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Abstract

Background: Telehealth is an effective means to assist existing health care systems, particularly for the current aging society.
However, most extant telehealth systems employ individual data sources by offline data processing, which may not recognize
health deterioration in a timely way.

Objective: Our study objective was two-fold: to design and implement an integrated, personalized telehealth system on a
community-based level; and to evaluate the system from the perspective of user acceptance.

Methods: The system was designed to capture and record older adults’health-related information (eg, daily activities, continuous
vital signs, and gait behaviors) through multiple measuring tools. State-of-the-art data mining techniques can be integrated to
detect statistically significant changes in daily records, based on which a decision support system could emit warnings to older
adults, their family members, and their caregivers for appropriate interventions to prevent further health deterioration. A total of
45 older adults recruited from 3 elderly care centers in Hong Kong were instructed to use the system for 3 months. Exploratory
data analysis was conducted to summarize the collected datasets. For system evaluation, we used a customized acceptance
questionnaire to examine users’ attitudes, self-efficacy, perceived usefulness, perceived ease of use, and behavioral intention on
the system.

Results: A total of 179 follow-up sessions were conducted in the 3 elderly care centers. The results of exploratory data analysis
showed some significant differences in the participants’ daily records and vital signs (eg, steps, body temperature, and systolic
blood pressure) among the 3 centers. The participants perceived that using the system is a good idea (ie, attitude: mean 5.67, SD
1.06), comfortable (ie, self-efficacy: mean 4.92, SD 1.11), useful to improve their health (ie, perceived usefulness: mean 4.99,
SD 0.91), and easy to use (ie, perceived ease of use: mean 4.99, SD 1.00). In general, the participants showed a positive intention
to use the first version of our personalized telehealth system in their future health management (ie, behavioral intention: mean
4.45, SD 1.78).

Conclusions: The proposed health monitoring system provides an example design for monitoring older adults’ health status
based on multiple data sources, which can help develop reliable and accurate predictive analytics. The results can serve as a
guideline for researchers and stakeholders (eg, policymakers, elderly care centers, and health care providers) who provide care
for older adults through such a telehealth system.
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Introduction

In Hong Kong, residents aged 65 years old and above will
account for 33.7% of the total population in 2066, compared to
17.0% in 2018 [1]. Aging reduces the physical and cognitive
capacities of older adults and affects their ability to live
independently or perform daily activities. Older adults are also
susceptible to chronic diseases (eg, hypertension, diabetes, and
dementia). For example, approximately 73% of Hong Kong
residents aged 75 and above have hypertension [2] and nearly
1 out of 10 community-dwelling residents aged 70 or above has
dementia. Managing such chronic diseases or their exacerbations
is associated with close to 80% of health care budgets [3].
Another critical health issue for older adults is falling, which
can result in decreased mobility level, fear of falling, and even
death [4]. Approximately 18% of Hong Kong
community-dwelling older adults experience falls. Among
fallers, approximately 10% incur bone fractures [5] and around
32% experience soft tissue injuries [6]. These falls are associated
with increases of up to HKD 552 million (US$70 million) in
extra annual health care costs, approximately 30% of which can
be reduced through an effective fall prevention program [7].

Recently, the Hong Kong government proposed a policy of
“aging in place,” which encourages empowering older adults
to remain in communities for long-term care services and to
promote their well-being [8]. Such community-based services
can ease the public financial burden as they are cheaper than
public hospitals and can save costs that would be spent on
misused health care resources (eg, unnecessary hospitalizations)
[9]. Along with the shift from hospital care to community care,
community-based health care systems are facing unprecedented
challenges of limited capacity and resources to monitor older
adults’ health continuously. Moreover, the caregivers in
communities may lack professional knowledge and thus cannot
detect health anomalies or suggest the next treatment for the
elderly when needed. Therefore, innovative solutions for
continuous monitoring of the health of the community-dwelling
elderly population and linking with health care professionals
are needed in the Hong Kong health system.

Owing to rapid developments in information technology,
telehealth monitoring has provided cost-effective and timely
access to quality care [10-12]. Telehealth monitoring systems
utilize telecommunication technologies (eg, digital monitoring
sensors) to capture and deliver health data (eg, vital signs) and
services between patients and health care professionals. In
particular, such a system provides a feasible solution to the
increasing demand for long-term care support and monitoring
to community-dwelling elderly individuals who may have
difficulties in accessing health services [13-16]. A review of
the current literature showed that telehealth systems have been
assisting older adults in specific health-related areas such as
chronic conditions [17-22], falls [23,24], and general wellness

[25-28]. For example, Or and Tao [19] developed a
patient-centered, tablet computer-based self-monitoring system
to enable older adults with type 2 diabetes and hypertension to
measure and monitor their blood glucose and blood pressure.
Sparks and colleagues [22] proposed a decision support system
that seeks to help community nurses monitor the well-being of
their chronically ill patients, using an all-in-one station-based
health monitoring device. Doty and colleagues [24] developed
a wearable multimodal monitoring system designed for the
real-life long-term monitoring of patients susceptible to falls.
In addition to trial studies on telehealth monitoring systems, we
also found some national telehealth programs that have been
implemented, such as the Whole Systems Demonstrator program
of the UK Department of Health [29], the Care
Coordination/Home Telehealth program introduced by Veterans
Health Administration in the United States [10], and the Home
Monitoring of Chronic Disease in Aged Care program funded
by the Australian government [16]. Significant benefits have
been reported, such as a 19% reduction in numbers of hospital
admissions [10] and 45% reduction in mortality rates [29].

However, as reported in previous studies [16,28,30,31], there
are still some restrictions and challenges that could block the
timely detection of health deterioration when implementing
continuous monitoring systems, such as offline data processing
and analysis, usage of individual smart devices, and
single-parameter measurement. Motivated by these challenges,
we aimed to integrate some state-of-the-art techniques into these
monitoring systems, such as advanced biomedical signal
analysis, statistical data analysis, predictive analytics, and
decision support, which can help provide efficient health care
services [32-34]. In addition, we sought to design a system that
can utilize various smart devices to collect different
health-related measurements for providing an efficient and
accurate approach to raising health awareness in community
monitoring [35,36].

Methods

System Design

Schematic Diagram
Figure 1 shows the schematic diagram of our proposed
personalized health monitoring system. The system captures
and records older adults’ health-related information such as
continuous vital signs and gait behaviors through various
measuring tools, and will be integrated and analyzed using
state-of-the-art data mining techniques. When any statistically
significant changes in daily records are detected, the decision
support system will emit warnings to older adults, their family
members, and their caregivers, who can then take appropriate
interventions to prevent further health deterioration. The details
of the measuring tools integrated into the system are described
below.
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Figure 1. Schematic diagram of the proposed personalized health monitoring system.

Vital Signs
Older adults’ vital signs are measured and recorded using an
all-in-one station-based telemonitoring device (TMC,
Telemedcare Systems Pty Ltd, Sydney, Australia). This device
was selected based on a comprehensive and independent
technology assessment process as described previously
[9,16,22]. The vital signs that a TMC unit can measure include
body temperature, systolic blood pressure (SBP), diastolic blood
pressure (DBP), heart rate, and blood oxygen level (SpO2). The
vital sign data can be electronically sent to a centralized database
for quality control and diagnostic purposes.

Daily Activity
A commercial device (Fitbit-Alta, Fitbit Inc, USA) is integrated
into our proposed system to record older adults’ steps and sleep
data. All of these data will be synchronized and uploaded to the
Fitbit cloud server for quality control and diagnoses.

Gait and Balance Sensor Signals
Older adults’ gait and balance status are measured using
wearable sensors that are cost-effective with few constraints on
monitoring movements [37-39]. Older adults need to put on a
sensor (ie, accelerometer and gyroscope) before performing a
3-meter timed up and go (3M-TUG) test and a 10-meter straight
walking (10M-SW) test (see Figure 2). The 3M-TUG test is a
well-known clinical test of gait mobility [40] with high
reliability [41]. During the 3M-TUG test, older adults need to
stand up from a chair, walk 3 meters, turn around, walk back 3
meters, and sit down on the chair. The completion time of the
3M-TUG test is recorded as it is associated with impaired
mobility and increased fall risks [40]. Gait speed is cited as the
“sixth vital sign” [42] to reflect functional and physiological
changes [43,44], and can further reflect fall risk [45]. Gait speed
can be calculated from the 10M-SW test with participants
walking 10 meters in a straight line. Signal data of gait behaviors
are collected from the wearable sensor during the two gait tests.
In addition, the Berg Balance Scale score is collected by
registered physiotherapists [46,47] to identify older adults who
are prone to falls and in need of preventive treatments [48,49].

Figure 2. Illustrations of (left) the 3-meter timed up and go test and (right) the 10-meter straight walking test.
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Demographic Information, Sleep Quality, and Wellness
Status
Customized questionnaires were used to collect older adults’
demographic information (eg, age, gender, and chronic disease
history). Sleep quality was measured using the Pittsburgh Sleep
Quality Index scale [50], one of the most commonly used
clinical measures of sleep quality [51,52], with the score ranging
from 0 to 21 (higher scores indicate worse sleep quality). Older
adults were asked to self-report their daily wellness level, also
called the Health Index, by rating on a 10-point scale from 1
(“feeling terrible”) to 10 (“feeling terrific”) [28].

System Implementation
During the implementation phase, we collected raw data for
system algorithm development and examined users’acceptance
of our proposed health monitoring system. A 3-month follow-up
design was utilized in 3 centers that are part of a local
nongovernment organization providing community services to
the elderly [53]. Center A is a nursing home that provides
24-hour service to residents aged 60 or above and are mentally
suitable for group living. Center B and Center C provide daycare
services for residents aged 60 or above who live in the
community.

Participants
Directors of the 3 centers first approached their center members,
explained our study protocol, and invited older adults to
participate. Based on the name lists from the directors, we
recruited older adults who met all of the following inclusion
criteria: (1) community-dwelling Hong Kong residents, (2) at
least 60 years old, (3) willing to participate in the study, and
(4) capable of cooperating in the assessment. Older adults with
unstable or life-threatening illness were excluded. After
completing all of the follow-up assessments, each participant
was given a 50 HKD (US $6.50) supermarket coupon as a token
of appreciation. The pilot study was approved by the Research
Ethics Committee of City University of Hong Kong (reference
number: 3-2-201803_02). All participants provided written
informed consent before participating in the study.

Procedure
The implementation phase was scheduled from November 14,
2017 to February 13, 2018 in Center A; from December 17,
2017 to March 16, 2018 in Center B; and from March 1, 2018
to May 31, 2018 in Center C. We conducted follow ups every
day during the 3-month period, excluding public holidays or
special arrangements at the center (eg, special holiday leave in
Center A; special training days in Center C). We ended up with
a total of 58 follow ups for Center A, 63 follow ups for Center
B, and 58 follow ups for Center C.

After obtaining participants’ consent forms, trained research
assistants collected participants’demographic and sleep quality
information using questionnaires, and distributed each
participant a Fitbit-Alta to wear 24 hours per day. The research
assistants conducted the following operations in each follow-up
visit, namely, every day during the 3-month period (except
public holidays or special arrangements at the center).

First, the research assistants checked the battery of the Fitbit in
use and, if needed, replaced it with a prepaired, fully charged
Fitbit (each participant used two paired Fitbit devices during
the pilot study). The research assistants then synchronized the
Fitbit data with a tablet and uploaded it to the Fitbit server.

Second, the research assistants asked the participants to be
seated in front of a TMC unit and guided each participant to
use the TMC for measurements of vital signs. After all the
measurements, the research assistants synchronized the vital
sign data to the TMC server.

Third, the research assistants recorded the participants’self-rated
health status (ie, health index).

In addition, the research assistants measured participants’ body
weight and performed a 3M-TUG test and a 10M-SW test once
a week during the 3-month period (except for public holidays
or special arrangements at the center).

System Evaluation
Exploratory data analysis was performed to summarize the
collected datasets. After the 3-month pilot study, we conducted
a survey through distributing a questionnaire to evaluate users’
acceptance of the system. The participants were asked to rate
their perceived acceptance of the system with respect to attitude
(eg, “it is a wise idea to use this system”) [54], self-efficacy
(eg, “it is comfortable to perform self-monitoring via the
system”) [54], perceived usefulness (eg, “using this system for
self-monitoring improves your health”) [55], perceived ease of
use (eg, “learning to perform self-monitoring via the system is
easy for you”) [55], and behavioral intention (eg, “you intend
to perform self-monitoring using the system in the next 2
months”) [56], using a 7-point Likert-type scale, ranging from
1 (“very strongly disagree”) to 7 (“very strongly agree”).

Results

Table 1 presents the demographic information, daily activities,
and vital signs of the 45 participants. Exploratory data analysis
showed significant differences among group means in age (F2,42

=9.138, P=.001), steps (F2,42=33.9, P<.001), body temperature
(F2,42=145.1, P<.001), and SBP (F2,42=4.417, P=.02). No other
significant group differences were found. Figure 3 shows the
longitudinal variations of the vital signs among the 3 centers.
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Table 1. Demographics, daily activities, and vital signs of the 45 participants stratified by center.

Center C (n=11)Center B (n=24)Center A (n=10)Variable

81.4 (9.9), 71-10676.3 (7.8), 61-9188.7 (3.7), 82-94Age (years), mean (SD), range

Gender, n (%)

4 (36.4)21 (87)8 (80)Female

7 (63.6)3 (13)2 (20)Male

Chronic disease (self-reported), n (%)

7 (58)13 (54)9 (90)Hypertension

2 (17)3 (13)2 (20)Heart disease

3 (25)1 (4)0 (0)Stroke

3 (25)5 (21)2 (20)Diabetes mellitus

0 (0)3 (13)0 (0)Cancer

4 (33)8 (33)0 (0)High cholesterol

1 (8)0 (0)2 (20)Asthma

7.00 (1.91)7.42 (3.99)7.80 (3.01)PSQIa, mean (SD)

6.33 (1.60)8.35 (1.24)7.06 (1.72)Health index, mean (SD)

Daily activities, mean (SD)

2751.5 (1718.5)11817.5 (4089.1)4751.8 (2481.7)Steps (number)

6.76 (2.14)7.35 (1.60)7.08 (1.77)Sleep (hours)

Vital signs, mean (SD)

36.72 (0.17)35.89 (0.14)36.45 (0.12)Body temperature (℃)

71.02 (4.28)69.28 (8.37)74.05 (7.58)DBPb (mmHg)

130.63 (14.65)130.10 (11.43)142.20 (3.72)SBPc (mmHg)

70.64 (11.28)74.19 (10.73)74.99 (5.92)Heart rate (beats/minute)

96.41 (1.90)97.71 (1.29)96.84 (1.62)SpO2
d (%)

aPSQI: Pittsburgh Sleep Quality Index.
bDBP: diastolic blood pressure.
cSBP: systolic blood pressure.
dSpO2: blood oxygen level.

Figure 4 shows an example of a segmented 3M-TUG task using
accelerometer data and gyroscope data. Algorithms developed
to segment the signal data into sit-to-stand, walking, and
stand-to-sit are provided in our previous publication [57].

Overall, the participants strongly agreed that using the system
is a good idea (mean 5.67, SD 1.06). The participants agreed

that using the system is comfortable (mean 4.92, SD 1.11),
useful to improve their health (mean 4.99, SD 0.91), and easy
to use (mean 4.99, SD 1.00). In general, the participants showed
a positive intention to use the first version of our personalized
telehealth system in their future health management (mean 4.45,
SD 1.78).
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Figure 3. Vital signs of each participant from the 3 centers over time. The dashed lines represent mean values. BT: body temperature; DBP: diastolic
blood pressure; SBP: systolic blood pressure; HR: heart rate; SpO2: blood oxygen level.

Figure 4. Example of segmented 3-meter (3M) timed up and go tasks using (left) accelerometer data and (right) gyroscope data.
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Discussion

Principal Findings
Innovative health care solutions such as telehealth are a possible
solution to support community caregivers to meet the increasing
health services demand. In this paper, we proposed our first
version of an integrated, personalized telehealth monitoring
system and demonstrated its implementation for Hong Kong
community-dwelling older adults. We further evaluated its user
acceptance after 3 months. This system can help communicate
and manage the data collected from different sources, detect
health anomalies, provide wellness prediction, signal alerts on
health risks, and propose health improvement advice for
reduction of adverse health outcomes.

For elderly individuals with chronic illnesses or at high risk of
falls, timely detection of health anomalies is critical in health
management. Any adverse conditions remaining untreated could
result in a higher chance of hospitalization and longer recovery
times [25]. Existing monitoring devices or systems mainly focus
on the monitoring of vital signs, which has limitations for
wellness prediction. The raw data from various sources can be
of multidimensions, multiscales, and of varying precision. It is
therefore important to develop tools and protocols for integrating
and mining the personalized health-related data collected from
various devices. Our proposed system integrates continuous
measurements of vital signs, daily activities, and gait behaviors,
allowing for better analytics and interpretation of disease
progression and fall risks. Forecasting the wellness of the elderly
based on identified personalized rules may be a useful indicator
in early anomaly detection and potential treatment [25]. One of
the key observations of our findings is that health-related data
(eg, number of steps, body temperature, and SBP) showed high
variations among the 3 test centers. For example, older adults
who lived in Center A commonly exhibited a lack of physical
activities, whereas those recruited from Center B exhibited a
more active lifestyle with more physical activities. Such
differences among various populations (eg, older adults at
different care centers) may or may not affect the development
of accurate predictive analytics. Thus, future studies with a large
sample size are needed to validate the existence of population
variations in health-related data and to further examine how
such variations affect health predictions.

The collected data provide a rich resource to develop models
and algorithms for smart personalized health management
through risk assessment, and disease and harm prevention. For
example, the vital sign data can be analyzed and modeled to
identify biomarkers for anomalies in health status. Based on the
automated risk stratification, decision support systems can be
developed for patients themselves, their family members, or
clinicians who can review patients’ health status and decide
whether a health care service is needed.

Implications and Future Work
Theoretically, our study offers an example of a system that
provides multidimension, multiscale, and multiprecision data
for elderly health monitoring. The integrated use of such data
from multiple sources can offer more reliable information as
compared with single-source data [28,58]. Based on the data

collected from the proposed system, we have developed methods
for incorporating data from multiple sources for predictive
modeling (eg, wellness prediction for community-dwelling
elderly people) [28,59]. For elderly health monitoring, it is
important to combine continuous health monitoring data with
discrete demographic/medical data. The variables consist of
outcomes from sensing devices that output a continuous stream
of sensor information that are related to various activities.
Demographics/medical data consist of only a few variables
collected discretely over a fixed time period. Naïve integration
may result in situations where high-dimensional data dominate,
and simple data summaries may cause significant loss of key
information. New methodologies will be needed to determine
the scale and dimensionality for best performance under various
predictive models.

Following Chow [60], we propose to utilize different data fusion
techniques for integrating heterogeneous data in terms of
dimension, scale, and precision by means of statistical modeling.
First, it is necessary to process and reconstruct collected data
on a unified coordinate or reference grid. Here, we propose
adopting a kernel-based smoothing method [61]. Given a
measurement taken from a specific source at a specific time,
the measurement will be filtered over a user-defined space-time
domain through a kernel regression function. Details of this
method are provided by Chow [60], who applied the method to
the fusion of road traffic data. Second, data from different
sources could be combined using the voting technique [62,63],
which is essentially a weighted linear combination of
information from different sources, in which the weights are
defined according to the accuracy or creditability of the
associated data sources as determined in advance. Moving
forward, we will use heterogeneous longitudinal methods with
a dynamic risk adjustment scheme for monitoring individual
risk, such as the DySS, RA-CUSUM, and RA-EWMA methods
[64,65]. In addition, we will identify major vital signs that affect
health conditions based on health monitoring and lifestyle data,
and then develop modeling strategies that will take the vital
signs features as input for state-of-the-art machine learning
algorithms such as boosting, support vector machine, random
forest, ensemble modeling, and neural networks for wellness
forecasting. Correlations between adverse health outcomes and
multiple risk factors (eg, poor gait and balance) will be
investigated based on the collected health monitoring data.

Practically, our system is likely to be of interest to policymakers,
elderly care centers, and health care providers, particularly given
the urgent need to increase the capability to care for the elderly
as the burden shifts from hospital care. The proposed system
involves linking health care providers with their patients without
spending unnecessary time on less productive aspects of
community activities such as avoidable driving to and from
communities and on-site measurements of vital signs to assess
health condition. The system has the potential to detect
significant changes in health condition and to flag these changes
as more caregiver attention is required to keep older adults out
of hospitals. In addition, when hospitalization is needed, such
a system may help to automate risk stratification of patients,
which may facilitate hospital resources allocation. Thus, it can
be beneficial to improving the quality of health care services
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provided, and ease the heavy burden on local health care
systems. Moreover, end users may not initially accept and adopt
a new technology after its introduction for a variety of reasons,
and therefore will not experience the benefits. Our preliminary
acceptance findings showed a relatively positive attitude for
using our system (mean score=5.67) and slightly high levels of
self-efficacy, perceived usefulness, perceived ease of use, and
behavioral intention (with mean scores of 4-5). One possible
reason could be that the participants may not have fully
perceived the potential benefits of our system as the utilized
system in the present study did not include any prediction
algorithms for health management and timely communications
between the system and the participants. Based on previous
studies, there could be some other factors that significantly
affect user acceptance of health information technology, such
as social influence (eg, family/friends’ opinions) [66,67],
facilitating conditions (eg, organizational and technical
infrastructure) [68], and technology anxiety (eg, anxiety in using
technology) [69].

To help implement our system into practice, we will perform
further longitudinal acceptance modeling studies on the full
version of our system to focus on the factors that affect older

adults’and health care professionals’acceptance [70]. Following
that, targeted strategies (eg, community-based technology
support services and training workshops) will be promoted to
improve user acceptance on our smart system. In the long run,
our proposed research is expected to develop effective ways to
reduce the growing elderly care burden on health care systems.

Limitations
Missing data is a common problem encountered in most health
care–related studies. Monitoring data quality in the presence of
missing data is required, because the accuracy and reliability
of measurements may be impaired when nonmedical experts
perform the measurements [16]. One limitation of this study is
the lack of data quality monitoring during implementation.
Based on the data collected, we developed a data quality
monitoring method to signal issues with the accuracy of the
collected data quickly [71], which could be beneficial for further
studies. Moreover, our study was based on a 3-month design
and cannot evaluate the influences of season/time of the year
on data variation. Future studies, in particular longitudinal
studies of more than 6 months, are recommended to consider
the evaluation of the effects of season/time of year.
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