS-GA), conventional SFLA, and the proposed
SFLA. Both the speed and accuracy of the algorithms were compared, and the results indicate that the
proposed SFLA is more appropriate in the design and optimization of complicated electromagnetic
devices such as IPMs.

2. The Modified Shuffled SFLA

The SFLA was proposed by Eusuff and Lansey in 2006 [13]. Similar to the other algorithms in the
memetic family, the evolution process in SFLA also contains both local exploitation mechanism and
global exploration mechanism. An initial population is randomly generated, evaluated, and sorted.
Based on the objective function values, the individuals in the initial population are partitioned into
different subgroups of equal size named memeplexes. Within each memeplex, individuals will evolve
via moving towards either the local best or the global best in the memeplex. After certain iterations of
local evolvement, the entire population will be re-shuffled for the spreading of the memes. These steps
will be repeated until the stopping criteria are met [16]. In the ordinary SFLA algorithm, in each
iteration, the best candidate, i.e., frog, of each memeplex will not update its position. As each candidate
will always remain at the same position, especially for the best frog in the entire population, it is easy
for the algorithm to be trapped in some local optima found at the early stage of the optimization
process and hence ending prematurely. To avoid this problem, a local search process for the best frog
in each memeplex is added to the algorithm to help it escape from false best solutions.
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The flowchart of the proposed SFLA is given in Figure 1. For an optimization problem with n
control parameters, each frog in the algorithm is an n dimension vector, Xi = [xi,1, xi,2, xi,3, . . . , xi,n].
At the beginning of the optimization, N frogs are generated using the Latin-hypercube sampling
method to ensure the entire design space can be well explored. Based on the objective value of each
individual frog, the initial population is then sorted, and evenly partitioned into m memeplexes
S1, S2, . . . , Sm, with each memeplex containing p frogs, where N = m× p. For instance, if m = p = 3,
then S1 contains X1, X4, X7, S2 contains X2, X5, X8, and S3 contains X3, X6, X9, given all Xi have been
sorted. The number of frogs in each memeplex is set to be n+ 1 based on the Nelder–Mead method [17].
Following the partition process, a local search is conducted in memeplexes. A random vector with 1/10
upper and lower bound is added firstly to the best frog in the memeplex, Xb,k:

X′b,k = Xb,k +
1

10
[rand (lb, ub), . . . , rand(lb, ub)] (1)
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The objective function value of the new frog is evaluated. If it is better than the original frog, then
Xb,k is replaced by X′b,k. After the update of the best frog in the kth memeplex Sk, a small portion of frogs
are selected to form a sub-memeplex. The selection probability of each frog in the memeplex is derived
based on their objective value ranking in the memeplex using the triangular probability function [11]:

Pi,k = 2(p + 1− i)/p(p + 1), i = 1, 2, 3, . . . , p (2)

where Pi,k is the frog selection probability in the kth memeplex and i is the ranking of the frog. Inside
the sub-memeplex, the frog with the best objective value, Xb,k, and the frog with the worst objective
value, Xw,k, are identified. To imitate the process of sharing information, the worst frog will learn from
both the best frog in the sub-memeplex and from the global best in the entire population, which is a
process similar to the PSO algorithm [13]. Mathematically, the position of the worst frog is updated by:

v = S× [w× (Xb,k −Xw,k) + (1−w) × (Xb,overall −Xw,k)]

X′w,k = Xw,k + v (3)

where S is the predefined step size, and w is the random weight between [0,1]. If the new position X′w,k
is within the design space, its objective value is evaluated. If the result is not better than the original
objective value of the same frog, the position of the worst frog will be updated again using the position
of the global best frog, Xb,overall, instead of the position of the best frog in the sub-memeplex:

v = S×w× (Xb,overall −Xw,k)

X′w,k = Xw,k + v (4)

If the new position X′w,k is within the design space, again its objective value is evaluated. If in
both cases there is no improvement in the objective value, the worst frog is mutated according to:

X′w,k= [rand (lb, ub), . . . , rand(lb, ub)] (5)

The local search process will repeat for t times, and then the entire population is shuffled and
moved to the next iteration. As extra numbers of function evaluations are required, the optimization
time for each iteration is longer than that in conventional SFLA. These steps repeat until the stop
criterion is met.

3. Normalized Gaussian Radial Basis Function Formulation

In the TO process for the electromagnetic devices, a commonly practiced method when constructing
the topology of the model is to divide the design space into a number of small elements, and assign
material to each element based on the value of its topology function controlled by the design variables
of the problem. Because the position vectors of the frogs can be any arbitrary numbers in the design
space, the design variables in SFLA should be continuous. Therefore, in this paper, the normalized
RBF modeling method [16] is employed to reconstruct the topology of the electromagnetic devices.
In the normalized RBF method, the value of topology function at location x in the design space can be
described as:

s(x) =

M∑
i=1

wi ×φ(‖x− xi‖)

M∑
i=1

φ(‖x− xi‖)

, wi ∈ [0, 1] (6)

where M is the total number of RBFs in the model, ‖·‖ is the multidimensional norm, wi is the weight of
each RBFs and is the design parameter, and the function φ is the predefined radial function. The value
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of s(x) determines the material type of the element xe located at the position x, which is either iron or
air in this paper:

s(x) > 0.5, Mat(xe) = Iron
s(x) < 0.5, Mat(xe) = Air

(7)

where Mat(xe) defines the material type of element xe. Because only the weight of each RBF is controlled
during the optimization process, the number of control parameters as well as the complexity of the
problem can be significantly reduced. Moreover, the usage of RBFs helps to transfer the discrete
topology matrix into function of continuous variables. The radial function used in this paper is the
normalized Gaussian function with zero mean. For a RBF centered at xe, its value at any point x in the
design space is:

φ(x) =
1
σ2π

e−
1
2 (
‖x−xe‖
σ )

2

(8)

The radius of the RBFS is determined by its variance σ. To ensure that the entire design domain can
be reconstructed, the RBFs are set to be evenly distributed, and their radii are larger than the distance
between any two consecutive RBFs. In the proposed TO process, both the position and the radius of
RBFs are predefined to reduce the number of control variables with a less complicated reproduction
process. The design parameter, which is the weight of each RBF, is set to be positive to avoid any
possible conflict in the topology definition, and is bounded between [0,1] to reduce the design space.
After the calculation of the topology function, the material type of the element is also determined and
assigned in order to create a topology matrix accordingly. To further remove the checkerboard pattern
in the topology, a 2D filter is used to refine the topology matrix. The actual FEM evaluation is then
conducted using the created model.

4. Problem Formulation and Numerical Experiments

In this paper, the proposed SFLA is applied to the topology optimization of the iron part in the
rotor of a benchmark IPM. To reduce the time for objective value evaluation, the 2D model of the 1/4
cross-section of the prototype machine with periodic boundary condition is used for FEM evaluation,
and the stack length is set to be 120 mm. All other parameters in the model are set to be constants.
Table 1 lists all the fixed parameters.

Table 1. IPM fixed parameter values.

Parameters Value Unit

Stator outer radius 110 mm
Stator inner radius 75 mm

Air gap length 0.45 mm
Rotor outer radius 74.55 mm
Rotor inner radius 52.5 mm

Permanent magnet length 20.4 mm
Permanent magnet width 5.5 mm
Phase current amplitude 9.69 A

Coil number of turns 30
Motor speed 2800 rpm

Number of slots/poles 48/8

The design space of the problem is the 1/16th portion of the rotor which is then replicated with
two mirror processes to re-construct the quarter model. The usage of smaller design space helps to
improve the resolution of the obtained topology with the same number of elements, as well as ensuring
a symmetrical rotor structure. The entire design domain is divided into 990 elements, 22 in a row
and 45 in a column, with each element occupying 0.5◦ in width and 1 mm in length and is filled with
either iron or air. Numerical experiments were conducted to search for the best number of RBFs and
Gaussian variance for the RBF modeling process. To obtain a smooth topology with relatively small
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number of design variables, (4× 9) = 36 RBFs are used to cover the entire design domain. Each RBF
is set to be fiveelements from its neighbor RBF, in both radial direction and along the arcs, and the
variance of the Gaussian function is set to 1. The control parameters, which are the weight of each RBF,
are set to be bounded within [0, 1].

Figure 2 depicts the initial design domain and the 36 RBFs are used to construct the topology.
The red circles in the design domain indicate the RBFs and their effective area, where inside the effective
area the values of RBFs are positive, and outside the effective area their values are assumed to be
zero. Hence, each RBF controls only the topology of a small region in the design domain, and a large
variety of topology can be generated using the RBF method. The aim of the topology optimization
is to maximize the average torque and minimize the torque ripple, and hence the objective function
of the TO problem is defined as the weighted sum of the normalized average torque and the torque
ripple of the IPM evaluated using Ansys Maxwell, evaluated by the virtual work method employed in
the software:

max f (X) = c1
Tavg(X)
Tprototype

− c2
Tmax(X)−Tmin(X)

Tavg(X)
, X = [X1, X2, . . .X36]

s.t. Areairon ≤ Areadesign
(9)

where c1 and c2 are two predefined weight coefficients and equal to 1 in this paper, Areairon is the area
of iron part in the IPM of the design, and Areadesign is the area of the design space, which has a fixed
size in the optimization problem, and hence can serve as the volume constraint of the TO problem.
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Moreover, a transient analysis in Ansys Maxwell is used to compute the average torque and the
torque ripple. Consequently, the length of the time step has a significant impact on the computational
results. To address this issue, one first conducts a numerical experiment to decide the time step before
the optimization, i.e., for a fixed topology, one incrementally reduces the length of time step until
the errors of the computed average torque and the torque ripple between two successive time step
reductions are smaller than a given tolerance. From this numerical experiment, the time step is finally
set as period/100 for this case study.

The prototype IPM design and its performance are given in Figure 3. The average torque of the
prototype, Tprototype, is 117.6 Nm, and the torque ripple of the machine is 9%. The algorithm stops when
the best solution stays unchanged for five consecutive iterations or the iteration number exceeds 1000.
To determine the appropriate algorithm parameters including the sub-memeplex size, local search
times for the worst frogs and for the best frogs in the memeplex, the SFLA is run twice, using two sets
of parameters, for each single objective optimization of the prototype IPM when optimizing its average
torque. The parameter values and the corresponding algorithm performances are listed in Table 2.
For both cases, the sizes of the population, memeplex, and sub-memeplex are identical. In the SFLA
algorithm, the best frog local search step and the worst frog improvement step are the two core steps
responsible for the exploration of the design domain. In the first run, the algorithm concentrates more
on the directed search, and in each memeplex, the update of worst frog’s position towards the best
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frog’s position is repeated thrice, while the random local search for the best frog is only conducted once.
In the second run, the algorithm focuses on the random search, and hence the random local search for
the best frog in each memeplex is conducted thrice, and the worst frog improvement step is only done
once. The results of two runs indicate that, with comparable numbers of FEM evaluations, the second
run can obtain a better optimization result. This is because in the first run more computing resources
are used to improve the overall objective values of the entire population, which is not necessary in the
case of TO of electromagnetic devices. In the second run, the addition of randomness to the population
via the best frog in each memeplex significantly improves the algorithm’s ability to escape from the
local optimum, and hence the optimized result is better than that of the first run. Hence, in the actual
multi-objective TO problem for the IPM, the second set of parameters is chosen.
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Table 2. Algorithm parameters used and the results obtained for two test runs of SFLA.

First Run of SFLA Second Run of SFLA

Population size 185 185
Memeplex size 5 5
Sub-memeplex size 3 3
Local search step size 1 2
Worst frog improvement repetition 3 times 1 time
Best frog improvement repetition 1 time 3 times
Number of FEM calls 636 901
Optimized results 106.85 Nm 134.73 Nm
No. of cycles to find the Optimum 1 6

After determining the algorithm parameters, the proposed modified SFLA is applied to the
multi-objective TO problem formulated in the afore-section. To showcase the merit of the proposed
method, its performance is compared with the performance of other two EAs, namely the original
SFLA and LS-GA. Based on the famous no free lunch theorem, one cannot improve the performance of
an optimization algorithm without sacrificing its performance in other aspects [18], and hence both
the optimization time and the optimized results are compared as an indication of algorithm efficiency.
The optimized topology designs and their corresponding torque plots of the three algorithms are given
in Figures 4–6. The details of their performances are summed up in Table 3. All three algorithms are
repeated three times and their performances are averaged to make the results more reliable.
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Table 3. Summary of optimization performances of all three EAs.

Conventional SFLA LS-GA Proposed SFLA

Average number of FEM evaluations 661 times 1800 times 905 times

Standard deviation in FEM evaluations 60 246 141

Optimized average torque 100.8 Nm 130.8 Nm 126.8 Nm

Optimized torque ripple 28.2% 20.0% 19.8%

Weighted sum objective 0.539 0.91 0.88

No. of cycles to find the Optimum 2 7 6

Ratio of the volume of the material to
that of the entire design domain 67.7% 60.0% 63.5%

Among all three algorithms, the conventional SFLA has the fastest optimization speed, and the
overall optimization requires only 600+ FEM evaluations to locate the optimum. However, because
there is a lack of escape mechanism, the optimized result found by the SFLA has a relative low objective
value, with an average torque of 100.8 Nm, torque ripple of 28.2%, and weighted objective value of
0.539. The population size is 185, and the number of cycles to find the optimum is two and does
not go through any evolvement for the remaining optimization process, making the result of the
algorithm highly dependent on the initial guess of the optimization process. On the other hand,
the LS-GA algorithm has the longest optimization time, as well as the best optimization results. It can
successfully locate the solution with the largest average torque value of 130.8 Nm, as well as the best
weighted objective values of 0.91. In view of the material consumptions, the ratios of the volumes of the
material to that of the entire design domain under the optimized topologies of the conventional SFLA,
the LS-GA, and the proposed SFLA are, respectively, 67.7%, 60%, and 63.5%. However, the average
number of FEM evaluations for LS-GA is about 1800, which is three times the optimization time
of the conventional SFLA algorithm. The performance of the proposed algorithm falls in between
the conventional SFLA algorithm and the LS-GA algorithm. The average time cost of the proposed
algorithm is 950 FEM evaluations, which is 1.5 times of the conventional SFLA and almost half of the
LS-GA, and the optimized result found by the proposed method is 0.88, with an average torque of
126.8 Nm and torque ripple of 19.8%. The tradeoff between the optimization speed and the result
performance of the proposed algorithm is the most efficient among all three EAs. Comparing with
the LS-GA algorithm, the proposed algorithm sacrifices only a small degradation in the quality of the
optimization result (96.7% objective value) in return for a shorter optimization time (50% optimization
time). On the other hand, the local search step in the proposed algorithm enhances the algorithm’s
ability for exploration, and the number of cycles to find the optimum is found is 6, which is the last
iteration. Because the design space is more extensively explored, the optimization time is relatively
longer (1.5 times of the conventional SFLA), but with a much better optimization results (1.27 times the
objective value of the conventional SFLA).
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5. Conclusions

In this paper, a modified shuffled frog-leaping algorithm that is suitable for complex
electromagnetic problem is proposed. Compared with conventional SFLA, the proposed algorithm
adds a local search step to the global best in each memeplex formed during the optimization and
discards some repetitions in the worst candidates improvement process, and hence the algorithm has a
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better exploitation abilities with comparable time cost. To examine the performance of the proposed
algorithm, it was applied to the topology optimization of an IPM prototype, and the results were
then compared with the TO results of two other evolutionary algorithms, namely the conventional
SFLA and the LS-GA. The LS-GA finds the best result with the longest optimization time, while the
conventional SFLA finds the result with the least objective value using the shortest time. The optimized
result found by the proposed method is 95% of the result found by LS-GA using 50% of its optimization
time, and hence the proposed algorithm has the most efficient trade-off between the optimization time
and the objective values, making it suitable for the optimization of electrical machine.
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