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Abstract: 6 

Ridesourcing platforms, such as Uber, Lyft and Didi, are now launching commercial on-demand ride-7 

pooling programs that enable their affiliated drivers to serve two or more passengers in one ride. It is 8 

generally expected that successful designs of ride-pooling programs can reduce the required vehicle fleet 9 

size, and achieve various societally beneficial objectives, such as alleviating traffic congestion. The 10 

reduction in traffic congestion can in turn save travel time for both ridesourcing passengers and normal 11 

private car users. However, it is still unclear to what extent the implementation of ride-pooling affects 12 

traffic congestion and riders’ travel time. To this end, this paper establishes a model to describe the 13 

ridesourcing markets with congestion effects, which are explicitly characterized by a macroscopic 14 

fundamental diagram. We compare the time cost (sum of travel time and waiting time) of ridesourcing 15 

passengers and normal private car users (background traffic) in the ridesourcing markets without ride-16 

pooling (each vehicle serves one passenger) and with ride-pooling (each vehicle serves one or more 17 

passengers). It is found that, a win-win situation can be achieved under some scenarios such that the 18 

implementation of on-demand ride-pooling reduces the time cost for both ridesourcing passengers and 19 

private car users. Furthermore, we find that the matching window is a key decision variable the platform 20 

leverages to affect the market equilibrium. As the matching window increases, passengers are expected to 21 

wait for a longer time, but the pool-matching probability (the proportion of passengers who are pool-22 

matched) increases, which further alleviates traffic congestion and in turn reduces passengers’ travel time. 23 

It is interesting to find that, there is a globally optimal matching window for achieving a minimum time 24 

cost for ridesourcing passengers in the normal flow regime. 25 
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1. Introduction 1 

Enabled by advanced mobile internet-based technologies, recent years have witnessed the rapid growth of 2 

ridesourcing services, which use smartphone apps to connect passengers with dedicated drivers who 3 

provide services. The companies providing ridesourcing services are often termed as transportation 4 

network companies (TNCs); typical examples include Uber, Lyft, Grab and Didi. Ridesourcing services 5 

reshaped our mobility and attracted a lot of attentions from researchers, but also brought up some 6 

debatable issues. One of the most heated debates is the potential implications of ridesourcing services on 7 

traffic congestion. Advocates argue that ridesourcing services are complements to existing modes in 8 

transportation system, decrease car ownership and thus reduce traffic congestion. Moreover, TNCs can 9 

execute more efficient matching between drivers and passengers, and thus improve vehicle utilization 10 

(reducing searching time for customers on streets), which further reduces traffic congestion. Based on 11 

datasets from Uber and Urban Mobility Report, Li et al. (2016) find that the entry of Uber service 12 

significantly reduced traffic congestion in urban areas of the United States. On the other hand, critics claim 13 

that, by providing more convenient and comfortable ride services, TNCs add to vehicle traffic by shifting 14 

travelers from space-efficient modes like walking, transit or biking. A recent consulting report (Schaller, 15 

2018) claims that TNCs add 5.7 billion miles of driving in metro areas of Boston, Chicago, Los Angeles, 16 

Miami, New York, Philadelphia, San Francisco, Seattle and Washington DC, in each year.  17 

Recently, in order to make more efficient utilization of a limited vehicle fleet for serving more passengers, 18 

TNCs are now launching on-demand shared ridesourcing services which enable one vehicle to serve two 19 

or more passengers in each ride. These shared ride services, termed as ride-pooling services (Shaheen et 20 

al., 2016), are different from traditional ridesharing programs (such as carpooling and dial-a-ride) in the 21 

sense that the former are provided by dedicated (or for-hire) drivers while the latter are provided by non-22 

dedicated drivers who have their own trip plans and do not expect to be profitable. Typical examples of 23 

ride-pooling services include UberPool, Lyft Line, GrabShare and DiDi Express Pool. It is reported that 24 

Lyft aimed to have 50 percent of rides being shared by 2022 (Schaller, 2018). It is generally expected that 25 

successful design of ridesharing programs (including both traditional ridesharing programs and ride-26 

pooling programs) can reduce the required vehicle fleet size, and subsequently achieve various societally 27 

beneficial objectives, such as alleviating traffic congestion and air pollution. Alexander et al. (2015) use 28 

mobile phone records to investigate the influences of ridesharing services on the network-wide traffic 29 

congestion. By matching the origin-destination trips from both auto and non-auto travelers, they find that, 30 

when the number of ridesharing adopters from drivers is greater than from non-drivers, there will be a 31 

reduction in total vehicles. However, Schaller (2018) claims that on-demand ride-pooling services had not 32 

offset the traffic-clogging impacts brought by the normal non-ride-pooling services (named non-pooling 33 
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services for short), in which one vehicle serves one passenger in one ride, of TNCs, such as UberX and 1 

Lyft. They show that, the normal non-pooling ridesourcing services put 2.8 new vehicle miles on the road 2 

for each mile of auto-driving taken off, and the inclusion of on-demand ride-pooling services leads to 3 

marginal reduction on mileage increase — 2.6 new vehicle miles for each mile of auto-driving removed. 4 

The possible reasons are: first, the pool-matching probability is too low such that many passengers opting 5 

for on-demand ride-pooling end up unpaired with others; second, the shared rides induce additional 6 

vehicle miles due to the necessary extra detours; third, the less expensive trip fare of ride-pooling services 7 

attract some passengers switching from public transit services. Due to these negative effects, it is still 8 

unclear to what extent the on-demand ride-pooling services reduce traffic congestion, and subsequently 9 

affect travel time of ridesourcing passengers and normal private car users.   10 

The extent to which ride-pooling reduces congestion relies on a few key factors. One key factor for a 11 

successful ride-pooling program is passenger demand for ride-pooling services. Intuitively, with a higher 12 

passenger demand, the platform can pool-match more passengers, yielding a higher pool-matching 13 

probability. Therefore, fewer vehicles are required to serve a given number of passengers, thereby 14 

reducing traffic congestion and average travel time of both ridesourcing passengers and private car users. 15 

Clearly, if passenger demand is high, then implementing ride-pooling services is more economical (saving 16 

the travel time) and environmentally friendly (reducing traffic congestion) than non-pooling services. 17 

Particularly, if passenger demand is sufficiently high, replacing non-pooling services with ride-pooling 18 

services may even achieve a win-win situation in which both ridesourcing passengers and private car users 19 

are made better off. One interesting question here is to identify the critical passenger demand for achieving 20 

a win-win situation.  21 

The other key factor for a successful ride-pooling program to reduce congestion is its pool-matching 22 

strategy, for example, the length of matching time window (or matching window). At the end of matching 23 

window, passengers opting for ride-pooling services can end up with being either matched or unmatched 24 

with another passenger. With no doubt, the matching window greatly affects pool-matching probability 25 

and time cost of passengers. If matching window is long, then the pool-matching probability is high, which 26 

further reduces traffic congestion and average travel time of passengers. However, a long matching 27 

window also directly increases passenger waiting time. Therefore, the length of matching window has 28 

both positive and negative effects on the time cost of passengers and thereby influence on passengers’ 29 

mode choices between non-pooling and ride-pooling services. It is of immerse interest to determine the 30 
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optimal matching window to minimize the time cost, and identify the range of matching window that leads 1 

to a win-win situation under given passenger demand.  2 

This study is intended to investigate the impacts of ride-pooling on traffic congestion and subsequently 3 

the travel time of both ridesourcing passengers and normal private car users. To this end, we depict the 4 

ridesourcing system in the presence of traffic congestion, in which the relationship between density of 5 

vehicles and average vehicular speed is characterized by an aggregated speed-flow relationship in the 6 

spirit of macroscopic fundamental diagram (MFD). The major contributions and managerial findings of 7 

this paper are listed below.  8 

• Our proposed model can well capture the complex relationships among network speed, vehicle fleet 9 

size required to serve a given passenger demand, and the background traffic in a ridesourcing system 10 

without ride-pooling. The model is further extended to model the ride-pooling system in a trackable 11 

way, where the relationships among pool-matching probability, passenger demand, and matching 12 

window are well captured.  13 

• We explore the joint effects of the above mentioned two key variables, i.e. passenger demand and 14 

matching window on the time costs of users (ridesourcing passengers and private car users). By 15 

comparing the ridesourcing markets with and without ride-pooling service, we further identify the 16 

critical passenger demand and range of matching window for achieving a win-win situation.  17 

• Our findings are useful for city managers and ridesourcing platform operators on when (i.e. at what 18 

level of passenger demand) and how (i.e. with what matching windows) to promote on-demand ride-19 

pooling services for relieving traffic congestion and reducing travel time of different types of users. 20 

For example, it is recommended that the government should encourage ridesourcing platforms to 21 

promote ride-pooling services in regions with severe traffic congestion, using appropriate matching 22 

windows. 23 

The rest of the paper is organized as follows. Section 2 reviews the relevant literature and highlights our 24 

contributions. Taking into account the effects of traffic congestion, Section 3 first establishes an aggregate 25 

model to characterize the equilibrium state of a ridesourcing market without ride-pooling, and then extend 26 

the model to a ridesourcing market with ride-pooling. Section 4 gives closed-form solutions of the two 27 

market equilibriums by assuming a linear traffic flow model, and then examines the impacts of passenger 28 

demand and matching window on the time cost of both ridesourcing passengers and private car users. The 29 

conditions for existence of a win-win situation are also discussed. Section 5 provides numerical examples 30 
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to verify our theoretical findings and offer insights on how to achieve a win-win situation by choosing a 1 

suitable matching window. Section 6 concludes the paper and offers potential directions for future studies.  2 

 3 

2. Literature review 4 

While empirical studies are available recently, to our best knowledge, this is the first theoretical study to 5 

look at market equilibrium in the presence of traffic congestion for emerging on-demand ride-pooling 6 

services provided by dedicated drivers affiliated with ridesourcing companies. As aforementioned, the 7 

ride-pooling service is distinguished from the traditional ridesharing programs in which individual non-8 

dedicated drivers providing shared rides have their own trip plans. Here a brief review is outlined with 9 

regard to on the ridesharing programs provided by non-dedicated drivers and the ridesourcing services 10 

with and without ride-pooling.  11 

Ridesharing has a long history, dating back to the Second World War, at which a car-sharing club is 12 

established by the US government to save fuel. Later, various forms of ridesharing programs, including 13 

carpooling, van pooling and dail-a-ride, were developed and studied for years (Ferguson et al., 1997; Yang 14 

and Huang, 1999; Huang et al., 2000; Cordeau et al., 2007; Ho et al., 2018). However, these types of 15 

ridesharing programs require participants to announce their requests in advance (for example, one day 16 

ahead), such that the intermediary agent can prearrange the matching between drivers and riders. Recently, 17 

thanks to the breakthroughs on mobile internet technologies, dynamic ridesharing programs become 18 

available, in which on-demand ride requests can be accommodated (Furuhata et al., 2013). The dynamic 19 

ridesharing programs do not need to collect requests from both drivers and riders in a whole day for 20 

prearrangement and but match drivers and riders on short notice or even en-route. Thus, the design of 21 

effective matching algorithms for dynamic ridesharing programs is an important and challenging task. 22 

Verified by a s imulation study in Atlanta metropolitan area, Agatz et al. (2011) show that the sophisticated 23 

optimization approaches can significantly outperform the greedy matching rules in dynamic ridesharing. 24 

Stiglic et al. (2015) find that introducing meeting points can further enhance the matching efficiencies by 25 

increasing the number of matched driver-rider pairs and reducing the total driving distance. Wang et al. 26 

(2017) further propose a stable matching algorithm for dynamic ridesharing that can make a trade-off 27 

between the maximization of total system efficiency and the optimization of each individual participant’s 28 

benefit. Lee and Savelsbergh (2015) examine the benefits and costs of employing a small number of 29 

dedicated drivers to serve riders who would otherwise not be matched with a driver in a dynamic 30 
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ridesharing program. Agatz et al. (2012) give a comprehensive review of the major concerns and 1 

challenges in designing sustainable dynamic ridesharing programs. 2 

Recently, some primary efforts are directed towards the designs of cost-sharing strategies or trip fares in 3 

dynamic ridesharing programs. Xu et al. (2015) combine the classical Wardrop network equilibrium 4 

model with ridesharing passenger demand, and investigated the complex interactions among traffic 5 

congestion, passengers’ route choice and trip fare, on a network. Di et al. (2018) reformulate the classical 6 

network design problem by considering the deployment of high-occupancy toll lanes for ridesharing. 7 

Wang et al. (2018) propose a user equilibrium model to capture the complex interactions among riders’ 8 

and drivers’ mode choices, cost sharing strategies between riders and drivers (how much a rider should 9 

pay for a driver when they are paired up), and the matching probability. They find that the cost-sharing 10 

strategies are very important for attracting sufficient number of drivers and riders to achieve a sustainable 11 

dynamic ridesharing program. In some cases, government subsidies are even required for a successful 12 

initialization of the ridesharing program. This viewpoint is also raised by Agatz et al., 2011, who claim 13 

that sufficient numbers of participants are important to enable dynamic ridesharing matches to be executed 14 

on short notice. They investigate whether a dynamic ridesharing program can be successfully initiated and 15 

sustained under different scenarios, and identify the critical mass (number of potential participants) for a 16 

successful ridesharing program. These studies all focus on dynamic ridesharing programs with individual 17 

non-dedicated drivers who have their own trip plans. In this case, the key point lies in the matching and 18 

cost-sharing between individual drivers and riders. However, in the on-demand ride-pooling programs 19 

provided by dedicated drivers examined in this study, drivers are dedicated service providers who serve 20 

passengers anytime and anywhere. Therefore, the pool-matching between two or more passengers sharing 21 

one vehicle is important but not considered in these studies.  22 

The on-demand ride-pooling service provided by dedicated drivers is one type of ridesourcing services, 23 

available in many TNCs. Since their emergence in 2009, ridesourcing services have achieved huge success 24 

on popularity and provoke heated discussions by researchers. Previous studies mainly focus on pricing 25 

strategies (including trip fare collected from passengers and wage paid for drivers), policies and 26 

regulations (Bai et al., 2018; Taylor, 2018; Cachon et al., 2015; Zha et al., 2016; Xu et al., 2017; Zha et 27 

al., 2017; Zha et al., 2018; Ke et al., 2019a; Ke et al., 2020b). Particularly, surge pricing, commonly 28 

viewed as an efficient tool to coordinate supply and demand in real-time, has attracted much attention in 29 

research. For example, Castillo et al. (2017) find that “wild goose chase” occurs when the demand is 30 

excessively high, and the platform is depleted of vacant vehicles and forced to match passengers with 31 

distant vacant vehicles. They show that surge pricing on peak hours helps to alleviate the “wild goose 32 

chase” by suppressing the passenger demand. Some studies are also made on the matching and dispatching 33 
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technologies (Xu et al., 2018; Ke et al., 2020a; Yang et al., 2020); real-time supply-demand forecasting 1 

(Ke et al., 2017; Ke et al., 2019b; Tong et al., 2017) and behavioral studies (Sun et al., 2011). A 2 

comprehensive review of the ridesourcing markets is given by Wang and Yang (2019). The modelling 3 

approaches of these studies can find their roots in the literature of conventional taxi market modelling 4 

(Yang and Yang, 2011; Yang et al., 2010). It is worth mentioning that Yang et al. (2005) analyze the taxi 5 

market equilibrium in the presence of traffic congestion.  6 

A few recent studies are made on the pricing and matching strategies of on-demand ride-pooling services 7 

provided by dedicated drivers affiliated to TNCs. Jacob et al. (2019) design the optimal price-service 8 

menus, i.e. ride services (non-pooling or ride-pooling) and the corresponding prices, for TNCs. They find 9 

that offering both non-pooling and ride-pooling services to passengers is the optimal strategy when the 10 

congestion is less severe and passengers’ preference type is not skewed. Yan et al. (2019) study the pool-11 

matching scheme (a kind of ride-pooling) applied in Uber, in which passengers with similar origins and 12 

destinations can be served with one vehicle in a shared ride. They optimize the platform revenue and social 13 

welfare by jointly determining the pricing and matching strategies. However, none of these studies 14 

consider the effect of traffic congestion, which affects passengers’ time costs. Also, they do not consider 15 

the critical passenger demand or density for achieving sensible on-demand ride-pooling programs which 16 

are aligned with various desirable objectives, such as reducing passengers’ time cost and alleviating traffic 17 

congestion.   18 

In addition, there is a sizeable body of literature on the simulations and optimization for ride-pooling 19 

services to investigate the potential implications of ride-pooling (or shared taxi) services on the system 20 

efficiency. Hosni et al. (2014) develop two heuristic approaches to solve the shared taxi problem, which 21 

can help minimize vacant seats in vehicles and reduce the costs of taxi operators. Jung et al. (2016) propose 22 

a dynamic shared-taxi dispatch algorithm with hybrid simulated annealing, and show that the sharing for 23 

taxicabs can increase productivity under different demand levels. Alonso-Mora et al. (2017) develop a 24 

dynamic trip-vehicle assignment algorithm for on-demand ridesharing of high capacity vehicles. They 25 

show that 98% of passenger demand can be served by 15% of taxi fleet size of capacity 10 (indicating one 26 

taxi can serve at most 10 passengers in each ride) at a cost of a mean waiting time of 2.8min and mean 27 

trip delay of 3.5min. Qian et al. (2017) show that over 47% of total taxi trip mileage can be saved if 28 

passenger trips with close origins and destinations and similar departure time are appropriately grouped 29 

into a single taxi ride. Simonetto et al. (2019) propose a linear assignment algorithm for large-scale 30 

ridesharing problems, and find that the real-time ridesharing offers clear benefits with respect to more 31 

traditional taxi fleets in terms of level of service. These studies only focus on the benefits of ride-pooling 32 

services on reducing the required taxi or ridesourcing vehicle mileages, and discuss the potentials to use 33 
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a smaller vehicle fleet size to serve passenger trips by ride-pooling. However, they do not incorporate 1 

traffic congestion into the simulation system, and investigate how ride-pooling services affect passengers 2 

and other users’ travel time costs. Recently, Beojone and Geroliminis (2020) establish a simulation 3 

integrated with a MFD that can simulate the dynamics of traffic congestion. Based on the simulation, they 4 

investigate the effects of expanding ridesourcing vehicle fleet size, passengers’ inclination towards shared 5 

riders, and strategies to alleviate traffic congestion. Nevertheless, this simulation study cannot identify the 6 

critical passenger demand over which the implementation of ride-pooling service is able to achieve a win-7 

win situation beneficial to both ridesourcing passengers and normal private car users. In addition, it does 8 

not discuss how to decide an optimal matching window to minimize the total time cost of ridesourcing 9 

passengers by balancing the trade-off between travel time and waiting time. 10 

 11 

3. Model setting 12 

This section will present an aggregate model to capture the complex interactions among network speed, 13 

passenger demand, vehicle fleet size required to serve the demand, background traffic in ridesourcing 14 

systems with and without ride-pooling. In the ridesourcing market with ride-pooling, the model further 15 

takes into account how passenger demand and matching window affect the pool-matching probability, 16 

and subsequently other system endogenous variables. For analytical tractability, certain assumptions are 17 

made.  18 

First, our goal is to investigate the benefits brought up by ride-pooling under different levels of passenger 19 

demand and different pool-matching strategies. Therefore, passenger demand is not characterized by a 20 

demand function. Instead, it is treated as an input parameter, then the two ridesourcing markets with and 21 

without ride-pooling are compared under different levels of passenger demand through comparative statics. 22 

In particular, we try to identify the critical passenger demand, over which the use of ride-pooling will lead 23 

to a win-win situation that benefits all stakeholders. This is in the spirit of determination of a minimum 24 

mass of participants to sustain a traditional ridesharing program (Agatz et al., 2011).  25 

Second, in actual operations, there may be excess or shortage of supply. In the former case, some vehicles 26 

are idle; in the latter case, some passenger requests are not met. Traffic congestion is governed by the 27 

vehicle fleet size (supply), which depends on many factors, such as the wage ridesourcing platforms pay 28 

to the drivers, drivers’ reservation values, etc. For simplicity, this study focuses on the minimum vehicle 29 



9 
 

fleet size that is required in order to serve a certain level of passenger demand. Therefore, we assume that 1 

the rate of supplied vehicles exactly clears passenger demand. 2 

Third, we consider a simple pool-matching strategy, called dynamic waiting, which is first presented by 3 

Yan et al., (2019), and currently used in a product of Uber - Uber Express Pool (Uber, 2019a). This strategy 4 

pool-matches two passengers together if their origins and destinations are very close, namely, the distance 5 

between their pick-up locations and the distance between their drop-off locations are both within walkable 6 

range or walking radius. Two pool-matched passengers are required to walk to the middle point of their 7 

origins to be picked up, and are dropped off at the middle point of their destinations such that they walk 8 

equal distances. The walking radius is usually short (250m in Uber), thus the walking time of the 9 

passengers is negligible. This is a simplified ride-pooling strategy that is different from the other ride-10 

pooling strategies, such as UberPool (Uber, 2019b), in which a passenger may be matched with a second 11 

passenger en-route (rather than up font) and thus experience additional pick-ups and/or drop-offs along 12 

his/her trip. It is worth mentioning that ride-pooling strategies like UberPool are very hard to model in an 13 

analytical way due to the complex interactions among average detour distance, pool-matching probability, 14 

passenger demand and matching strategies. Therefore, in what follows, we simply adopt the dynamic 15 

waiting strategy to facilitate our theoretical analyses. 16 

Based on the above mentioned major assumptions, we consider an urban road network that is used by 17 

ridesourcing passengers (with a demand 𝑞𝑞𝑟𝑟 and average trip distance 𝑙𝑙𝑟𝑟) and normal private car users (with 18 

a demand 𝑞𝑞𝑛𝑛 and average trip distance 𝑙𝑙𝑛𝑛). Demand 𝑞𝑞𝑟𝑟 and 𝑞𝑞𝑛𝑛 are defined as the arrival rates of two types 19 

of users. Let 𝐿𝐿� denote the total length of the road network, and let 𝑘𝑘 denote the average density of vehicles 20 

and 𝑣𝑣 the average vehicular speed. An aggregate speed-density) is utilized to characterize the relationship 21 

between the speed and density: 𝑣𝑣 = 𝑉𝑉(𝑘𝑘) with ∂𝑣𝑣/𝜕𝜕𝜕𝜕 < 0. For simplicity, two extreme scenarios in a 22 

stationary state are first examined and compared: (a) all ridesourcing passenger requests are served without 23 

ride-pooling (denoted by “non-pooling market”); (b) all ridesourcing passenger requests are served 24 

through ride-pooling (denoted by “ride-pooling market”). It is assumed that the speed-density 25 

relationships of the two markets follow the aggregate traffic flow model. We then compare the time cost 26 

of both ridesourcing passengers and normal private car users under these two extreme scenarios, and show 27 

that, under certain conditions, ride-pooling programs can bring benefits to all users in terms of time cost.  28 

3.1 Non-pooling market 29 

In the non-pooling market or ridesourcing market without ride-pooling, each ridesourcing vehicle is 30 

occupied by one passenger (assuming one request by one passenger), thus arrival rate of ridesourcing 31 

vehicles is identical to the demand of ridesourcing passengers. At any instant of the stationary state, the 32 
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number of ridesourcing vehicles and normal vehicles (private cars), denoted as 𝑁𝑁𝑟𝑟 and 𝑁𝑁𝑛𝑛, equals the 1 

product of their arrival rate, 𝑞𝑞𝑟𝑟 and 𝑞𝑞𝑛𝑛, and the average trip time, 𝑙𝑙𝑟𝑟 𝑣𝑣⁄  and 𝑙𝑙𝑛𝑛 𝑣𝑣⁄ , respectively. Then, the 2 

density of all vehicles in the road network equals (𝑁𝑁𝑟𝑟 + 𝑁𝑁𝑛𝑛) 𝐿𝐿�⁄ . Therefore, the equilibrium in non-pooling 3 

market can be characterized by the following system of simultaneous nonlinear equations  4 

𝑁𝑁𝑟𝑟 = 𝑞𝑞𝑟𝑟 ⋅ �
𝑙𝑙𝑟𝑟
𝑣𝑣�

 (1) 

𝑁𝑁𝑛𝑛 = 𝑞𝑞𝑛𝑛 ⋅ �
𝑙𝑙𝑛𝑛
𝑣𝑣 �

 (2) 

𝑘𝑘 =
𝑁𝑁𝑟𝑟 + 𝑁𝑁𝑛𝑛

𝐿𝐿�
 (3) 

𝑣𝑣 = 𝑉𝑉(𝑘𝑘) (4) 

where Eq. (4) represents the traffic flow model that characterizes the relationship between speed and 5 

density. Then speed and density at equilibrium of the non-pooling market, denoted as 𝑣𝑣𝑁𝑁𝑁𝑁,𝑘𝑘𝑁𝑁𝑁𝑁, can be 6 

spelled out, where ‘NP’ stands for ‘non-pooling’. Furthermore, the average travel time of ridesourcing 7 

passengers 𝑇𝑇𝑟𝑟𝑁𝑁𝑁𝑁 and normal private car users 𝑇𝑇𝑛𝑛𝑁𝑁𝑁𝑁 are given by  8 

𝑇𝑇𝑟𝑟𝑁𝑁𝑁𝑁 =
𝑙𝑙𝑟𝑟
𝑣𝑣𝑁𝑁𝑁𝑁

 (5) 

𝑇𝑇𝑛𝑛𝑁𝑁𝑁𝑁 =
𝑙𝑙𝑛𝑛
𝑣𝑣𝑁𝑁𝑁𝑁

 (6) 

 9 

3.2 Ride-pooling market 10 

We now consider the ride-pooling market (the ridesourcing market with all passengers opting for ride-11 

pooling). As aforementioned, we assume that the platform adopts the dynamic waiting strategy to pool-12 

match two passengers with similar origins and destinations up font, and vehicles only need to drive to the 13 

middle points to pick-up and drop-off passengers. In the batch matching setting, each passenger is required 14 

to wait for a certain time until the end of matching window (denoted as 𝜙𝜙), at which the platform looks 15 

through all requests in the current batch and tries to match as many requests as possible. Then the platform 16 
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dispatches nearby idle vehicles to serve both the matched and unmatched requests. Let 𝑝𝑝 denote the 1 

probability that a passenger is pool-matched (termed as pool-matching probability), which is dominated 2 

by two major factors: passenger demand for ride-pooling 𝑞𝑞𝑟𝑟, and matching window 𝜙𝜙. Intuitively, for a 3 

given 𝑞𝑞𝑟𝑟, the larger the 𝜙𝜙, the larger the 𝑝𝑝 (more passengers can be pool-matched with longer matching 4 

window). Meanwhile, for a given 𝜙𝜙, the larger the 𝑞𝑞𝑟𝑟, the larger the 𝑝𝑝 (higher density of passengers in the 5 

matching pool increases the probability that a passenger is pool-matched). Moreover, as 𝜙𝜙  or 𝑞𝑞𝑟𝑟 6 

approaches zero, the matching pool is almost empty (with almost no passenger requests to be pool-7 

matched), then the pool-matching probability 𝑝𝑝 becomes zero. Conversely, as 𝜙𝜙 or 𝑞𝑞𝑟𝑟 approaches infinity, 8 

the requests that can be pool-matched in the matching pool are sufficiently dense, and the pool-matching 9 

probability 𝑝𝑝 becomes almost 1. Yan et al., (2019) proposed a specific function to describe the pool-10 

matching probability in the batch matching setting, which depends on 𝜙𝜙 or 𝑞𝑞𝑟𝑟, as below:  11 

𝑝𝑝(𝑞𝑞𝑟𝑟 ,𝜙𝜙) = 1 − exp (−𝛾𝛾𝑞𝑞𝑟𝑟𝜙𝜙) (7) 

where 𝛾𝛾 is a parameter that may depend on the topological property of the city and the walking radius. 12 

This expression is said to well fit the relationship between the pool-matching probability and the two 13 

major factors, i.e. passenger demand and matching window in Uber’s historical data. More recently, 14 

through extensive experiments with the ridesourcing data in one US city (Manhattan, New York) and two 15 

Chinese mainland cities (Hakou and Chengdu), Ke et al. (2020c) find that pool-matching probability 𝑝𝑝 16 

exhibits a negative-exponential increasing saturation curve with respect to the number of passengers in 17 

the matching pool. Formally, 𝑝𝑝 = 1 − exp(−𝛾𝛾𝛾𝛾), where 𝑁𝑁 is the number of passengers in the matching 18 

pool. It is also shown that this formula fits the data quite well with reasonably high goodness-of-fit under 19 

various walking radii and cities of different sizes. It is evident that this formula is essentially the same as 20 

Eq. (7), since 𝑞𝑞𝑟𝑟𝜙𝜙 can be viewed as the number of accumulated passengers at the end of each matching 21 

window in the batch matching setting. Based on the formula in Eq. (7), we can obtain the following 22 

properties:  23 

Lemma 1. The pool-matching probability 𝑝𝑝(𝑞𝑞𝑟𝑟 ,𝜙𝜙) satisfies:  24 

1. For all 𝑞𝑞𝑟𝑟 ≥ 0, 𝑝𝑝(𝑞𝑞𝑟𝑟 ,𝜙𝜙) increases with 𝜙𝜙 and 𝑝𝑝(𝑞𝑞𝑟𝑟 , 0) = 0 and 𝑙𝑙𝑙𝑙𝑙𝑙
𝜙𝜙→∞

𝑝𝑝(𝑞𝑞𝑟𝑟 ,𝜙𝜙) = 1;  25 

2. For all 𝜙𝜙 ≥ 0, 𝑝𝑝(𝑞𝑞𝑟𝑟 ,𝜙𝜙) increases with 𝑞𝑞𝑟𝑟 and 𝑝𝑝(0,𝜙𝜙) = 0 and 𝑙𝑙𝑙𝑙𝑙𝑙
𝑞𝑞𝑟𝑟→∞

𝑝𝑝(𝑞𝑞𝑟𝑟 ,𝜙𝜙) = 1.  26 

Now we look at the equilibrium state in the ride-pooling market. At any instant of the stationary state, the 27 

number of normal vehicles running on the road can still be represented by Eq. (2), and the traffic flow 28 
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model in Eqs. (3) and (4) also hold for the ride-pooling market. However, unlike the non-pooling market, 1 

there are two types of ridesourcing vehicles at each instant in the ride-pooling market: 1) vehicles serving 2 

a shared ride (with two pool-matched passengers); 2) vehicles serving an unshared ride (with only one 3 

passenger). Hence, given the pool-matching probability 𝑝𝑝, the expected number of ridesourcing vehicles 4 

consumed by a single passenger is:  5 

𝑓𝑓(𝑞𝑞𝑟𝑟 ,𝜙𝜙) =
1
2
𝑝𝑝(𝑞𝑞𝑟𝑟 ,𝜙𝜙) + [1 − 𝑝𝑝(𝑞𝑞𝑟𝑟 ,𝜙𝜙)] = 1 −

1
2
𝑝𝑝(𝑞𝑞𝑟𝑟 ,𝜙𝜙) (8) 

where the first term indicates that each passenger request occupies half of a ridesourcing vehicle in a 6 

shared ride (passengers are pool-matched pair by pair), while the second term shows that each passenger 7 

request occupies one ridesourcing vehicle in an unshared ride (passengers are not pool-matched). Thus, 8 

the number of ridesourcing vehicles at any instant of the stationary state is 9 

𝑁𝑁𝑟𝑟 = 𝑞𝑞𝑟𝑟 ⋅ 𝑓𝑓(𝑞𝑞𝑟𝑟 ,𝜙𝜙) ⋅ �
𝑙𝑙𝑟𝑟
𝑣𝑣�

 (9) 

where 𝑞𝑞𝑟𝑟 ⋅ 𝑓𝑓(𝑞𝑞𝑟𝑟 ,𝜙𝜙) is the number of ridesourcing vehicles per unit time for serving all passenger requests. 10 

In view of the fact that 0 ≤ 𝑝𝑝(𝑞𝑞𝑟𝑟 ,𝜙𝜙) ≤ 1, we have 1/2 ≤ 𝑓𝑓(𝑞𝑞𝑟𝑟 ,𝜙𝜙) ≤ 1,∀𝑞𝑞𝑟𝑟 ,𝜙𝜙 ≥ 0. From Lemma 1, we 11 
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can easily find that 𝑓𝑓(𝑞𝑞𝑟𝑟 ,𝜙𝜙)  is a decreasing function of both 𝜙𝜙  and 𝑞𝑞𝑟𝑟  and satisfies the following 1 

boundary conditions:𝑓𝑓(𝑞𝑞𝑟𝑟 , 0) = 1, 𝑓𝑓(0,𝜙𝜙) = 1, lim
𝜙𝜙→∞

𝑓𝑓(𝑞𝑞𝑟𝑟 ,𝜙𝜙) = 1/2, lim
𝑞𝑞𝑟𝑟→∞

𝑝𝑝(𝑞𝑞𝑟𝑟 ,𝜙𝜙) = 1/2.  2 

Moreover, on the basis of Eq. (7), the following property can be obtained:  3 

Lemma 2. For all 𝜙𝜙 ≥ 0, the number of ridesourcing vehicles required to satisfy all requests per unit time 4 

𝑞𝑞𝑟𝑟 ⋅ 𝑓𝑓(𝑞𝑞𝑟𝑟 ,𝜙𝜙) is increasing with 𝑞𝑞𝑟𝑟. 5 

Proof. Taking the partial derivative of 𝑞𝑞𝑟𝑟 ⋅ 𝑓𝑓(𝑞𝑞𝑟𝑟 ,𝜙𝜙) with respect to 𝑞𝑞𝑟𝑟 yields  6 

∂�𝑞𝑞𝑟𝑟 ⋅ 𝑓𝑓(𝑞𝑞𝑟𝑟 ,𝜙𝜙)�
∂𝑞𝑞𝑟𝑟

=
1
2

[1 + exp(−𝛾𝛾𝑞𝑞𝑟𝑟𝜙𝜙) − 𝛾𝛾𝑞𝑞𝑟𝑟𝜙𝜙 exp(−𝛾𝛾𝑞𝑞𝑟𝑟𝜙𝜙)]  

Let 𝑓𝑓(𝑥𝑥) = 1 + exp(−𝑥𝑥) − 𝑥𝑥 exp(−𝑥𝑥), where 𝑥𝑥 > 0. Clearly, 𝑓𝑓′(𝑥𝑥) = exp(−𝑥𝑥) (𝑥𝑥 − 2) which implies 7 

that 𝑓𝑓′(𝑥𝑥) > 0 if 𝑥𝑥 > 2 and 𝑓𝑓′(𝑥𝑥) < 0 if 𝑥𝑥 < 2. Therefore, we shall have 𝑓𝑓(𝑥𝑥) ≥ 𝑓𝑓(2) > 0, and 𝑓𝑓(𝑥𝑥) ≤8 

max (𝑓𝑓(0),𝑓𝑓(∞) ) = 2 if 𝑥𝑥 > 0. In view of the fact that 𝛾𝛾𝑞𝑞𝑟𝑟𝜙𝜙 > 0, we can prove that 9 

∂�𝑞𝑞𝑟𝑟 ⋅ 𝑓𝑓(𝑞𝑞𝑟𝑟 ,𝜙𝜙)�
∂𝑞𝑞𝑟𝑟

> 0  

This completes the proof. ■ 10 

This lemma indicates that, as passenger demand increases, additional ridesourcing vehicles required for 11 

new riders cannot be offset by the reduction in vehicle fleet size due to the increased pool-matching 12 

probability, and therefore, more vehicles are required to serve passenger demand on the whole.  13 

Then the resulting speed and density at equilibrium in the ride-pooling market, denoted as 𝑣𝑣𝑅𝑅𝑅𝑅 and 𝑘𝑘𝑅𝑅𝑅𝑅, 14 

where ‘RP’ stands for ‘ride-pooling’, can be solved by a system of simultaneous nonlinear equations 15 

consisting of Eqs. (2)-(4) and (8)-(9). Without accounting for monetary cost, the average cost for private 16 

car users is given as the average travel time (average travel distance divided by the vehicular speed); the 17 

average time cost for ridesourcing passengers is given as the sum of average travel time and expected 18 

waiting time (a passenger waits to be pool-matched). As already mentioned, in the batch matching, each 19 

passenger waits until the end of each batch time window and then ends up with being either pool-matched 20 

or not. The expected waiting time of a passenger regardless of whether being pool-matched or not can be 21 

written as a function 𝐻𝐻(𝜙𝜙) of the matching window 𝜙𝜙. Clearly, 𝐻𝐻(𝜙𝜙) should be strictly increasing with 22 

𝜙𝜙. Particularly, in the batch matching with uniform arrival of passengers over time, 𝐻𝐻(𝜙𝜙) is on average 23 
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half of the matching window, i.e. 𝜙𝜙/2.The average time cost of ridesourcing passengers 𝑇𝑇𝑟𝑟𝑅𝑅𝑅𝑅 and normal 1 

private car users 𝑇𝑇𝑛𝑛𝑅𝑅𝑅𝑅 are then given by  2 

𝑇𝑇𝑟𝑟𝑅𝑅𝑅𝑅 =
𝑙𝑙𝑟𝑟
𝑣𝑣𝑅𝑅𝑅𝑅

+ 𝐻𝐻(𝜙𝜙) (10) 

𝑇𝑇𝑛𝑛𝑅𝑅𝑅𝑅 =
𝑙𝑙𝑛𝑛
𝑣𝑣𝑅𝑅𝑅𝑅

 (11) 

 3 

4. Equilibrium solution and properties  4 

In this section, we examine the equilibrium solutions of the two markets and compare the average time 5 

costs of both ridesourcing passengers and normal private car users in the two markets under different 6 

levels of passenger demand and matching windows. As mentioned above, the equilibrium state of the non-7 

pooling market is given by a system of simultaneous Eqs. (1)-(4), which yields  8 

𝑣𝑣 = 𝑉𝑉 �
𝑞𝑞𝑟𝑟𝑙𝑙𝑟𝑟 + 𝑞𝑞𝑛𝑛𝑙𝑙𝑛𝑛

𝐿𝐿�𝑣𝑣
� (12) 

which is an implicit function of speed 𝑣𝑣. Similarly, the system of simultaneous Eqs. (2)-(4) and (8)-(9) 9 

that depict the equilibrium state of the ride-pooling market give rise to  10 

𝑣𝑣 = 𝑉𝑉 �
𝑞𝑞𝑟𝑟𝑓𝑓(𝑞𝑞𝑟𝑟 ,𝜙𝜙)𝑙𝑙𝑟𝑟 + 𝑞𝑞𝑛𝑛𝑙𝑙𝑛𝑛

𝐿𝐿�𝑣𝑣
� (13) 

which is also an implicit function of speed 𝑣𝑣. Clearly, without a specific traffic flow model that depicts 11 

the relationship between 𝑣𝑣 and 𝑘𝑘, namely, the function 𝑉𝑉(∙), neither Eq. (12) nor Eq. (13) can yield a 12 
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close-form solution. For analytical tractability, we now consider a linear traffic flow model: 𝑣𝑣 = 𝐴𝐴 − 𝐵𝐵𝐵𝐵, 1 

where 𝐴𝐴 and 𝐵𝐵 are two parameters in both  markets.  2 

 3 

4.1 Equilibrium speed and density 4 

With the linear traffic flow model, the following two closed-form equilibrium solutions of the vehicular 5 

speed 𝑣𝑣 to the system of simultaneous Eqs. (1)-(4) in the non-pooling market are obtained 6 

𝑣𝑣𝑁𝑁𝑁𝑁 =

⎩
⎪
⎨

⎪
⎧ 𝐴𝐴

2
+ �𝐴𝐴

2

4
−
𝐵𝐵
𝐿𝐿�

(𝑞𝑞𝑛𝑛𝑙𝑙𝑛𝑛 + 𝑞𝑞𝑟𝑟𝑙𝑙𝑟𝑟)                     (normal flow regime)

𝐴𝐴
2
−�𝐴𝐴

2

4
−
𝐵𝐵
𝐿𝐿�

(𝑞𝑞𝑛𝑛𝑙𝑙𝑛𝑛 + 𝑞𝑞𝑟𝑟𝑙𝑙𝑟𝑟)  (hyper − congested flow regime)

 (14) 

where the first equation gives the equilibrium speed in the normal flow regime (0 < A/2 ≤ 𝑣𝑣 ≤ 𝐴𝐴), while 7 

the second equation gives the equilibrium speed in the hyper-congested flow regime (0 ≤ 𝑣𝑣 ≤ A/2). The 8 

resulting equilibrium density is given by 𝑘𝑘𝑁𝑁𝑁𝑁 = (𝐴𝐴 − 𝑣𝑣𝑁𝑁𝑁𝑁)/𝐵𝐵 for both regimes. Notice that the term 9 

(𝑞𝑞𝑛𝑛𝑙𝑙𝑛𝑛 + 𝑞𝑞𝑟𝑟𝑙𝑙𝑟𝑟)/𝐿𝐿� can be viewed as a proxy rate of traffic flow.  10 

It should be noted that the normal flow regime under our consideration does imply that speed decreases 11 

with flow rate due to congestion effect; it is not a free-flow condition where speed is a constant 12 

independent of flow rate. This implies that, as the passenger demand for ridesourcing service increases, 13 

the proxy rate of traffic flow increases, which will decrease the network speed by increasing the level of 14 

traffic congestion. In contrast, the hyper-congested flow regime is generally regarded as a system failure 15 

where the speed is extremely low, the density is extremely high, while the speed exhibits an increasing 16 

trend with the proxy rate of traffic flow.  17 

Our consideration is consistent with the overwhelming assumption adopted in transportation network 18 

analysis and modeling (e.g., network design and road pricing) that travel time on a link is assumed to be 19 

a monotonically increasing function of traffic flow. This assumption becomes the norm in traffic 20 

equilibrium analysis. First, it allows for analysis of traffic equilibrium properties such as existence and 21 

uniqueness of equilibria. Second, when designing a road network or facilities, transportation planners 22 

focus on the normal flow regime but implicitly assume that the system failure (i.e. hyper-congested flow 23 

regime) should be avoided in a medium to long term planning. In the same spirit, our goal is to investigate 24 

the effects of ride-pooling and its associated operating strategies (the matching window) on the level of 25 
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congestion and system efficiency, and try to obtain managerial insights in the normal flow regime (in 1 

Section 4.4); discussion of its properties and operations in the hyper-congested flow regime is presented 2 

in a separate session (in Section 4.5). 3 

Similarly, from Eqs. (2)-(4) and (8)-(9), we can obtain the following two closed-form equilibrium 4 

solutions of the vehicular speed in the ride-pooling market 5 

𝑣𝑣𝑅𝑅𝑅𝑅 =

⎩
⎪
⎨

⎪
⎧ 𝐴𝐴

2
+ �𝐴𝐴

2

4
−
𝐵𝐵
𝐿𝐿�

[𝑞𝑞𝑛𝑛𝑙𝑙𝑛𝑛 + 𝑞𝑞𝑟𝑟 ⋅ 𝑓𝑓(𝑞𝑞𝑟𝑟 ,𝜙𝜙)𝑙𝑙𝑟𝑟]       (normal flow regime)

𝐴𝐴
2
−�𝐴𝐴

2

4
−
𝐵𝐵
𝐿𝐿�

[𝑞𝑞𝑛𝑛𝑙𝑙𝑛𝑛 + 𝑞𝑞𝑟𝑟 ⋅ 𝑓𝑓(𝑞𝑞𝑟𝑟 ,𝜙𝜙)𝑙𝑙𝑟𝑟]  (hyper − congested flow regime)

 (15) 

Again the equilibrium densities in both of the two regimes are given by 𝑘𝑘𝑅𝑅𝑅𝑅 = (𝐴𝐴 − 𝑣𝑣𝑅𝑅𝑅𝑅)/𝐵𝐵 and the term 6 

𝑞𝑞𝑛𝑛𝑙𝑙𝑛𝑛 + 𝑞𝑞𝑟𝑟 ⋅ 𝑓𝑓(𝑞𝑞𝑟𝑟 ,𝜙𝜙)𝑙𝑙𝑟𝑟/𝐿𝐿� can be viewed as a proxy rate of traffic flow in a fundamental diagram in the 7 

ride-pooling market.  8 

 9 

4.2 Maximum service rate of passenger demand 10 

In traffic flow theory, there is a maximum rate of flow due to limited road capacity, and the traffic flow 11 

on the road never exceeds the maximum rate of flow. In the same vein, for a given and fixed background 12 

traffic (normal private car) demand, there is a maximum level of ridesourcing passenger demand (or arrival 13 

rate) that can be served in the non-pooling and ride-pooling markets. We denote this maximum serviceable 14 
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level of ridesourcing passenger demand as maximum passenger service rate. Combining Eq. (12) and the 1 

linear traffic flow model, we have 2 

𝑞𝑞𝑟𝑟 =
(𝐴𝐴 − 𝑣𝑣)𝑣𝑣𝐿𝐿�

𝐵𝐵𝑙𝑙𝑟𝑟
−
𝑞𝑞𝑛𝑛𝑙𝑙𝑛𝑛
𝑙𝑙𝑟𝑟

≤ 𝑞𝑞𝑚𝑚𝑚𝑚𝑚𝑚
𝑁𝑁𝑁𝑁 =

1
𝑙𝑙𝑟𝑟
�
𝐴𝐴2𝐿𝐿�
4𝐵𝐵

− 𝑞𝑞𝑛𝑛𝑙𝑙𝑛𝑛� (16) 

where 𝑞𝑞max𝑁𝑁𝑁𝑁  is the maximum passenger service rate in the non-pooling market, which is achieved when 3 

the derivative of 𝑞𝑞𝑟𝑟 with respect to 𝑣𝑣 is zero, or equivalently, 𝑣𝑣𝑁𝑁𝑁𝑁 = 𝐴𝐴/2.  4 

To obtain the maximum passenger service rate in the ride-pooling market, we combine Eq. (13) and the 5 

linear traffic flow model, which yields  6 

𝑞𝑞𝑟𝑟𝑓𝑓(𝑞𝑞𝑟𝑟 ,𝜙𝜙) =
(𝐴𝐴 − 𝑣𝑣)𝑣𝑣𝐿𝐿�

𝐵𝐵𝑙𝑙𝑟𝑟
−
𝑞𝑞𝑛𝑛𝑙𝑙𝑛𝑛
𝑙𝑙𝑟𝑟

≤
1
𝑙𝑙𝑟𝑟
�
𝐴𝐴2𝐿𝐿�
4𝐵𝐵

− 𝑞𝑞𝑛𝑛𝑙𝑙𝑛𝑛� (17) 

which indicates that, the maximum passenger service rate in the ride-pooling market, denoted by 𝑞𝑞max𝑅𝑅𝑅𝑅 , 7 

can be obtained by solving the following implicit equation 8 

𝑞𝑞𝑟𝑟𝑓𝑓(𝑞𝑞𝑟𝑟 ,𝜙𝜙) =
1
𝑙𝑙𝑟𝑟
�
𝐴𝐴2𝐿𝐿�
4𝐵𝐵

− 𝑞𝑞𝑛𝑛𝑙𝑙𝑛𝑛� (18) 

Define 9 

S(𝑞𝑞𝑟𝑟 ,𝜙𝜙) = 𝑞𝑞𝑟𝑟𝑓𝑓(𝑞𝑞𝑟𝑟 ,𝜙𝜙) (19) 

then 𝑞𝑞max𝑅𝑅𝑅𝑅  can be obtained as the solution of the following implicit equation 10 

S(𝑞𝑞𝑟𝑟 ,𝜙𝜙) =
1
𝑙𝑙𝑟𝑟
�
𝐴𝐴2𝐿𝐿�
4𝐵𝐵

− 𝑞𝑞𝑛𝑛𝑙𝑙𝑛𝑛� (20) 

From Lemma 2, we know S(𝑞𝑞𝑟𝑟 ,𝜙𝜙)  is strictly increasing with 𝑞𝑞𝑟𝑟 , and in view of the fact that 1/2 ≤11 

𝑓𝑓(𝑞𝑞𝑟𝑟 ,𝜙𝜙) ≤ 1, we have S(0,𝜙𝜙)=0 and lim
𝑞𝑞𝑟𝑟→+∞

S(𝑞𝑞𝑟𝑟 ,𝜙𝜙) = +∞. This indicates that S(𝑞𝑞𝑟𝑟 ,𝜙𝜙) monotonically 12 
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increases from zero to infinity as 𝑞𝑞𝑟𝑟 increases from zero to infinity, and thus, the nonlinear Eq. (20) has 1 

one and only one positive solution in terms of 𝑞𝑞𝑟𝑟. Therefore, we have the following finding:  2 

Lemma 3. There is at most one maximum passenger service rate in the ride-pooling market, 𝑞𝑞𝑚𝑚𝑚𝑚𝑚𝑚
𝑅𝑅𝑅𝑅 , which 3 

can be uniquely determined by Eq.  (18) or 𝑞𝑞𝑚𝑚𝑚𝑚𝑚𝑚
𝑅𝑅𝑅𝑅  can be written as 4 

𝑞𝑞max
𝑅𝑅𝑅𝑅 = 𝑆𝑆−1 �

1
𝑙𝑙𝑟𝑟
�
𝐴𝐴2𝐿𝐿�
4𝐵𝐵

− 𝑞𝑞𝑛𝑛𝑙𝑙𝑛𝑛� ,𝜙𝜙� (21) 

Of interest here is a comparison in maximum passenger service rates between non-pooling and ride-5 

pooling markets, i.e., a comparison between  𝑞𝑞max𝑁𝑁𝑁𝑁  and 𝑞𝑞max𝑅𝑅𝑅𝑅 . Combining Eq. (16) and (18), we have 6 

𝑞𝑞max𝑅𝑅𝑅𝑅 𝑓𝑓(𝑞𝑞max𝑅𝑅𝑅𝑅 ,𝜙𝜙) = 𝑞𝑞max𝑁𝑁𝑁𝑁 . Notice that 𝑓𝑓(𝑞𝑞𝑟𝑟 ,𝜙𝜙) ≤ 1, thus we can prove that 𝑞𝑞max𝑅𝑅𝑅𝑅 ≥ 𝑞𝑞max𝑁𝑁𝑁𝑁 . Furthermore, it 7 

is also worth exploring the impacts of the external factors (such as the matching window 𝜙𝜙 and the arrival 8 

rate of private car users 𝑞𝑞𝑛𝑛) on the maximum passenger service rate 𝑞𝑞max𝑅𝑅𝑅𝑅 .  9 

First, since 𝑓𝑓(𝑞𝑞𝑟𝑟 ,𝜙𝜙) is strictly decreasing with 𝜙𝜙, then 𝑆𝑆(𝑞𝑞𝑟𝑟 ,𝜙𝜙) is also strictly decreasing in 𝜙𝜙. For any 10 

two matching windows 𝜙𝜙1 and 𝜙𝜙2 (𝜙𝜙1 > 𝜙𝜙2), suppose their resulting maximum passenger service rates 11 

are 𝑞𝑞max𝑅𝑅𝑅𝑅1  and 𝑞𝑞max𝑅𝑅𝑅𝑅2 , respectively, then we have 𝑆𝑆(𝑞𝑞max𝑅𝑅𝑅𝑅1 ,𝜙𝜙1) = 𝑆𝑆(𝑞𝑞max𝑅𝑅𝑅𝑅2 ,𝜙𝜙2) = 𝑞𝑞max𝑁𝑁𝑁𝑁 . Yet, since 𝜙𝜙1 > 𝜙𝜙2 12 

and 𝑆𝑆(𝑞𝑞𝑟𝑟 ,𝜙𝜙)  is decreasing with 𝜙𝜙 , we have 𝑆𝑆(𝑞𝑞max𝑅𝑅𝑅𝑅1 ,𝜙𝜙1) < 𝑆𝑆(𝑞𝑞max𝑅𝑅𝑅𝑅1 ,𝜙𝜙2) , and thus 𝑆𝑆(𝑞𝑞max𝑅𝑅𝑅𝑅2 ,𝜙𝜙2) <13 

𝑆𝑆(𝑞𝑞max𝑅𝑅𝑅𝑅1 ,𝜙𝜙2). Notice that 𝑆𝑆(𝑞𝑞𝑟𝑟 ,𝜙𝜙) is increasing with 𝑞𝑞𝑟𝑟 (Lemma 2), then we can easily see that 𝑞𝑞max𝑅𝑅𝑅𝑅2 <14 

𝑞𝑞max𝑅𝑅𝑅𝑅1 . It shows that the maximum passenger service rate the ride-pooling market monotonically increases 15 

with the matching window 𝜙𝜙. This is simply due to the fact using a longer matching window can increase 16 

the pool-matching probability and thus serve more passengers through ride-pooling.  17 

Second, since function 𝑆𝑆(∙,𝜙𝜙) is a strictly increasing function for a given 𝜙𝜙, its inverse function 𝑆𝑆−1(∙,𝜙𝜙) 18 

is also a strictly increasing function. This indicates that 𝑞𝑞max𝑅𝑅𝑅𝑅  is strictly increasing with the term 19 
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1
𝑙𝑙𝑟𝑟
�𝐴𝐴

2𝐿𝐿�

4𝐵𝐵
− 𝑞𝑞𝑛𝑛𝑙𝑙𝑛𝑛�, and therefore, it is not hard to find that 𝑞𝑞max𝑅𝑅𝑅𝑅  strictly decreases with the arrival rate of 1 

private car users 𝑞𝑞𝑛𝑛. These findings are summarized in the following proposition.  2 

Proposition 1. The maximum passenger service rate in the ride-pooling market 𝑞𝑞max𝑅𝑅𝑅𝑅  satisfies the 3 

following:  4 

1) for any matching window 𝜙𝜙 ≥ 0, 𝑞𝑞max𝑅𝑅𝑅𝑅  is larger than or equal to the maximum passenger service rate 5 

in the non-pooling market 𝑞𝑞𝑚𝑚𝑚𝑚𝑚𝑚
𝑁𝑁𝑁𝑁 ;  6 

2) 𝑞𝑞𝑚𝑚𝑚𝑚𝑚𝑚
𝑅𝑅𝑅𝑅  monotonically increases with the matching window 𝜙𝜙 and decreases with the demand of private 7 

car users 𝑞𝑞𝑛𝑛.  8 

 9 

4.3 Marginal effects of passenger demand 10 

Next, we look at how the equilibrium vehicular speed varies with the ridesourcing passenger demand in 11 

the two markets considered. Taking the partial derivatives of 𝑣𝑣𝑁𝑁𝑁𝑁 and 𝑣𝑣𝑅𝑅𝑅𝑅 with respect to 𝑞𝑞𝑟𝑟 leads to  12 

𝜕𝜕𝑣𝑣𝑁𝑁𝑁𝑁
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𝐿𝐿�

(𝑞𝑞𝑛𝑛𝑙𝑙𝑛𝑛 + 𝑞𝑞𝑟𝑟𝑙𝑙𝑟𝑟)
< 0                       (normal flow regime)

𝐵𝐵𝑙𝑙𝑟𝑟

2𝐿𝐿��𝐴𝐴
2

4 − 𝐵𝐵
𝐿𝐿�

(𝑞𝑞𝑛𝑛𝑙𝑙𝑛𝑛 + 𝑞𝑞𝑟𝑟𝑙𝑙𝑟𝑟)
> 0 (hyper − congested flow regime)

 (22) 

𝜕𝜕𝑣𝑣𝑅𝑅𝑅𝑅

𝜕𝜕𝑞𝑞𝑟𝑟

=
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4 − 𝐵𝐵
𝐿𝐿�

[𝑞𝑞𝑛𝑛𝑙𝑙𝑛𝑛 + 𝑞𝑞𝑟𝑟 ⋅ 𝑓𝑓(𝑞𝑞𝑟𝑟 ,𝜙𝜙)𝑙𝑙𝑟𝑟]

𝜕𝜕𝑞𝑞𝑟𝑟𝑓𝑓(𝑞𝑞𝑟𝑟 ,𝜙𝜙)
𝜕𝜕𝑞𝑞𝑟𝑟

< 0                        (normal flow regime)

𝐵𝐵𝑙𝑙𝑟𝑟

2𝐿𝐿��𝐴𝐴
2

4 − 𝐵𝐵
𝐿𝐿�

[𝑞𝑞𝑛𝑛𝑙𝑙𝑛𝑛 + 𝑞𝑞𝑟𝑟 ⋅ 𝑓𝑓(𝑞𝑞𝑟𝑟 ,𝜙𝜙)𝑙𝑙𝑟𝑟]

𝜕𝜕𝑞𝑞𝑟𝑟𝑓𝑓(𝑞𝑞𝑟𝑟 ,𝜙𝜙)
𝜕𝜕𝑞𝑞𝑟𝑟

> 0 (hyper − congested flow regime)
 

(23) 

where 𝑞𝑞𝑟𝑟𝑓𝑓(𝑞𝑞𝑟𝑟 ,𝜙𝜙) strictly increases with 𝑞𝑞𝑟𝑟 by Lemma 2. Clearly, the equilibrium speed decreases with 13 

𝑞𝑞𝑟𝑟 in the normal flow regime, and increases with 𝑞𝑞𝑟𝑟 in the hyper-congested flow regime, in both the non-14 

pooling and ride-pooling markets. Now we compare �𝜕𝜕𝑣𝑣
𝑅𝑅𝑅𝑅

𝜕𝜕𝑞𝑞𝑟𝑟
� and �𝜕𝜕𝑣𝑣

𝑁𝑁𝑁𝑁

𝜕𝜕𝑞𝑞𝑟𝑟
�, the absolute marginal change in 15 
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equilibrium speed by one unit increase in passenger demand 𝑞𝑞𝑟𝑟 within the two flow regimes in the two 1 

markets. Note that, from definition, we have 𝑓𝑓(𝑞𝑞𝑟𝑟 ,𝜙𝜙) < 1 , thus 𝑞𝑞𝑟𝑟𝑓𝑓(𝑞𝑞𝑟𝑟 ,𝜙𝜙)𝑙𝑙𝑟𝑟 < 𝑞𝑞𝑟𝑟𝑙𝑙𝑟𝑟 , and thus the 2 

denominator of the second equation of Eq. (23) (in absolute value) is greater than that of Eq. (22). 3 

Meanwhile, we have  4 

𝜕𝜕𝑞𝑞𝑟𝑟𝑓𝑓(𝑞𝑞𝑟𝑟 ,𝜙𝜙)
𝜕𝜕𝑞𝑞𝑟𝑟

= 𝑓𝑓(𝑞𝑞𝑟𝑟 ,𝜙𝜙) + 𝑞𝑞𝑟𝑟
𝜕𝜕𝜕𝜕(𝑞𝑞𝑟𝑟 ,𝜙𝜙)
𝜕𝜕𝑞𝑞𝑟𝑟

< 1 (24) 

where 𝑓𝑓(𝑞𝑞𝑟𝑟 ,𝜙𝜙) ≤ 1 and 𝜕𝜕𝜕𝜕(𝑞𝑞𝑟𝑟 ,𝜙𝜙)/𝜕𝜕𝑞𝑞𝑟𝑟 < 0 by definitions. It indicates that the numerator of the second 5 

equation of Eq. (23) (in absolute value) is less than that of Eq. (22). In summary of the comparisons, it is 6 

easily found that �𝜕𝜕𝑣𝑣
𝑅𝑅𝑅𝑅

𝜕𝜕𝑞𝑞𝑟𝑟
� < �𝜕𝜕𝑣𝑣

𝑁𝑁𝑁𝑁

𝜕𝜕𝑞𝑞𝑟𝑟
�, leading to the following proposition:  7 

Proposition 2. In the normal flow regime (hyper-congested flow regime), the marginal decrease 8 

(increase) in equilibrium vehicular speed caused by a unit increase in ridesourcing passenger demand in 9 

the ride-pooling market is less than that in the non-pooling market.  10 

This proposition tells us that a unit increase of passenger demand brings less effect on the equilibrium 11 

vehicular speed in a ride-pooling market than in a non-pooling market. Particularly, in the normal flow 12 

regime, this is because ride-pooling programs can accommodate a given number of passengers with fewer 13 

vehicles, and thus make less congestion.   14 

 15 

4.4 Properties in the normal flow regime 16 

In this section, we discuss properties of the model in the normal flow regime, which will help us 17 

understand the impacts of the critical factors (passenger demand and matching window) on the time costs 18 

of both ridesourcing passengers and normal private car users under normal traffic situations in the medium 19 

or longer term.   20 

The matching window is one critical decision variable that the platform can leverage to affect the 21 

equilibrium state of the ride-pooling market. Intuitively, as the platform utilizes a larger matching window, 22 

the pool-matching probability increases and thus the road network becomes less congested (pointing to a 23 

higher speed), which further reduces the travel time of both ridesourcing passengers and private car users. 24 

On the other hand, a long matching window also increases the waiting time of ridesourcing passengers. It 25 
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is thus of interest to understand how the length of matching window affects the time cost of ridesourcing 1 

passengers and private car users, and to determine a matching window to minimize the time cost.   2 

We first look at the marginal effects of matching window on the equilibrium speed 𝑣𝑣𝑅𝑅𝑅𝑅 (in the normal 3 

flow regime of the ride-pooling market). Taking the first- and second-order partial derivatives of 𝑣𝑣𝑅𝑅𝑅𝑅 in 4 

matching window 𝜙𝜙 leads to  5 

𝜕𝜕𝑣𝑣𝑅𝑅𝑅𝑅

𝜕𝜕𝜕𝜕
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𝜕𝜕𝑝𝑝(𝑞𝑞𝑟𝑟 ,𝜙𝜙)
𝜕𝜕𝜕𝜕

 (25) 
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(26) 

where 𝜕𝜕𝜕𝜕(𝑞𝑞𝑟𝑟 ,𝜙𝜙)/𝜕𝜕𝜕𝜕 > 0, and thus we have 𝜕𝜕𝑣𝑣𝑅𝑅𝑅𝑅/𝜕𝜕𝜕𝜕 > 0. This indicates that the equilibrium speed 6 

strictly increases with the matching window. This is because, prolonging the matching window increases 7 
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the pool-matching probability, and thus reduces the number of vehicles, which further alleviates traffic 1 

congestion and increases the equilibrium speed. In addition, from Eq. (7), we can obtain  2 

Lemma 4. The pool-matching probability 𝑝𝑝(𝑞𝑞𝑟𝑟 ,𝜙𝜙) is concave with respect to the matching window 𝜙𝜙.  3 

Proof. Taking the first- and second-order partial derivatives of 𝑝𝑝(𝑞𝑞𝑟𝑟 ,𝜙𝜙) with respect to 𝜙𝜙 gives rise to  4 

𝜕𝜕𝜕𝜕(𝑞𝑞𝑟𝑟 ,𝜙𝜙)
𝜕𝜕𝜙𝜙

= 𝛾𝛾𝑞𝑞𝑟𝑟 exp(−𝛾𝛾𝑞𝑞𝑟𝑟𝜙𝜙) > 0 (27) 

𝜕𝜕2𝑝𝑝(𝑞𝑞𝑟𝑟 ,𝜙𝜙)
𝜕𝜕𝜙𝜙2 = −(𝛾𝛾𝑞𝑞𝑟𝑟)2 exp(−𝛾𝛾𝑞𝑞𝑟𝑟𝜙𝜙) < 0 (28) 

This completes the proof. ■ 5 

This lemma is intuitive: as 𝜙𝜙 increases from 0 to infinity, the pool-matching probability 𝑝𝑝(𝑞𝑞𝑟𝑟 ,𝜙𝜙) increases 6 

from 0 to 1. As 𝜙𝜙 is small, 𝑝𝑝(𝑞𝑞𝑟𝑟 ,𝜙𝜙) is also low (nearly zero), and a unit increase of 𝜙𝜙 can lead to more 7 

sharp increase in 𝑝𝑝(𝑞𝑞𝑟𝑟 ,𝜙𝜙); as 𝜙𝜙 is sufficiently large, 𝑝𝑝(𝑞𝑞𝑟𝑟 ,𝜙𝜙) approaches 1 (nearly all passenger requests 8 

can be pool-matched), and thus a unit increase of 𝜙𝜙 brings very limited change in 𝑝𝑝(𝑞𝑞𝑟𝑟 ,𝜙𝜙). This means 9 
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the probability function 𝑝𝑝(𝑞𝑞𝑟𝑟 ,𝜙𝜙)  exhibits an increasing saturation curve property, i.e. concave with 1 

respect to 𝜙𝜙. 2 

Combining Lemma 4 and Eq. (26), it can be easily proved that 𝜕𝜕2𝑣𝑣𝑅𝑅𝑅𝑅/𝜕𝜕𝜙𝜙2 < 0, which implies that the 3 

equilibrium speed is concave with respect to the matching window. Then, taking the partial derivative of 4 

the average travel time of private car users 𝑇𝑇𝑛𝑛𝑅𝑅𝑅𝑅 in matching window 𝜙𝜙 yields  5 

𝜕𝜕𝑇𝑇𝑛𝑛𝑅𝑅𝑅𝑅

𝜕𝜕𝜕𝜕
= −

𝑙𝑙𝑛𝑛
(𝑣𝑣𝑅𝑅𝑅𝑅)2

𝜕𝜕𝑣𝑣𝑅𝑅𝑅𝑅

𝜕𝜕𝜕𝜕
< 0 (29) 

which indicates that 𝑇𝑇𝑛𝑛𝑅𝑅𝑅𝑅 always decreases with 𝜙𝜙; in other words, prolonging the matching window is 6 

always beneficial to the private car users.  7 

Next, we study the marginal effects of matching window on the average time cost of each ridesourcing 8 

passenger 𝑇𝑇𝑟𝑟𝑅𝑅𝑅𝑅. The partial derivative of 𝑇𝑇𝑟𝑟𝑅𝑅𝑅𝑅 in 𝜙𝜙 is given below.  9 

𝜕𝜕𝑇𝑇𝑟𝑟𝑅𝑅𝑅𝑅

𝜕𝜕𝜕𝜕
= −

𝑙𝑙𝑟𝑟
(𝑣𝑣𝑅𝑅𝑅𝑅)2

𝜕𝜕𝑣𝑣𝑅𝑅𝑅𝑅

𝜕𝜕𝜕𝜕
+
𝜕𝜕𝜕𝜕(𝜙𝜙)
𝜕𝜕𝜕𝜕

 (30) 

The first term of the right-hand-side (which is always positive) shows that, with everything else being 10 

equal, an increase in matching window increases the network equilibrium speed and thus reduces the 11 

average travel time of ridesourcing passengers. The second term represents the direct effect of increasing 12 

matching window on passengers’ waiting time. Note that the whole value of 𝜕𝜕𝑇𝑇𝑟𝑟𝑅𝑅𝑅𝑅/𝜕𝜕𝜕𝜕 can be either 13 

positive or negative, depending on the relative magnitude of these two opposite effects. To further examine 14 

the existence of the optimal matching window, we now take the second-order partial derivative of 𝑇𝑇𝑟𝑟𝑅𝑅𝑅𝑅 15 

with respect to 𝜙𝜙 as follows,  16 

𝜕𝜕2𝑇𝑇𝑟𝑟𝑅𝑅𝑅𝑅

𝜕𝜕𝜙𝜙2 = −
𝑙𝑙𝑟𝑟

(𝑣𝑣𝑅𝑅𝑅𝑅)2
𝜕𝜕2𝑣𝑣𝑅𝑅𝑅𝑅

𝜕𝜕𝜙𝜙2 +
𝜕𝜕2𝐻𝐻(𝜙𝜙)
𝜕𝜕𝜙𝜙2  (31) 

As aforementioned, by assuming a uniform arrival of ridesourcing passengers over time in the batching 17 

matching, the average waiting time of ridesourcing passengers can be given by 𝐻𝐻(𝜙𝜙) = 𝜙𝜙/2. In this case, 18 

𝜕𝜕𝜕𝜕(𝜙𝜙)/𝜕𝜕𝜕𝜕 = 1/2 and 𝜕𝜕2𝐻𝐻(𝜙𝜙)/𝜕𝜕𝜙𝜙2 = 0. Recall that we already prove 𝜕𝜕2𝑣𝑣𝑅𝑅𝑅𝑅/𝜕𝜕𝜙𝜙2 < 0, then we have 19 

𝜕𝜕2𝑇𝑇𝑟𝑟𝑅𝑅𝑅𝑅/𝜕𝜕𝜙𝜙2 > 0, which indicates that 𝑇𝑇𝑟𝑟𝑅𝑅𝑅𝑅 is convex with respect to 𝜙𝜙. Then one can easily find that there 20 

exists one and only one optimal matching window 𝜙𝜙∗ that lead to the minimum of the average time cost 21 
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of passengers, which first decreases and then increases with matching window. The optimal matching 1 

window 𝜙𝜙∗ is obtained by setting 𝜕𝜕𝑇𝑇𝑟𝑟𝑅𝑅𝑅𝑅/𝜕𝜕𝜕𝜕 = 0, giving rise to 2 

𝜕𝜕𝑣𝑣𝑅𝑅𝑅𝑅

𝜕𝜕𝜙𝜙 
�
𝜙𝜙=𝜙𝜙∗

=
(𝑣𝑣𝑅𝑅𝑅𝑅)2

2𝑙𝑙𝑟𝑟
 (32) 

where 𝑣𝑣𝑅𝑅𝑅𝑅 is also a function of 𝜙𝜙. The condition in Eq. (32) shows that the marginal impact of matching 3 

window on the equilibrium speed is proportional to the square of the current speed at optimal matching 4 

window. These findings are summarized below.  5 

Proposition 3. In the normal flow regime, there exists a unique optimal matching window that gives the 6 

globally minimum average time cost of ridesourcing passengers, which is given by the implicit Eq. (32).  7 

This proposition tells us that the platform can always set an optimal matching window for minimizing the 8 

average time cost of ridesourcing passengers, for any given arrival rates of ridesourcing passengers 𝑞𝑞𝑟𝑟 and 9 

normal private car users 𝑞𝑞𝑛𝑛, in the normal flow regime.   10 

Now we look into the impacts of implementation of ride-pooling on the average time cost of ridesourcing 11 

passengers and normal private car users. We say that a win-win situation emerges if the time cost of both 12 

ridesourcing passengers and normal private car users in the ride-pooling market is less than that in the 13 

non-pooling market. Of particular interest here is the existence of win-win situation and under what 14 

situations a win-win situation can be found.  15 

First, the difference in travel time of private car users between the two markets of non-pooling and ride-16 

pooling is given by  17 

𝛥𝛥𝑇𝑇𝑛𝑛 = 𝑇𝑇𝑛𝑛𝑁𝑁𝑁𝑁 − 𝑇𝑇𝑛𝑛𝑅𝑅𝑅𝑅 =
𝑙𝑙𝑛𝑛

𝑣𝑣𝑁𝑁𝑁𝑁𝑣𝑣𝑅𝑅𝑅𝑅
(𝑣𝑣𝑅𝑅𝑅𝑅 − 𝑣𝑣𝑁𝑁𝑁𝑁) (33) 

Comparing Eqs. (14) and (15), and in view of 𝑓𝑓(𝑞𝑞𝑟𝑟 ,𝜙𝜙) ≤ 1, one can easily find that 𝑣𝑣𝑅𝑅𝑅𝑅 > 𝑣𝑣𝑁𝑁𝑁𝑁 in the 18 

normal flow regime, implying that 𝛥𝛥𝑇𝑇𝑛𝑛 > 0 or 𝑇𝑇𝑛𝑛𝑁𝑁𝑁𝑁 > 𝑇𝑇𝑛𝑛𝑅𝑅𝑅𝑅. Namely, the implementation of ride-pooling 19 
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program can always reduce the travel time of normal private car users. This is because the private car 1 

users benefit from the reduction of traffic congestion arising from ride-pooling. 2 

Similarly, the difference in average time cost of ridesourcing passengers between the two markets is given 3 

by  4 

𝛥𝛥𝑇𝑇𝑟𝑟 = 𝑇𝑇𝑟𝑟𝑁𝑁𝑁𝑁 − 𝑇𝑇𝑟𝑟𝑅𝑅𝑅𝑅 =
𝑙𝑙𝑟𝑟

𝑣𝑣𝑁𝑁𝑁𝑁𝑣𝑣𝑅𝑅𝑅𝑅
(𝑣𝑣𝑅𝑅𝑅𝑅 − 𝑣𝑣𝑁𝑁𝑁𝑁) − 𝐻𝐻(𝜙𝜙) (34) 

where the first term and the second-term of the right-hand-side are positive and negative, respectively. 5 

The positive term describes that ride-pooling alleviates traffic congestion and further reduces the travel 6 

time of ridesourcing passengers, and the negative term indicates that the extra waiting time arising from 7 

matching two rides. Clearly, 𝛥𝛥𝑇𝑇𝑟𝑟 can be either positive or negative, depending on the relative magnitude 8 

of these two terms, which are jointly determined by the matching window 𝜙𝜙 and passenger demand 𝑞𝑞𝑟𝑟.  9 

To look at the above time cost difference of ridesourcing passenger further, we first note that, for any 10 

given 𝑞𝑞𝑟𝑟, the maximum 𝛥𝛥𝑇𝑇𝑟𝑟 can be obtained when 𝜙𝜙 = 𝜙𝜙∗, since 𝑇𝑇𝑟𝑟𝑁𝑁𝑁𝑁 is independent of 𝜙𝜙. Second, taking 11 

the partial derivative of 𝛥𝛥𝑇𝑇𝑟𝑟 with respect to 𝑞𝑞𝑟𝑟 yields  12 

𝜕𝜕𝜕𝜕𝑇𝑇𝑟𝑟
𝜕𝜕𝑞𝑞𝑟𝑟 

=
𝑙𝑙𝑟𝑟

(𝑣𝑣𝑁𝑁𝑁𝑁)2(𝑣𝑣𝑅𝑅𝑅𝑅)2 �
(𝑣𝑣𝑅𝑅𝑅𝑅)2 �

𝜕𝜕𝑣𝑣𝑁𝑁𝑁𝑁

𝜕𝜕𝑞𝑞𝑟𝑟
� − (𝑣𝑣𝑁𝑁𝑁𝑁)2 �

𝜕𝜕𝑣𝑣𝑅𝑅𝑅𝑅

𝜕𝜕𝑞𝑞𝑟𝑟
�� (35) 

where |𝜕𝜕𝑣𝑣𝑅𝑅𝑅𝑅/𝜕𝜕𝑞𝑞𝑟𝑟| = −𝜕𝜕𝑣𝑣𝑅𝑅𝑅𝑅/𝜕𝜕𝑞𝑞𝑟𝑟 and |𝜕𝜕𝑣𝑣𝑁𝑁𝑁𝑁/𝜕𝜕𝑞𝑞𝑟𝑟| = −𝜕𝜕𝑣𝑣𝑁𝑁𝑁𝑁/𝜕𝜕𝑞𝑞𝑟𝑟 in the normal flow regime. As shown 13 

in Proposition 2, |𝜕𝜕𝑣𝑣𝑅𝑅𝑅𝑅/𝜕𝜕𝑞𝑞𝑟𝑟| < |𝜕𝜕𝑣𝑣𝑁𝑁𝑁𝑁/𝜕𝜕𝑞𝑞𝑟𝑟|  and 𝑣𝑣𝑅𝑅𝑅𝑅 > 𝑣𝑣𝑁𝑁𝑁𝑁  in the normal flow regime. Thus, 14 

𝜕𝜕𝜕𝜕𝑇𝑇𝑟𝑟/𝜕𝜕𝑞𝑞𝑟𝑟 > 0, which shows that 𝛥𝛥𝑇𝑇𝑟𝑟 monotonically increases with 𝑞𝑞𝑟𝑟, for any given 𝜙𝜙. Note that, to 15 

compare the non-pooling and the ride-pooling markets, 𝑞𝑞𝑟𝑟 should satisfy 𝑞𝑞𝑟𝑟 < min(𝑞𝑞max𝑁𝑁𝑁𝑁 , 𝑞𝑞max𝑅𝑅𝑅𝑅 ) = 𝑞𝑞max𝑁𝑁𝑁𝑁 . 16 

These findings are summarized in the following proposition.  17 

Proposition 4. In the normal flow regime, the difference, 𝛥𝛥𝑇𝑇𝑟𝑟, in the average time cost of ridesourcing 18 

passengers between the non-pooling market and the ride-pooling market satisfies:  19 

1. For any given passenger demand 𝑞𝑞𝑟𝑟, 𝛥𝛥𝑇𝑇𝑟𝑟 is concave in 𝜙𝜙, and a globally maximum value of 𝛥𝛥𝑇𝑇𝑟𝑟 is 20 

always given at 𝜙𝜙 = 𝜙𝜙∗; 21 

2. For any given matching window 𝜙𝜙, 𝛥𝛥𝑇𝑇𝑟𝑟 monotonically increases as 𝑞𝑞𝑟𝑟 increases from zero to 𝑞𝑞max𝑁𝑁𝑁𝑁 .  22 

It tells us that, for any given passenger demand, the platform can always determine a globally optimal 23 

matching window to maximize 𝛥𝛥𝑇𝑇𝑟𝑟 . In addition, for any given matching window, 𝛥𝛥𝑇𝑇𝑟𝑟  increases with 24 
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passenger demand. This is because, with increase in passenger demand, the ride-pooling market has higher 1 

pool-matching probability and thus requires smaller fleet size of vehicles for all ridesourcing passengers. 2 

As a result, the advantages (alleviating traffic congestion and further reducing travel time) of ride-pooling 3 

over non-pooling becomes more obvious.  4 

The win-win situation can be achieved if 𝛥𝛥𝑇𝑇𝑛𝑛 > 0 and 𝛥𝛥𝑇𝑇𝑟𝑟 > 0. Given a matching window 𝜙𝜙, let 𝑞𝑞�𝑟𝑟 5 

denote the critical passenger demand for 𝛥𝛥𝑇𝑇𝑟𝑟 = 0. In view of that 𝛥𝛥𝑇𝑇𝑟𝑟 strictly increases with 𝑞𝑞𝑟𝑟, the win-6 

win situation is achieved when 𝑞𝑞𝑟𝑟 > 𝑞𝑞�𝑟𝑟, since 𝛥𝛥𝑇𝑇𝑛𝑛 > 0 is always true. However, the win-win situation 7 

can never appear or the solution of 𝛥𝛥𝑇𝑇𝑟𝑟 = 0 does not exist for any feasible 𝑞𝑞𝑟𝑟 (𝑞𝑞𝑟𝑟 < 𝑞𝑞max𝑁𝑁𝑁𝑁 ) when 𝑞𝑞�𝑟𝑟 >8 

𝑞𝑞max𝑁𝑁𝑁𝑁  (out of the feasible range of 𝑞𝑞𝑟𝑟) , namely, 𝛥𝛥𝑇𝑇𝑟𝑟 < 0  for any feasible value of 𝑞𝑞𝑟𝑟 . Because 𝛥𝛥𝑇𝑇𝑟𝑟 9 

increases with 𝑞𝑞𝑟𝑟, from Eq. (34), occurrence of win-win situation or 𝛥𝛥𝑇𝑇𝑟𝑟 > 0 requires that  10 

𝑙𝑙𝑟𝑟
𝐴𝐴
2 + �𝐴𝐴

2

4 − 𝐵𝐵
𝐿𝐿�

[𝑞𝑞𝑛𝑛𝑙𝑙𝑛𝑛 + 𝑞𝑞max𝑁𝑁𝑁𝑁 𝑙𝑙𝑟𝑟]
−

𝑙𝑙𝑟𝑟
𝐴𝐴
2 + �𝐴𝐴

2

4 − 𝐵𝐵
𝐿𝐿�

[𝑞𝑞𝑛𝑛𝑙𝑙𝑛𝑛 + 𝑞𝑞𝑚𝑚𝑚𝑚𝑚𝑚
𝑁𝑁𝑁𝑁 𝑓𝑓(𝑞𝑞𝑟𝑟 ,𝜙𝜙)𝑙𝑙𝑟𝑟]

− 𝐻𝐻(𝜙𝜙) > 0 (36) 

Substituting Eq. (16) into Eq. (36) gives rise to:  11 

𝑝𝑝(𝑞𝑞max𝑁𝑁𝑁𝑁 ,𝜙𝜙) >
𝐴𝐴4𝐻𝐻2(𝜙𝜙)

2[𝐴𝐴𝐴𝐴(𝜙𝜙) − 2𝑙𝑙𝑟𝑟]2 �𝐴𝐴
2

4 − 𝐵𝐵
𝐿𝐿� 𝑞𝑞𝑛𝑛𝑙𝑙𝑛𝑛�

 (37) 

in which 𝑝𝑝(𝑞𝑞max𝑁𝑁𝑁𝑁 ,𝜙𝜙) represents the resulting pool-matching probability associated with the maximum 12 

passenger demand 𝑞𝑞max𝑁𝑁𝑁𝑁  and the matching window 𝜙𝜙, and the right-hand-side is a term dependent on 𝜙𝜙 13 

but independent of 𝑞𝑞𝑟𝑟. This indicates that there exists a win-win situation if 𝑝𝑝(𝑞𝑞max𝑁𝑁𝑁𝑁 ,𝜙𝜙) is larger than a 14 

certain critical value. To sum up, we have  15 

Proposition 5. In the normal flow regime, for a given matching window 𝜙𝜙, if the inequality in Eq. (37) 16 

holds, a win-win situation exists when the passenger demand 𝑞𝑞𝑟𝑟 is greater than a critical value 𝑞𝑞�𝑟𝑟 (or 17 

equivalently, the passenger density is larger than a critical density).  18 

 19 

4.5 Properties in the hyper-congested flow regime 20 

In this section, we discuss the properties of the model in the hyper-congested flow regime. As mentioned 21 

above, the hyper-congested flow regime is generally not incorporated in standard transportation systems 22 

analysis and modeling since it is in essence a system failure that should be avoided in traffic planning and 23 
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operations. Nonetheless, for completeness, our analysis is extended to discuss how passenger demand 1 

affects the system performances and how the platform chooses appropriate operating strategies in a hyper-2 

congested flow regime.  3 

To this end, we take the first-order partial derivative of speed 𝑣𝑣𝑅𝑅𝑅𝑅 of the hyper-congested flow regime 4 

with respect to matching window 𝜙𝜙, giving rise to,  5 

𝜕𝜕𝑣𝑣𝑅𝑅𝑅𝑅

𝜕𝜕𝜕𝜕
=

−𝐵𝐵𝑞𝑞𝑟𝑟𝑙𝑙𝑟𝑟

4𝐿𝐿��𝐴𝐴
2

4 − 𝐵𝐵
𝐿𝐿�

[𝑞𝑞𝑛𝑛𝑙𝑙𝑛𝑛 + 𝑞𝑞𝑟𝑟𝑓𝑓(𝑞𝑞𝑟𝑟 ,𝜙𝜙)𝑙𝑙𝑟𝑟]

𝜕𝜕𝜕𝜕(𝑞𝑞𝑟𝑟 ,𝜙𝜙)
𝜕𝜕𝜕𝜕

< 0 (38) 

which indicates that network speed in the hyper-congested flow regime decreases with the matching 6 

window. This is opposite to the trend of speed in the normal flow regime, due to the fact that a long 7 

matching window increases the pool-matching probability and reduces the rate of required vehicles, which 8 

however, reduces the equilibrium speed in the hyper-congested flow regime. Then, taking the partial 9 

derivative of the average time cost of private car users 𝑇𝑇𝑛𝑛𝑅𝑅𝑅𝑅 and ridesourcing passenger 𝑇𝑇𝑟𝑟𝑅𝑅𝑅𝑅 with respect 10 

to matching window 𝜙𝜙 yields  11 

𝜕𝜕𝑇𝑇𝑛𝑛𝑅𝑅𝑅𝑅

𝜕𝜕𝜕𝜕
= −

𝑙𝑙𝑛𝑛
(𝑣𝑣𝑅𝑅𝑅𝑅)2

𝜕𝜕𝑣𝑣𝑅𝑅𝑅𝑅

𝜕𝜕𝜕𝜕
> 0 (39) 

𝜕𝜕𝑇𝑇𝑟𝑟𝑅𝑅𝑅𝑅

𝜕𝜕𝜕𝜕
= −

𝑙𝑙𝑟𝑟
(𝑣𝑣𝑅𝑅𝑅𝑅)2

𝜕𝜕𝑣𝑣𝑅𝑅𝑅𝑅

𝜕𝜕𝜕𝜕
+
𝜕𝜕𝜕𝜕(𝜙𝜙)
𝜕𝜕𝜕𝜕

> 0 (40) 

which indicate that both 𝑇𝑇𝑛𝑛𝑅𝑅𝑅𝑅 and 𝑇𝑇𝑟𝑟𝑅𝑅𝑅𝑅 increase with 𝜙𝜙; in other words, prolonging the matching window 12 

is always harmful to both private car users and ridesourcing passengers in the hyper-congested flow 13 

regime. Therefore, if the traffic situation collapses into a hyper-congested flow regime, the optimal 14 

strategy of the platform is to set the matching window to be zero, which is beneficial to both private car 15 

users and ridesourcing passengers. The reason is that, in the hyper-congested flow regime, the speed 16 

increases with rate of flows, which is governed by the arrival rate of vehicles required for serving a given 17 

ridesourcing passenger demand. In this case, a zero matching window entertains almost a zero ride-pooling 18 

probability and thus leads to a maximum arrival rate of ridesourcing vehicles. As a result, the maximum 19 

speed and minimum time cost for both private car users and ridesourcing passengers are obtained. This in 20 
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turn implies that implementation of ride-pooling does not create a win-win situation when the system is 1 

trapped in the hyper-congested flow regime.  2 

 3 

5. A numerical example  4 

To elucidate the theoretical findings obtained so far, we provide a numerical example based on a linear 5 

traffic flow model with parameters 𝐴𝐴=55km/h and B = 0.3km2/h. The average trip distance of both 6 

ridesourcing passengers and private car users, i.e. 𝑙𝑙𝑟𝑟 and 𝑙𝑙𝑛𝑛, is set to be 10km, the total length of the road 7 

network 𝐿𝐿� is assumed to be 100km. Based on Uber’s historical data and a walking radius of 250m, Yan et 8 

al. (2019) obtained an estimation of 𝛾𝛾 =0.0006 in Eq. (7) with a reasonably good goodness-of-fit. This 9 

estimated value is adopted in our numerical example.  10 

5.1 Fundamental diagrams 11 

In this sub-section, we depict the fundamental diagrams that describe the relationships between vehicular 12 

speed and passenger demand in different scenarios. First, Figure 1(a) portrays the fundamental diagrams 13 

in the ride-pooling market (given a fixed 𝑞𝑞𝑛𝑛 and three different matching windows), with the solid line 14 

representing the normal flow regime and the dashed line representing the hyper-congested flow regime. 15 

Note that the ride-pooling market with 𝜙𝜙=0 min becomes the non-pooling market, since the pool-matching 16 

probability 𝑝𝑝(𝑞𝑞𝑟𝑟 ,𝜙𝜙) = 0 and the number of vehicles consumed by each passenger 𝑓𝑓(𝑞𝑞𝑟𝑟 ,𝜙𝜙) = 1, and thus 17 

Eqs. (14) and (15) become identical. As seen from the figure, the maximum passenger service rate 𝑞𝑞max
𝑅𝑅𝑅𝑅  18 

increases with the matching window. This implies that the maximum passenger service rate in the ride-19 

pooling market is always larger than or equal to that in the non-pooling market. Second, Figure 1(b) 20 

displays the fundamental diagrams in the ride-pooling market for a given matching window 𝜙𝜙=3 min and 21 

three given different values of 𝑞𝑞𝑛𝑛. It is found that the maximum passenger service rate in the ride-pooling 22 

market decreases with 𝑞𝑞𝑛𝑛. This is intuitive since the ridesourcing passengers and private car users share 23 

common road resources. These findings verify Proposition 1.  24 

From Figure 1(a), one can find that, at a given value of passenger demand, the slope of the change of 25 

vehicular speed with passenger demand (representing the marginal effect of passenger demand on 26 

vehicular speed) decreases with matching window. It also implies that, the marginal effect (decreasing 27 

effect in the normal flow regime and increasing effect in the hyper-congested flow regime) of passenger 28 
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demand on vehicular speed in the ride-pooling market is smaller than or equal to that in the non-pooling 1 

market. These observations are consistent with Proposition 2.  2 

  

(a) 𝑞𝑞𝑛𝑛 = 1.0 × 104 trip/h 
(b) 𝜙𝜙 = 3 min 

Figure 1. Fundamental diagrams of the ride-pooling market  

5.2 Effects of demand and matching window in normal flow regime 3 

This section will investigate the joint impacts of matching window and passenger demand on time cost of 4 

both ridesourcing passengers and normal private car users in the normal flow regime. In addition, the 5 

combinations of matching window and passenger demand that lead to a win-win situation are discussed.  6 

Figure 2a and 2b illustrate how the average time cost of ridesourcing passengers and private car users 7 

change with matching window with a high and low level of passenger demand, respectively. It can be seen 8 

that the average time cost of private car users always decreases with matching window. This is because 9 

increasing matching window increases the pool-matching probability, which further decreases traffic 10 

congestion or increases vehicular speed, and thus reduces the time cost of private car users. Figure 2a 11 

shows that the average time cost of ridesourcing passengers first decreases and then increases with 12 

matching window with a high level of passenger demand. In this case, there exists a win-win situation 13 

(shadowed area) in which the ride-pooling market has lower time cost than the non-pooling market. From 14 

the convex curve, one can easily find an optimal matching window for minimizing the average time cost 15 

of ridesourcing passengers. However, Figure 2b shows that the average time cost of ridesourcing 16 

passengers strictly increase with matching window with a low level of passenger demand. In this case, 17 
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there is no win-win situation and the minimum time cost of ridesourcing passengers is achieved at zero 1 

matching window.  2 

  

(a) 𝑞𝑞𝑟𝑟 = 1.5 × 104 trip/h 
(b) 𝑞𝑞𝑟𝑟 = 1.3 × 104 trip/h 

Figure 2. The impacts of matching window on the time cost of  ridesourcing passengers and private 
car users with a high and low level of passenger demand in the normal flow regime 

Figure 3 and 4 display the impacts of passenger demand on the time cost of ridesourcing passengers and 3 

private car users, with a short and long matching window, respectively. As seen from Figure 3a-b (with a 4 

short matching window of 0.5 min), the time cost of both ridesourcing passengers (𝑇𝑇𝑟𝑟𝑅𝑅𝑅𝑅 and 𝑇𝑇𝑟𝑟𝑁𝑁𝑁𝑁) and 5 

private car users (𝑇𝑇𝑛𝑛𝑅𝑅𝑅𝑅 and 𝑇𝑇𝑛𝑛𝑁𝑁𝑁𝑁)  increase with passenger demand in both the ride-pooling and non-pooling 6 

market. It is also found that the differences, 𝛥𝛥𝑇𝑇𝑟𝑟  and 𝑇𝑇𝑛𝑛 , in the average time costs of ridesourcing 7 

passengers (Figure 3a) and private car users (Figure 3b) between the two markets increase with passenger 8 

demand. This implies that, with increase in passenger demand, the advantage of ride-pooling over non-9 

pooling become more significant or on-demand ride-pooling program is more desirable when passenger 10 
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demand is high. Obviously, a win-win situation emerges when the passenger demand exceeds a certain 1 

threshold.  2 

  

(a) time cost of ridesourcing passengers 
(b) time cost of private car users 

Figure 3. The impacts of passenger demand on the time cost of  ridesourcing passengers and private 
car users (with a short matching window 𝜙𝜙 = 0.5 min) in the normal flow regime 

Figure 4a-b demonstrate the trend of change of the time cost of both ridesourcing passengers and private 3 

car users with passenger demand in the two markets with a long matching window of 10 min. In this case, 4 

the differences in the time costs between the two markets also increase with passenger demand. However, 5 

the win-win situation does not arise as passenger demand increases from zero to its maximum. This is 6 

because ridesourcing passengers’ average waiting time is too long due to a long matching window. As a 7 
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result, the travel time saving due to increased vehicular speed is not enough to offset the long extra waiting 1 

time for pool-matching. These observations are consistent with Proposition 4.  2 

  

(a) time cost of ridesourcing passengers 
(b) time cost of private car users 

Figure 4. The impacts of passenger demand on the time cost of  ridesourcing passengers and private 
car users (with a long matching window 𝜙𝜙 = 10 min) in the normal flow regime 

Figure 5 further portrays the difference in the average time costs, 𝛥𝛥𝑇𝑇𝑟𝑟 and 𝛥𝛥𝑇𝑇𝑛𝑛, of ridesourcing passengers 3 

(Figure 5a) and private car users (Figure 5b) between the two markets within the two-dimensional space 4 

of passenger demand and matching window. As seen from Figure 5b, 𝛥𝛥𝑇𝑇𝑛𝑛 is always positive and increases 5 

with both matching window and passenger demand. This is because increasing either matching window 6 

or passenger demand increases pool-matching probability and further increases vehicular speed, bringing 7 

up travel time savings to private car users. From Figure 5a, we can find an area of win-win situation 8 

(located in the upper left of the red zero-line), where the passenger demand is sufficiently large and the 9 

matching window is within a suitable range. This implies that, when the passenger demand is very high, 10 
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implementation of a ride-pooling program with an appropriate matching window can benefit both 1 

ridesourcing passengers and private car users.  2 

 3 

  

(a) 𝛥𝛥𝑇𝑇𝑟𝑟 
(b) 𝛥𝛥𝑇𝑇𝑛𝑛 

Figure 5. 𝛥𝛥𝑇𝑇𝑟𝑟 and 𝛥𝛥𝑇𝑇𝑛𝑛 in the two-dimensional space of passenger demand and matching window in 
the normal flow regime 

5.3 Effects of demand and matching window in hyper-congested flow regime 4 

This section investigates the joint impacts of matching window and passenger demand on time cost of 5 

both ridesourcing passengers and normal private car users in the hyper-congested flow regime. To be 6 

cautious, we iterate again that the hyper-congested flow regime is generally regarded as a system failure, 7 

where speed increases with flow rate as indicated by the dashed line in Figure 1.  8 

Figure 6(a) and Figure 6(b) illustrate how the average time cost of ridesourcing passengers and private car 9 

users change with matching window with a high and low level of passenger demand, respectively, in the 10 

hyper-congested flow regime. It can be found that the average time cost of ridesourcing passengers and 11 

normal private car users both increase with matching window. This counter-intuitive phenomenon is due 12 

to the properties of the hyper-congested flow regime, in which the speed is an increasing function of the 13 

steady flow rate. Therefore, a prolonged matching window reduces the proxy traffic flow rate and then 14 

decreases the speed and increases travel time for both ridesourcing passengers and normal private car 15 

users. This theoretically indicates that, if an area unfortunately collapsed to a hyper-congested flow 16 
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regime, one should first set a zero matching window to help turn the hyper-congested flow regime back 1 

to the normal one.  2 

  

(a) 𝑞𝑞𝑟𝑟 = 1.5 × 104 trip/h (b) 𝑞𝑞𝑟𝑟 = 1.3 × 104 trip/h 

Figure 6. The impacts of matching window on the time cost of ridesourcing passengers and private car 
users with a high and low level of passenger demand in the hyper-congested flow regime 

Figure 7 and Figure 8 demonstrate the impacts of passenger demand on the time cost of ridesourcing 3 

passengers and private car users, with a short and long matching window, respectively, in the hyper-4 

congested flow regime. In both figures, the average time cost of ridesourcing passengers and normal 5 

private car users decrease with passenger demand, which stems from the fact that network speed increases 6 

with passenger demand in the hyper-congested flow regime (as illustrated in Figure 1). We can also see 7 

that both ridesourcing passengers and normal private car users have larger average time cost in the ride-8 

pooling market than they would have in the non-pooling market in the hyper-congested flow regime. This 9 

implies that implementation of ride-pooling programs has negative impacts on both ridesourcing 10 

passengers and normal private car users in the hyper-congested flow regime. As expected, this is opposite 11 

to the findings in the normal flow regime, since the speed-flow relationship exhibits opposite trends in the 12 

two regimes. In addition, the difference between the average time costs of ridesourcing passengers and 13 

normal private car users in the non-pooling market and those differences in the ride-pooling market 14 

decrease with rise-sourcing passenger demand. This implies that, the increase of passenger demand will 15 

amplify the disadvantages of ride-pooling over non-pooling in the hyper-congested flow regime. It also 16 



35 
 

implies that the platform should not promote ride-pooling by extending the matching window, as the 1 

system is unfortunately trapped in the hyper-congested flow regime.  2 

  

(a) time cost of ridesourcing passengers (b) time cost of private car users 

Figure 7. The impacts of passenger demand on the time cost of ridesourcing passengers and private 
car users (with a short matching window 𝜙𝜙 = 0.5 min) in the hyper-congested flow regime 

 3 

  

(a) time cost of ridesourcing passengers (b) time cost of private car users 

Figure 8. The impacts of passenger demand on the time cost of  ridesourcing passengers and private 
car users (with a long matching window 𝜙𝜙 = 10 min) in the normal flow regime 
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We then illustrate in Figure 9 the difference in the average time costs, 𝛥𝛥𝑇𝑇𝑟𝑟  and 𝛥𝛥𝑇𝑇𝑛𝑛 , of ridesourcing 1 

passengers (Figure 9a) and private car users (Figure 9b) between the two markets under different 2 

combinations of matching window and passenger demand. It can be found that both 𝛥𝛥𝑇𝑇𝑟𝑟  and 𝛥𝛥𝑇𝑇𝑛𝑛 are 3 

always negative, implying the implementation of ride-pooling makes negative impact to both ridesourcing 4 

passengers and normal private car users in the hyper-congested flow regime. This also indicates that, ride-5 

pooling does not lead to a win-win situation in the hyper-congested flow regime. 6 

  

(a) 𝛥𝛥𝑇𝑇𝑟𝑟 (b) 𝛥𝛥𝑇𝑇𝑛𝑛 

Figure 9. 𝛥𝛥𝑇𝑇𝑟𝑟 and 𝛥𝛥𝑇𝑇𝑛𝑛 in the two-dimensional space of passenger demand and matching window in 
the hyper-congested flow regime 

 7 

6 Conclusion 8 

This study investigates the on-demand ride-pooling services provided by dedicated drivers affiliated to 9 

TNCs in the presence of traffic congestion. Equilibrium states of two markets, a ride-pooling market (with 10 

all ridesourcing passengers opting for on-demand ride-pooling) and a non-pooling market (with all 11 

ridesourcing passengers choosing non-pooling services), are modelled with the traffic congestion effects 12 

depicted by an aggregate traffic flow model like MFD. By assuming a linear traffic flow model, we obtain 13 

the following major results both analytically and numerically:  14 

First, with a given pool-matching mechanism, we show that the maximum passenger service rate in the 15 

ride-pooling market is always larger than or equal to that in the non-pooling market. Furthermore, the 16 

maximum passenger service rate in the ride-pooling market strictly increases with matching window. 17 
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Second, the marginal change in vehicular speed (decrease in the normal flow regime and increase in the 1 

hyper-congested flow regime) with a unit increase in passenger demand in the ride-pooling market is 2 

smaller than that in the non-pooling market. This implies that the change of speed is less sensitive to 3 

passenger demand in a market with ride-pooling services. Third, in the normal flow regime, we prove that 4 

the time cost of ridesourcing passengers is a convex function of matching window, and thus one can 5 

always identify a unique and optimal matching window for minimizing the time cost of ridesourcing 6 

passengers. Moreover, through numerical studies, we demonstrate the joint effects of passenger demand 7 

and matching window on the time cost of ridesourcing passengers and private car users, and ascertain 8 

their combinations that lead to a win-win situation.  9 

Our study opens up several avenues for future extensions. To name a few, (1) incorporating elasticity of 10 

passenger demand into the model, in which passenger demand is affected by the travel time and waiting 11 

time; (2) examining passengers’ mode choices (both external choice between ridesourcing service and 12 

public transit service and internal choice between ride-pooling and non-pooling) and how ride-pooling 13 

services influences public transit ridership and traffic congestion.  14 

 15 
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