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Abstract 

Background 

Depression and cardiovascular disease (CVD) are associated with each other but their 

relationship remains unclear. We aim to determine whether genetic predisposition to 

depression are causally linked to CVD [including coronary artery disease (CAD), 

myocardial infarction (MI), stroke and atrial fibrillation (AF)]. 

Methods 

Using summary statistics from the largest genome-wide association studies (GWAS) or 

GWAS meta-analysis of depression (primary analysis: n=500,199), broad depression 

(help-seeking behavior for problems with nerves, anxiety, tension or depression; 

secondary analysis: n=322,580), CAD (n=184,305), MI (n=171,875), stroke (n=446,696) 

and AF (n=1,030,836), genetic correlation was tested between two depression phenotypes 

and CVD [MI, stroke and AF (not CAD as its correlation was previously confirmed)]. 

Causality was inferred between correlated traits by Mendelian Randomization analyses. 

Results 

Both depression phenotypes were genetically correlated with MI (depression: 

rG=0.169;P=9.03x10-9; broad depression: rG=0.123;P=1x10-4) and AF (depression: 

rG=0.112;P=7.80x10-6; broad depression: rG=0.126;P=3.62x10-6). Genetically doubling 

the odds of depression was causally associated with increased risk of CAD (OR=1.099; 

95% CI:1.031-1.170; P=0.004) and MI (OR=1.146; 95% CI:1.070-1.228; P=1.05x10-4). 

Adjustment for blood lipid levels/smoking status attenuated the causality between 

depression and CAD/MI. Null causal association was observed for CVD on depression. 

Similar pattern of results was observed in the secondary analysis for broad depression. 

Conclusions 
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Genetic predisposition to depression may have positive causal roles on CAD/MI. Genetic 

susceptibility to self-awareness of mood problems may be a strong causal risk factor of 

CAD/MI. Blood lipid levels and smoking may potentially mediate the causal pathway. 

Prevention and early diagnosis of depression are important in management of CAD/MI. 
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Introduction 

Depressive disorder was ranked the third leading cause of non-fatal health loss in the 

Global Burden of Disease Study 2017 (GBD 2017 Disease and Injury Incidence and 

Prevalence Collaborators, 2018). As reported by the World Health Organization, more 

than 300 million people were suffering from depression in 2017 (World Health 

Organization, 2017). Among patients with depression, cardiovascular diseases (CVD) 

often co-exist. Observational studies and meta-analyses demonstrated that depression and 

CVD [including coronary artery disease (CAD) (Gan et al., 2014), myocardial infarction 

(MI) (Gan et al., 2014), stroke (Barlinn et al., 2015) and atrial fibrillation (AF) (Garg et 

al., 2019, Goren et al., 2013)] were associated with each other, and the relationship was 

bi-directional (Lippi et al., 2009). Nevertheless, there is insufficient evidence on whether 

depression causally leads to various CVD traits, or vice versa. Emerging reports also 

called for clinical awareness on the interplay between stress-related psychiatric disorders 

and CVD (Bacon, 2019, Song et al., 2019). Given the high prevalence of the diseases and 

the huge public health impact incurred, it is important to understand the relationship 

between depression and CVD although stress is just one of the risk factors for depression. 

 

Published genome-wide association studies (GWAS) have adopted different depression 

phenotypes, ranging from self-declared depression-related phenotypes to clinical 

diagnosis of major depressive disorder (MDD). As accumulating evidence suggested that 

genetic association results obtained from the combination of carefully curated research 

cohorts with self-declared depression cohorts are applicable to clinical MDD (Wray et al., 

2018), increasing number of studies are using this approach. Recently, Howard et al 
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conducted a GWAS meta-analysis of depression with 807,553 individuals (246,363 cases; 

561,190 controls) (Howard et al., 2019) from the three largest studies of different 

depression phenotypes, including self-reported clinical diagnosis or treatment of 

depression in 23andMe participants (75,607 cases and 231,747 controls) (Hyde et al., 

2016), self-reported diagnosis together with conventional methods like structured 

diagnostic interviews in participants of Psychiatric Genomics Consortium (PGC) (43,204 

cases and 95,680 controls) (Wray et al., 2018), and broad depression, which was defined 

as “self-reported past help-seeking via a general practitioner or psychiatrist for problems 

with nerves, anxiety, tension or depression” in UK Biobank participants (127,552 cases 

and 233,763 controls) (Howard et al., 2018). The availability of GWAS data enables the 

conduct of Mendelian randomization (MR) analysis, which is considered a powerful 

approach making use of genetic variation as random experiment to evaluate the causal 

association between two traits or diseases, when such relationships cannot be directly 

evaluated using clinical trials (Davies et al., 2018). Its principles were described clinically 

elsewhere (Davies et al., 2018). In brief, genetic variants that influence the susceptibility 

to a disease/trait (like depression as exposure) could serve as instruments and determine 

the association of lifelong risk of another disease/trait (like CAD as outcome). The 

randomly assigned genetic variants utilized in MR analyses were fixed at conception, 

making MR findings less likely to be influenced by unmeasured confounding and reverse 

causation when compared to observational studies (Davies et al., 2018), relying on several 

assumptions (Figure 1).  In this study, we adopted a bi-directional two-sample MR 

approach to infer causality between genetically determined depression and several types 

of CVD after confirming genetic correlation exists between the traits (Figure 1).  We also 

aim to identify the potential mediators in the causal pathway.  



 

7 
 

 

Methods 

Data sources 

The meta-analysis of depression conducted by Howard et al (2019) included the three 

largest GWAS using different depression phenotypes in participants from 23andMe, PGC 

and UK Biobank (Howard et al., 2019). Notably, the summary statistics of all genetic 

variants in the study by Howard et al were only publicly available in the form of meta-

analysis of PGC and UK Biobank studies without samples from 23andMe, comprising 

170,756 cases and 329,443 controls. Taking into account the GWAS sample size of 

different depression phenotypes, the primary analyses in the current study examines the 

relationship between depression and various CVD, with depression defined by the meta-

analysis of PGC (self-reported diagnosis together with conventional identification 

methods) and UK Biobank (broad depression) studies comprising 500,199 individuals. 

Meanwhile, the broad depression dataset is a subset of the GWAS meta-analysis of 

depression conducted by Howard et al (2019). Due to its relatively small sample size, 

only 14 SNPs reached genome-wide significance, limiting the number of genetic 

instruments employed in MR analyses. In view of the anticipated low power, MR analyses 

evaluating the causal association between broad depression and CVD were included as 

secondary analyses. 

 

In evaluating the genetic correlation/causal association between depression phenotypes 

and various CVD, summary statistics of genetic instruments were extracted from the 
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largest possible publicly available GWAS/GWAS meta-analysis. Out of the 15 GWAS 

datasets from which summary statistics were extracted, 13 of the GWAS were conducted 

in Europeans only, while two GWAS comprised approximately 80% participants of 

European ancestry. Biases of the causal estimates may arise due to sample overlap. If both 

the case and control participants in the outcome dataset are also in the exposure dataset, 

the extent of bias is a linear function of the proportion of overlap between the exposure 

and outcome datasets (Burgess et al., 2016). Therefore, GWAS datasets with minimal 

chance of sample overlap were chosen. For example, there was a published GWAS meta-

analysis of CAD comprising UK Biobank participants, with a larger sample size but 

possible sample overlap with depression datasets. To avoid any possible biases due to 

sample overlap, we conducted the MR analyses using a smaller CAD dataset without UK 

Biobank participants.  

 

On the other hand, depression is reported to be associated with several risk factors of 

CVD, including blood pressure (Lewington et al., 2002, Sparrenberger et al., 2009), levels 

of blood lipid [low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein 

cholesterol (HDL-C) and triglycerides)] (Enko et al., 2018, Welty, 2013), body mass 

index (BMI) (Khan et al., 2018, Luppino et al., 2010), type-2 diabetes (Kannel et al., 1979, 

Vancampfort et al., 2015), inflammatory markers [levels of interleukin-6 (IL-6) and C-

reactive protein (CRP) (Pepys et al., 2003) as proxies of systemic inflammation] (Howren 

et al., 2009, Libby, 2006),  physical activity (in terms of average acceleration measured 

by wrist-worn accelerometer) (Kamphuis et al., 2007), smoking status (Ambrose et al., 

2004, Wootton et al., 2018) and insomnia (Larsson et al., 2019, Nutt et al., 2008). 
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However, it remains unknown if these risk factors mediate the association between 

depression and CVD, or depression itself is an independent risk factor (Carney et al., 

2017). By multivariable MR approach (Burgess et al., 2017, Burgess et al., 2015), we 

examine if such risk factors may potentially mediate the association between depression 

and CVD. Data sources of exposures, potential mediators and outcomes are listed in 

Supplementary Table S1. 

 

Estimation of genetic correlation 

Using genome-wide summary statistics, linkage disequilibrium (LD) score regression 

(LDSC) (Bulik-Sullivan et al., 2015a, Bulik-Sullivan et al., 2015b) was employed to 

estimate the genetic correlation between two depression phenotypes and various CVD 

(including MI, stroke and AF but not CAD which was evaluated in the original GWAS 

(Howard et al., 2019, Howard et al., 2018)). As these complex diseases were affected by 

thousands of genetic variants with small effect size, utilizing genome-wide data in genetic 

correlation analyses might provide more information regarding their genetic etiology than 

using only the significantly associated SNPs in MR studies, which also depend on the 

statistical power of respective GWAS. Therefore, LCSD was firstly employed to unravel 

genetic correlation between diseases, providing insights on shared genetic ethology 

between diseases. The results of genetic correlation analyses subsequently help to 

prioritize the identification of likely causal relationships (Bulik-Sullivan et al., 2015a). 

Pre-computed LD scores suitable for European-ancestry samples and Python command 

line tool were used. 
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Selection of genetic instruments for MR analyses 

Causal association was tested between genetically correlated depression/broad depression 

and CVD trait pairs. The genetic instruments adopted in univariable and multivariable 

MR analyses for each exposure-outcome pair are the same, and they satisfied the MR 

assumptions (Figure 1). Briefly, independent GWAS-derived exposure-associated 

genetic variants, which were not in LD with each other, were initially selected as the 

genetic instruments to represent genetic predisposition to the exposure trait. The summary 

statistics of these initial genetic instruments were retrieved from the datasets of outcome 

and potential mediators. If an initial genetic instrument was unavailable in the GWAS of 

outcome or potential mediator datasets, a proxy variant in high LD (r2>0.8) and present 

in all the exposure, outcome and potential mediator datasets was selected as the genetic 

instrument to replace the initial one. If no proxies could be identified, the genetic 

instrument was excluded from MR analysis. One of the MR assumptions is that the 

genetic instruments only act on the outcome via the exposure and/or potential mediators 

(Figure 1). Violation of this assumption is known as horizontal pleiotropy. Pleiotropic 

genetic instruments associated with the outcome through pathways other than the 

exposure/mediators under investigation were excluded from MR analyses. Such genetic 

variants were defined as those with genome-wide significant association with alternative 

pathways in GWAS conducted by representative consortiums, as revealed by the web-

interfaced PhenoScanner (Staley et al., 2016), a curated database of publicly available 

GWAS. If MR pleiotropy residual sum and outlier (MR-PRESSO) identified outliers, the 

MR analyses were repeated after exclusion of the outliers. Genetic instruments selected 

by the above procedures constituted the main analysis. As a sensitivity analysis, the MR 

analysis was repeated after excluding the genetic instruments which did not reach 
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genome-wide significance in the exposure dataset (such as proxies). Detailed selection of 

genetic instruments is elaborated in Supplementary Methods 1. The number of genetic 

instruments, and summary statistics applied in each MR analysis are included in Table 1 

and Supplementary Tables S2-S13 respectively.  

 

Power calculation 

Proportion of variance in the exposure explained by the genetic instruments was derived 

from the Mangrove package (Jostins, 2017) in R, which also takes into account the disease 

prevalence. An online web tool, mRnd (http://cnsgenomics.com/shiny/mRnd/) (Brion et 

al., 2013), was employed to perform power calculation. Strength of genetic instruments 

for each MR analysis are presented in Table 1. For each pair of causal relationship under 

investigation, a plot of power against odds ratio of the true underlying association is 

shown in Supplementary Figure S1.    

 

MR analyses 

All the genetic instruments were oriented such that the effect alleles were positively 

associated with the exposure. The effect alleles were matched across the summary data 

of the exposure, potential mediator and outcome dataset. Due to the unavailability of 

effect allele frequency of some GWAS datasets, allele frequencies were not used to align 

palindromic genetic instruments on ambiguous strands across different datasets. Non-

palindromic proxies in high LD (r2≥0.8) were identified for the palindromic instruments 

(Hartwig et al., 2016). Univariable inverse-variance weighted (IVW) method was used 

http://cnsgenomics.com/shiny/mRnd/
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for main MR analysis to assess the total effect of the exposure on the outcome (Burgess 

et al., 2013, Burgess et al., 2017). Weighted median method (Bowden et al., 2016) was 

employed as a sensitivity analysis. MR-Egger intercept test (Bowden et al., 2015) and 

global test of MR-PRESSO (Verbanck et al., 2018) were employed to detect for the 

presence of pleiotropy. In case univariable MR analysis suggested the presence of causal 

association, multivariable IVW analysis was also performed to dissect the mechanisms in 

the causal pathway from the risk factor to the outcome (Burgess et al., 2017, Burgess and 

Thompson, 2015). It was reported that the causal estimates derived from univariable MR 

analysis represents the total effect of the exposure on the outcome. Multivariable MR 

analysis can be used to estimate the direct causal effect of the exposure on the outcome 

by keeping the potential mediator constant. Presence of difference between the causal 

estimates of the univariable (total effect) and multivariable MR analysis (direct causal 

effect) implies that causal effect acts at least in part via the potential mediator (indirect 

effect) (Burgess et al., 2017). Multivariable MR-Egger intercept test was applied to detect 

for presence of residual pleiotropy via other unmeasured risk factors (Rees et al., 2017). 

Different methods of MR analyses are described in Supplementary Methods 2.  

 

As the exposures in all the MR analyses are binary variables, the causal estimates were 

initially equivalent to the change in the outcome per unit change in the exposure on the 

log odds scale [=exponential 1, i.e. 2.72-fold change in the odds of the exposure]. For the 

sake of interpretation, the causal estimates were converted by multiplying 0.693 (=ln 2) 

and then exponentiating to represent change in outcome per 2-fold change in the 

prevalence of the exposure (Burgess et al., 2018).  
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Results 

Genetic correlation 

Genetic correlation between the depression phenotypes and various CVD are shown in 

Table 2. Depression had strong and positive genetic correlation with broad depression 

(rG=0.9732; SE=0.0041; P=0). Positive significant genetic correlation was observed for 

both depression phenotypes with MI (depression: rG=0.1688; SE=0.0294; P=9.03x10-9; 

broad depression: rG=0.1231; SE=0.0324; P=1x10-4) and AF (depression: rG=0.1124; 

SE=0.0251; P=7.80x10-6; broad depression: rG=0.1258; SE=0.0272; P=3.62x10-6), but 

not with stroke. In addition to CAD which was demonstrated to be genetically correlated 

with depression phenotypes (Howard et al., 2019, Howard et al., 2018), bi-directional 

two-sample MR was conducted for six pairs of traits (two depression phenotypes versus 

CAD, MI and AF).  

 

Two-sample MR of depression and CVD 

To account for multiple testing, we applied a conservative Bonferroni corrected threshold 

(α=4.167x10-3=0.05/12) in the subsequent two-sample bi-directional MR analyses. The 

primary analysis aims to evaluate the causal relationship between depression and various 

types of CVD. With 93 genetic instruments in the main analysis, univariable IVW method 

demonstrated that genetically doubling the odds of depression increased the risk of CAD 

and MI by 9.9% and 14.6% respectively (CAD: OR=1.099; 95% CI:1.031-1.170; MI: 

OR=1.146; 95% CI:1.070-1.228) (Figure 2a; Supplementary Figures S2a and S3a). 
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Sensitivity analysis of weighted median method yielded similar estimates (CAD: 

OR=1.138; 95% CI:1.042-1.242; MI: OR=1.163; 95% CI:1.057-1.281). The association 

remained significant after corrected for multiple testing. In multivariable IVW analysis 

adjusting for beta estimates of smoking status, the causal association between depression 

and CAD/MI were attenuated (CAD: OR=1.027; 95% CI: 0.956-1.103; MI: OR=1.053; 

95% CI: 0.975-1.139). With adjustment for blood lipid levels, the causal association was 

also attenuated between depression and CAD (OR=1.060; 95% CI: 0.994-1.130), but not 

for MI. There was little change in causal estimate after adjustment for other potential 

mediators (Figure 2b). MR-Egger intercept tests were insignificant in all univariable and 

multivariable MR analyses of depression on both CAD and MI (P>0.05) (Figures 2a and 

2b). MR-PRESSO global tests did not detect any horizontal pleiotropy (P>0.05) (Figure 

2a). 

 

In the sensitivity analyses, genetic instruments which no longer attained genome-wide 

significance in the depression dataset were excluded. The same pattern of results was 

observed. With 34 genetic instruments, univariable IVW analysis showed that genetic 

predisposition to increased risk of depression was causally linked to increased risk of 

CAD and MI (CAD: OR=1.103; 95% CI: 1.014-1.199; MI: OR=1.180; 95% CI: 1.068-

1.303). Similar causal estimates were obtained from the weighted median method (CAD: 

OR=1.131; 95% CI: 1.004-1.274; MI: OR=1.162; 95% CI: 1.014-1.331) (Figure 3a; 

Supplementary Figures S2b and S3b). In multivariable MR analysis, the causal 

association of depression with both CAD and MI was attenuated after adjustment for beta 

estimates of smoking status (CAD: OR=1.030; 95% CI: 0.931-1.138; MI: OR=1.085; 
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95% CI: 0.971-1.213) (Figure 3b). In addition, the causal association between depression 

and CAD was also attenuated when adjusted for blood lipid levels (OR=1.041; 95% CI: 

0.948-1.143), type 2 diabetes (OR=1.083; 95% CI: 0.994-1.180), BMI (OR=1.079; 95% 

CI: 0.992-1.175) and blood pressure (OR=1.086; 95% CI: 0.996-1.183) in multivariable 

MR analyses. MR-PRESSO global tests, as well as MR-Egger intercept tests in both 

univariable and multivariable MR analyses were insignificant (P>0.05), indicating the 

absence of horizontal pleiotropy.   

 

Using 93 genetic instruments in the main analysis, univariable IVW analyses showed null 

causal association between depression and AF (Figure 2a). While MR-Egger intercept 

test suggested no evidence of pleiotropy, MR-PRESSO suggested three horizontal 

pleiotropy outliers were present. Consistent null causal association was observed after 

excluding the outliers with the use of 90 instruments (Figure 2a, Supplementary Figure 

S4). MR-PRESSO global test was still statistically significant (P=0.002), implying that 

overall horizontal pleiotropy might be present. However, MR-PRESSO did not identify 

any significant outliers of horizontal pleiotropy. In sensitivity analysis including only 34 

instruments reaching genome-wide significance in the meta-analysis of depression, there 

was null causal association between depression and AF in the univariable analysis. 

Insignificant MR Egger intercept and MR-PRESSO global tests implied the absence of 

horizontal pleiotropy (Figure 3a; Supplementary Figure S4b). 
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We found no evidence of causal effects of any CVD on depression (Supplementary Table 

S14a and Supplementary Figures S5-S7).  MR-Egger intercept and MR-PRESSO global 

tests did not detect any horizontal pleiotropy outliers. 

 

In the secondary analysis evaluating the causal relationship between broad depression and 

various CVD, similar pattern of results was obtained. Results of the secondary analysis 

were detailed in Supplementary Text 1, Supplementary Figures S8-S15. 

  

Discussion 

In this study, we demonstrate the presence of genetic correlation between depression and 

MI, as well as AF. The primary two-sample MR analysis provides evidence that 

genetically increasing odds of depression are causally associated with increased risk of 

CAD and MI. We found no evidence on the presence of causal relationship between 

depression and AF. Reverse causation of CVD on depression is not detected. Same pattern 

of results was observed in the secondary analysis which assesses the causal relationship 

between broad depression (as a subset of depression) and CVD. We also investigated if 

any potential mediator plays a role in the causal pathway from depression to CVD. 

 

Our LDSC analysis revealed that depression and broad depression were strongly 

correlated with each other. Positive genetic correlation was present between both 

depression phenotypes and MI, as well as AF. Genetic correlation was also reported 

between depression and CAD (Howard et al., 2019, Howard et al., 2018), suggesting 
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these traits may have shared genetic etiology. Stroke was the only tested CVD trait which 

did not have genetic correlation with both depression phenotypes. As causal association 

was less likely in the absence of genetic correlation, subsequent MR analysis was not 

performed in the current study. In line with this, a two-sample MR analysis did not 

support the presence of causal relationship between genetically determined risk of 

depression on ischemic stroke (Gill et al., 2019).  

 

We inferred causality of depression on various CVD by MR approach as our primary 

analysis. Univariable IVW analysis using 93 genetic instruments showed that genetically 

doubling the odds of depression increased the risk of CAD and MI by 9.9% (OR=1.099) 

and 14.6% (OR: 1.146), respectively. The causal association remained significant after 

corrected for multiple testing. Similar causal estimates were obtained in the sensitivity 

analysis using 34 genetic instruments. These are consistent with the previous meta-

analysis of population-/community-based prospective cohort studies (Gan et al., 2014). 

Results from MR-Egger intercept and MR-PRESSO global tests implied that horizontal 

pleiotropy is unlikely. The current study provides robust evidence on the causality of 

depression on CAD and MI. Similar pattern of results was observed in the secondary 

analysis evaluating the causal effects of broad depression on CAD and MI.    

 

Depression and CVD are hypothesized to be linked by several biological (inflammatory 

processes, dysfunction in the autonomic nervous system, endothelial and platelet 

dysfunction) and behavioral mechanisms (physical exercise, medical treatment and 

smoking) (Carney and Freedland, 2017). We evaluated some of the above mechanisms 
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using multivariable MR analyses. The attenuation of causal effect of genetically 

determined depression on CAD/MI after adjustment for smoking status suggested that 

smoking status might potentially mediate the causality. Patients with depression may 

smoke as “self-medication” to alleviate symptoms of the illness or side-effects of 

medications (Wootton et al., 2018) but toxic components of cigarettes might increase the 

incidence of CAD and MI by inflammation, thrombosis or increase in oxidative stress 

(Ambrose and Barua, 2004). On the other hand, multivariable MR analysis adjusted for 

blood lipid levels (LDL-C, HDL-C and triglycerides) attenuated the causality between 

depression and CAD. Blood lipid level patients with MDD were reported to have lower 

HDL-C, higher triglycerides (Enko et al., 2018) and LDL-C (Parekh et al., 2017) levels 

in serum. One possible explanation for such lipid profile could be life-style related factors 

(Enko et al., 2018), such as sedentary behaviors and poor adherence to physical exercises 

and diet (e.g. eating comfort food rich in fats and sugar to improve mood (Atlantis et al., 

2011)) for patients with depression (Carney and Freedland, 2017). Meanwhile, a 

combination of low HDL-C, high LDL-C and triglyceride levels are well-known risk 

factors of atherosclerosis (Welty, 2013), and thus increasing the risk of CAD. For broad 

depression, the causal association with CAD was attenuated after adjusting for blood lipid 

levels, type 2 diabetes, BMI, blood pressure and smoking status in multivariable MR 

analysis, indicating that causality might be partly mediated by these factors. This is further 

discussed in Supplementary Text 1. Due to the difference in definitions (detailed in 

Supplementary Text 2), slightly different results of MR analyses of depression and broad 

depression on CAD/MI were observed in the present study, which is discussed in 

Supplementary Text 3. A few published MR studies also investigated the causality 
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between depression and CVD traits. Comparison with these studies is further discussed 

in Supplementary Text 4.  

 

There are several clinical implications. Our research findings suggest that genetic 

predisposition to depression is a causal risk factor of CAD and MI, leading to the 

hypothesis that alleviation in depression might reduce the risk of CAD and MI. Although 

a few RCTs demonstrated that antidepressant therapy improved depression but had no 

effect on cardiac outcomes (Berkman et al., 2003, Zuidersma et al., 2013), such null effect 

might be because the antidepressant intervention on depression was weak and short-term 

that did not pose much effect on the long-term cardiac outcome (Shapiro, 2013). In 

addition, some depression-related medications would result in arrhythmias (Girardin et 

al., 2013), weight gain (Gafoor et al., 2018) and type 2 diabetes (Galling et al., 2016), 

which are known risk factors of CVD (Girardin et al., 2013). The robust causal 

association between depression and CAD / MI strengthens the idea that prevention and 

early diagnosis of depression or related mood disorder may help preventing CVD. 

Moreover, the depression definition adopted in this study is a mix of self-reported 

diagnosis together with conventional methods like structured diagnostic interviews, as 

well as broad depression, which represents self-awareness of mood problems (a stage 

preceding and not necessarily clinical diagnosis of depression), and a proxy phenotype of 

stress. In a recent population-based, sibling controlled cohort study comprising 136,637 

patients with stress-related disorders, the crude incidence rate of any CVD in these 

patients were higher than their unaffected siblings and matched unexposed individuals 

from the general population (Song et al., 2019). A meta-analysis of 46 cohorts with 
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2,017,276 participants (222,253 with anxiety disorder) revealed that anxiety was 

associated with an elevated risk of coronary heart disease, heart failure, but not AF 

(Emdin et al., 2016). The findings of our study may partly explain the comorbidity of 

stress-related and anxiety disorders with CVD. Given the potential mediating roles of 

smoking and blood lipid levels in the causal pathway of depression to CVD, appropriate 

stress management strategies with change of lifestyle-related factors (such as smoking 

cessation and intake of less comfort foods of high energy) may be warranted to prevent 

CVD in patients with depression, stress-related or anxiety disorders.   

 

The current study has several strengths. MR approach is applied to infer causality between 

two diseases, which is infeasible by RCT, as it is unethical to leave the patients with one 

disease untreated with the aim to observe the occurrence of another disease outcome. 

Two-sample MR approach is reported to have increased statistical power particularly for 

testing causality on binary disease outcomes (Lawlor, 2016). Genetic instruments adopted 

in this study were selected from the largest possible and well-powered GWAS studies. 

Hence, the current study is well-powered (Supplementary Figure S1). The relatively high 

F-statistic (≥1523.43) of the genetic instruments involved in the main primary MR 

analyses of depression implied a lower chance of weak instrument bias. Although the 

genetic instruments employed in the MR analyses of broad depression (Table 1) were 

relatively weak, this should have causal estimates biased towards the null in two-sample 

MR analysis (Pierce et al., 2013). The causality inferred for broad depression is thus 

unlikely to be false positive. 
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This study also has limitations. Firstly, functions of the genetic instruments and how they 

influence the risk factors were not fully understood. Although we intended to be stringent 

in identifying pleiotropic instruments based on the information available in PhenoScanner 

in order to exclude genetic instruments likely to have horizontal pleiotropy with the 

outcome, it is possible that the genetic instruments may have an indirect effect on the 

outcome via a currently unknown pathway that does not involve the risk factor of interest. 

Nevertheless, we addressed this issue by adopting MR-Egger intercept and MR-PRESSO 

tests, though it cannot be ruled out unequivocally. Secondly, we attempted to reveal the 

potential mediators in the causal pathway from depression to CVD by multivariable MR 

analysis. However, we acknowledged that the list of potential mediators being examined 

may not be exhaustive and future studies on additional potential mediators are warranted. 

Thirdly, two out of the 15 GWAS datasets from which the summary statistics were 

extracted from comprised predominantly Europeans (approximately 80%). Population 

stratification may confound the association between depression and various CVD, 

violating one of the MR assumptions. Nevertheless, adjustments for principal components 

were performed in the respective GWAS (Hoffmann et al., 2017, Nikpay et al., 2015), 

alleviating the potential effects of population stratification on the MR findings. Fourthly, 

we intended to explore the potential mediator in the causal pathway from depression to 

CVD by multivariable MR analysis. Yet, the sample size of GWAS of the two 

inflammation markers, CRP (n=9,961) (Prins et al., 2017) and IL-6 (n=8,293) (Ahola-

Olli et al., 2017), were small. The roles of various inflammatory markers in the causal 

pathway may be examined again when summary statistics from larger GWAS become 

available. Fifthly, study participants included in the depression meta-analysis were not 

screened for CVD at baseline, and vice versa. The presence of outcome in the exposure 
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dataset may inflate the causal estimates in MR analyses. However, this is a general 

limitation of two-sample MR analyses and is inevitable without individual-level data. 

Sixthly, non-overlapping samples were utilized in the exposure and outcome datasets as 

far as possible to avoid bias. However, due to the unavailability of the raw genetic data, 

we could not determine the proportion of sample overlap between exposure and outcome 

datasets.  

 

In conclusion, genetic predisposition to depression is causally associated with CAD and 

MI, but reverse causation is not observed. Genetic susceptibility to increased self-

awareness of mood problems, preceding and not necessarily clinical diagnosis of 

depression, may be a strong causal risk factor of CAD and MI. The causal association 

contributes to the shared comorbidity of depression and CAD/MI.  
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Table 1. Power calculation of MR analysis for depression phenotypes and various CVD 

 

Exposure Outcome Primary / 

Secondary / 

Sensitivity 

analysis? 

Number of genetic 

instruments included 

in MR analysis  

(Total number of 

independent genetic 

variants identified in 

GWAS – number of 

genetic variants 

excluded due to lack of 

proxies – number of 

pleiotropic variants) 

Proportion 

of variance 

explained by 

the genetic 

instruments 

on exposure 

(%) 

F-statistics 
Disease Sample size Disease Sample size 

1 Depression 

Total: 500,199; 

Cases: 170,756; 

Controls: 329,443 

Coronary 

artery disease  

Total: 184,305; 

Cases: 60,801; 

Controls: 123,504 

Primary analysis 93 (102 – 2 – 7) 0.878 1633.53 

Sensitivity 

analysis 
34 0.439 813.67 

2 Depression 

Total: 500,199; 

Cases: 170,756; 

Controls: 329,443 

Myocardial 

infarction 

Total: 171,875;  

Cases: 43,676;  

Controls: 128,199 

Primary analysis 93 (102 – 2 – 7) 0.878 1523.43 

Sensitivity 

analysis 
34 0.439 758.86 

3 Depression 

Total: 500,199; 

Cases: 170,756; 

Controls: 329,443 

Atrial 

fibrillation 

Total: 1,030,836; 

Cases: 60,620; 

Controls: 970,216 

Primary analysis 93 (102 – 2 - 7) 0.878 9131.91 

Sensitivity 

analysis 
34 0.439 4546.32 

4 
Coronary artery 

disease  

Total: 184,305; 

Cases: 60,801; 

Controls: 123,504 

 

Depression 

Total: 500,199; 

Cases: 170,756; 

Controls: 329,443 

Primary analysis 47 (63 – 6 - 10) 4.281 22372.23 
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Exposure Outcome Primary / 

Secondary / 

Sensitivity 

analysis? 

Number of genetic 

instruments included 

in MR analysis  

(Total number of 

independent genetic 

variants identified in 

GWAS – number of 

genetic variants 

excluded due to lack of 

proxies – number of 

pleiotropic variants) 

Proportion 

of variance 

explained by 

the genetic 

instruments 

on exposure 

(%) 

F-statistics 
Disease Sample size Disease Sample size 

5 
Myocardial 

infarction 

Total: 171,875;  

Cases: 43,676;  

Controls: 128,199 

Depression 

Total: 500,199; 

Cases: 170,756; 

Controls: 329,443 

Primary analysis 25 (34 – 4 - 5) 2.732 14050.26 

6 
Atrial 

fibrillation 

Total: 1,030,836; 

Cases: 60,620; 

Controls: 970,216 

Depression 

Total: 500,199; 

Cases: 170,756; 

Controls: 329,443 

Primary analysis 149 (166 – 10 - 7) 5.625 29814.19 

7 

 

 

Broad 

depression 

Total: 322,580; 

Cases: 113,769; 

Controls: 208,811 

Coronary 

artery disease  

Total: 184,305; 

Cases: 60,801; 

Controls: 123,504 

Secondary 

analysis 
10 (14 – 1 - 3) 0.009 17.59 

Sensitivity 

analysis 
9 0.008 15.75 

8 
Broad 

depression 

Total: 322,580; 

Cases: 113,769; 

Controls: 208,811 

Myocardial 

infarction 

Total: 171,875;  

Cases: 43,676;  

Controls: 128,199 

Secondary 

analysis 
10 (14 – 1 - 3) 0.009 16.47 

Sensitivity 

analysis 
9 0.008 14.75 

9 
Broad 

depression 

Total: 322,580; 

Cases: 113,769; 

Controls: 208,811 

Atrial 

fibrillation 

Total: 1,030,836; 

Cases: 60,620; 

Controls: 970,216 

Secondary 

analysis 
10 (14 – 1 - 3) 0.009 93.78 

Sensitivity 

analysis 
9 0.008 83.47 
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Exposure Outcome Primary / 

Secondary / 

Sensitivity 

analysis? 

Number of genetic 

instruments included 

in MR analysis  

(Total number of 

independent genetic 

variants identified in 

GWAS – number of 

genetic variants 

excluded due to lack of 

proxies – number of 

pleiotropic variants) 

Proportion 

of variance 

explained by 

the genetic 

instruments 

on exposure 

(%) 

F-statistics 
Disease Sample size Disease Sample size 

10 
Coronary artery 

disease  

Total: 184,305; 

Cases: 60,801; 

Controls: 123,504 

Broad 

depression 

Total: 322,580; 

Cases: 113,769; 

Controls: 208,811 

Secondary 

analysis 
47 (63 – 6 - 10) 4.225 14231.23 

11 
Myocardial 

infarction 

Total: 171,875;  

Cases: 43,676;  

Controls: 128,199 

Broad 

depression 

Total: 322,580; 

Cases: 113,769; 

Controls: 208,811 

Secondary 

analysis 
25 (34 – 4 - 5) 2.674 8863.78 

12 
Atrial 

fibrillation 

Total: 1,030,836; 

Cases: 60,620; 

Controls: 970,216 

Broad 

depression 

Total: 322,580; 

Cases: 113,769; 

Controls: 208,811 

Secondary 

analysis 
152 (166 – 6 - 8) 5.721 19575.67 
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Table 2. Genetic correlation among the two depression phenotypes and various CVD 

  Trait 1 Trait 2 Genetic correlation rG (Standard Error) P-value 

1 Depression Broad depression 0.9732 (0.0041) 0 

2 Depression Coronary artery disease 0.1328 (0.0244)# 5.44x10-8# 

3 Depression Myocardial infarction 0.1688 (0.0294) 9.03x10-9 

4 Depression Stroke 0.0715 (0.0414) 0.08 

5 Depression Atrial fibrillation 0.1124 (0.0251) 7.80x10-6 

6 Broad depression Coronary artery disease 0.1236 (0.0288)# 1.71x10-5# 

7 Broad depression Myocardial infarction 0.1231 (0.0324) 1x10-4 

8 Broad depression Stroke 0.0674 (0.0434) 0.1204 

9 Broad depression Atrial fibrillation 0.1258 (0.0272) 3.62x10-6 

 

# Genetic correlation between the two depression phenotypes and coronary artery disease were computed in the original GWAS (Howard 

et al., 2018) / GWAS meta-analysis (Howard et al., 2019). The relevant figures were extracted here. 
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