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Abstract—Acoustic scene identification aims to identify the 

acoustic environment from the acoustic signal.  Usually one first 

divides a piece of acoustic signal into multiple short-time frames 

and then calculates frame-level features.  A natural question is 

then how to make use of these frame-level features for 

identification purposes.  In this paper, we compare two feature 

aggregation methods.  One method is Majority Voting (MV), 

which treats each frame-level feature as an independent feature 

vector and then perform identification using majority voting 

strategies.  In this way, an acoustic signal is represented by 

multiple feature vectors.  The other method is Supervector, 

which maps the frame-level features to a single feature vector.  In 

this way, an acoustic signal is represented by one feature vector.  

Particularly, we consider three types of Supervector, which are 

Gaussian Supervector, Factor Analysis Supervector, and i-vector. 

We then compare Supervector with MV in an acoustic 

identification task.  Different classifiers are employed, including 

Gaussian Mixture Model (GMM), Support Vector Machine 

(SVM), Multilayer Perceptron (MLP), and Deep Neural Network 

(DNN).  Experimental results indicate that these two feature 

aggregation methods give very similar performances, 

nonetheless, each has its own advantages and disadvantages. 

Keywords—acoustic scene identification; majority voting; 

Gaussian supervector; factor analysis supervector; i-vector 

I. INTRODUCTION

Acoustic scene identification aims at identifying the 
acoustic environment (e.g. supermarket, park, train, etc.) based 
on the information extracted from the acoustic signal.  Its 
applications include audio authentication [1] and context-aware 
services such as robot navigation [2].  The length of a piece of 
acoustic signal is usually not fixed, thus to generate fixed-
dimension features for classification, we first divide the 
acoustic signal into equal-length frames and then extract frame-
level features [2].  These frame-level features can be averaged 
to form a single feature vector for classification, or directly 
used together with a majority-voting classification scheme [3]. 
Among different frame-level features, the most widely used 
one is the Mel-frequency Cepstral Coefficient (MFCC), which 
is also used as the baseline feature in Detection and 
Classification of Acoustic Scenes and Events (DCASE) [4]. 
Some studies also extract temporal features as an auxiliary, 
such as the Recurrence Quantification Analysis (RQA) features 
[5], the Local Discriminant Base (LDB) features [6], and the 

Local Binary Pattern (LBP) features [7].  However, acoustic 
scenes may not possess strong temporal characteristics [8][9]. 

Given the frame-level features, apart from directly 
averaging them, it is also feasible to average the basis vectors 
obtained from them.  The basis vectors can be obtained using 
Matching Pursuit (MP) [10] or Nonnegative Matrix 
Factorization (NMF) [11].  However, this averaging process 
does not make full use of all the frame-level features.  Majority 
Voting (MV) can work better than simple averaging [12].  It is 
also possible to map the frame-level features to an i-vector [4], 
which is a type of Supervector. 

In this paper, we explore the usage of Supervector in 
acoustic scene identification, which has not been well explored 
in the literature.  In particular, we consider three types of 
Supervector prevailing in speaker recognition studies, which 
are Gaussian Supervector (GSV), Factor Analysis Supervector 
(FASV), and i-vector [13].  We then compare the performance 
of different types of Supervector with different MV schemes.  
Different classifiers are employed, including Gaussian Mixture 
Model (GMM) [14], Support Vector Machine (SVM) [15], 
Multilayer Perceptron (MLP), and Deep Neural Network 
(DNN).  An overview of the difference between Supervector 
and MV is illustrated in Fig. 1. 

This paper is organized as follows.  In Section II, we give 
the formulation of different types of Supervector.  In Section 
III, we formulate different MV schemes.  In Section IV, we 
briefly describe the acoustic scene dataset.  In Section V, we 
show the experimental results together with some discussions. 
A conclusion will be drawn in Section VI. 

The work described in this paper was substantially supported by a grant 
from The Hong Kong Polytechnic University (Project Account Code: RUG7). 
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Fig. 1. Overview of Supervector method and Majority Voting method. 
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II. SUPERVECTOR 

Supervector is calculated based on a Universal Background 
Model (UBM), which is a GMM.  Given a set of acoustic 
signals used for UBM construction, we first calculate the 
frame-level features, which are MFCC vectors [16] in this 
paper.  Then the UBM is constructed using the mixture 
splitting technique [17] and the Expectation-Maximization 
(EM) algorithm [18].  In the following, we denote the model 
parameters of a UBM with M Gaussian mixture components as 

}...2,1|,,{ MmmmmM   , where πm, μm and σm denote 

the weight, mean and standard deviation of the m-th Gaussian 
mixture component respectively. 

A. Gaussian Supervector (GSV) 

Given a sequence of T frame-level features {x1, x2 … xT} 
corresponding to signal s, and a UBM denoted as 

}...2,1|,,{ MmmmmM   , GSV is calculated as 

follows. 

First, we calculate the posterior probability for the m-th 

mixture component using (1), where ),|( mmtxp   is the 

Gaussian probability.  We then use (2) and (3) to calculate the 
Maximum A Posterior (MAP) estimation of the mean vector 
for the m-th mixture component, which is Em(s).  Finally, we 

calculate the adapted mean vector )(sm  for the m-th mixture 

component using (4), which is a weighted sum of Em(s) and μm 
[19].  In (4), γ is the relevance factor [18]. 
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GSV, denoted as )(sGSV , is then the concatenation of 

)(sm  for m=1, 2…M, as given by (5) [20].  If the 

dimensionality of a frame-level feature xt is D×1, and the 
number of mixture components in the UBM is M, then the 
dimensionality of GSV will be MD×1. 
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B. Factor Analysis Supervector (FASV) and I-vector 

In a Factor Analysis model, Factor Analysis Supervector 

(FASV), denoted as )(sFASV , is given by (6), where UBM  is 

the concatenation of μm for m=1, 2…M.  In (6), V is the factor-
loading matrix estimated using the EM algorithm, and z(s) is 

the i-vector, which is the posterior expected mean of the latent 
variable y(s) in a Factor Analysis model [21].  So, both FASV 
and i-vector originate from the Factor Analysis model, and 
once the model parameters are determined, both FASV and i-
vector can be easily computed. 

 )()()]([)(
2

1

sVzsVzsyVEs

M

UBMUBMFASV 
































Given a sequence of T frame-level features {x1, x2 … xT} 
corresponding to signal s, a UBM denoted as 

}...2,1|,,{ MmmmmM   , and the factor-loading 

matrix V, FASV and i-vector are calculated as follows. 

First, we calculate the centralized first-order Baum-Welch 
statistics SX,m(s) for the m-th mixture component using (7), and 
the centralized second-order Baum-Welch statistics SXX,m(s) 
using (8) [21][22]. 
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Then, SX,m(s) is column-wisely concatenated to form a super 
vector SX(s) for m=1, 2…M, as given by (9); SXX,m(s) is 
diagonally concatenated to form a super matrix SXX(s) for m=1, 
2…M, as given by (10); nm(s) calculated in (2) is used to form a 
diagonal super matrix N(s) as given by (11), where I is an 
identity matrix [22].  If the dimensionality of a frame-level 
feature xt is D×1, and the number of mixture components in the 
UBM is M, then the dimensionality of SX(s) will be MD×1, the 
dimensionality of SXX(s) will be MD×MD, the dimensionality 
of the identity matrix I in (11) will be D×D, and the 
dimensionality of N(s) will be MD×MD. 
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Then i-vector is calculated using (12), where Σ is a diagonal 
matrix estimated using the EM algorithm.  After obtaining z(s), 
FASV is then calculated using (6). 
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In the following, we describe how to estimate the model 
parameters V and Σ using the EM algorithm.  On using the EM 
algorithm, the E-step and the M-step are repeated until 
convergence or the total number of EM iterations exceeds 
some predefined threshold. 

In the E-step, we calculate the posterior estimated mean and 
the posterior estimated covariance of the latent variable y(s) 
using (13) and (14) respectively [22]. 

 )())(()]([ 111 sSΣVVsNΣVIsyE X
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In the M-step, we calculate V by solving a system of linear 
equations as given by (15), where we use S to denote the total 
number of training acoustic signals.  After finding V, we can 
calculate Σ using (16), where diag(.) is to diagonalize a matrix 
by setting all the non-diagonal elements to zero.  More details 
can be found in [22]. 
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Given the model parameters V and Σ, i-vector is calculated 
using (12), and FASV is calculated using (6).  If the 
dimensionality of a frame-level feature xt is D×1, and the 
number of mixture components in the UBM is M, then the 
dimensionality of FASV will be MD×1, and the dimensionality 
of i-vector is the number of columns of V. 

III. MAJORITY VOTING 

Given a sequence of T frame-level features {x1, x2 … xT} 
corresponding to signal s, Majority Voting (MV) is carried out 
as follows. 

Let the total number of categories be C.  Given a classifier, 
assume a feature xt will be classified to category l(xt) (where 

l(xt){1, 2…C}) according to some criterion, and xt has a 

probability p(c|xt) to be classified to category c (where c{1, 
2…C}).   Then, there are three MV schemes that can be used to 

determine the category L(s) (where L(s){1, 2…C}) that the 
acoustic signal s should be classified to.  Scheme 1, Scheme 2 
and Scheme 3 are given by (17), (18) and (19) respectively, 
where g(.,.) is an indicator function as given by (20). 
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In this paper, on using different MV schemes, GMM, MLP 
and DNN are employed as the classifier.  On using MLP and 
DNN, the output layer is a softmax layer, which already gives 
the probability p(c|xt) for each category.  On using GMM, one 
GMM will be constructed for each category.  Suppose the 
number of mixture components in each GMM is M, and the c-

th GMM is denoted as }...2,1|,,{ )()()()(
Mmc

m
c

m
c

m
c

M   , 

then p(c|xt) is given by (21). 
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Actually, (19) is a weighted majority voting strategy, whose 
weights are determined by p(c|xt).  Instead of using classifier-
dependent weights, we can also use feature-dependent weights 
which are determined by some pre-defined weighting 
functions, similar to [12].  However, manually designing a 
suitable weighting function is difficult. 

IV. DATASET 

In this paper, we conduct experiments on the TUT Acoustic 
Scenes 2016 development set [23].  TUT2016 development set 
consists of 15 different acoustic scenes, such as bus, restaurant, 
library, park, train, etc.  Each acoustic scene involves 78 audio 
segments lasting for 30 seconds, so totally there are 1170 audio 
segments available.  The development set is organized into 4 
different folds, and in each fold, there are about 880 audio 
segments used for training and about 290 audio segments used 
for testing.  The training data are also used to construct UBM.  
Different folds merely involve different combinations of the 
training data and the testing data, and the identification 
accuracy results of the 4 folds are then averaged and reported. 

V. EXPERIMENTAL RESULTS AND DISCUSSIONS 

In this paper, we use 24-dimension MFCC vector as the 
frame-level feature, extracted using Hamming window with 
50ms length and 10ms shift.  Details about MFCC can be 
found in [16].  For i-vector, its dimensionality is set to be half 
that of FASV and GSV, and 20 EM iterations are executed to 
estimate the parameters of the factor analysis model.  On using 
Supervector, linear SVM implemented by LIBSVM [24] is 
employed as the classifier.  On using different MV schemes, 
GMM, MLP and DNN are employed as the classifier.  MLP 
consists of one input layer, one output layer and one hidden 
layer, while DNN consists of one input layer, one output layer 
and three hidden layers.  The activation function for the input 
and hidden layers is sigmoid function, while the output layer is 
a softmax layer.  Both MLP and DNN are pre-trained for 50 
epochs using Stacked Autoencoder (SAE) with momentum 0.5 
and learning rate 1, and fine-tuned for 2000 epochs with 
momentum 0.5 and a decaying learning rate.  Both MLP and 
DNN are implemented by DeepLearnToolbox [25]. 

The average identification accuracy results of the 4 folds 
are shown in Tables I ~ IV.  Table I and Table II show the 



TABLE I. ACCURACY USING GSV (%) 

Relevance 

Factor 

Number of Components in UBM 

2 4 8 16 32 64 128 

0 65.20 66.75 66.49 67.16 68.44 68.71 67.78 

1 66.73 66.07 68.61 68.53 68.25 69.13 68.12 

5 67.67 66.99 67.85 69.29 69.37 67.67 66.22 

10 68.19 67.76 67.00 68.51 68.18 67.74 65.87 

15 67.42 67.75 67.00 67.91 67.34 68.25 65.88 

 

TABLE II. ACCURACY USING FASV AND I-VECTOR (%) 

Supervector 

Type 

Number of Components in UBM 

2 4 8 16 32 64 128 

FASV 63.01 64.17 65.56 66.14 65.95 65.88 65.79 

i-vector 61.45 65.72 66.58 66.48 69.30 66.47 68.44 

 

TABLE III. ACCURACY USING GMM (%) 

Majority 

Voting 

Number of Components in GMM 

2 4 8 16 32 64 128 

Scheme 1 64.67 63.56 68.27 66.82 67.78 66.58 66.58 

Scheme 2 64.32 63.22 68.61 67.33 67.95 66.84 66.40 

Scheme 3 64.23 63.64 68.78 66.99 67.77 66.66 66.66 

 

TABLE IV. ACCURACY USING MLP AND DNN (%) 

Majority 

Voting 

Number of Neurons in the Hidden Layer 

MLP DNN 

32 64 96 96-64-32 

Scheme 1 60.02 61.12 60.43 62.57 

Scheme 2 59.83 61.37 61.54 63.59 

Scheme 3 59.24 60.44 60.44 62.05 

 

results of using different types of Supervector, while Table III 
and Table IV show the results of using different MV schemes.  
On using Supervector, UBMs with different numbers of 
mixture components are investigated.  Particularly, on using 
GSV, different values of the relevance factor γ are evaluated.  
On using GMM, different numbers of mixture components are 
investigated.  On using MLP, different numbers of neurons in 
the hidden layer are investigated.  On using DNN, there are 96 
neurons in the first hidden layer, 64 neurons in the second 
hidden layer, and 32 neurons in the third hidden layer. 

Regarding Supervector (Tables I and II), the performance is 
highly dependent on the number of mixture components in the 
UBM, and tends to fluctuate with different numbers of mixture 
components.  Increasing the number of mixture components 
does not guarantee performance improvement, although the 
dimensionality of different types of Supervector is increased.  
In addition, GSV is also affected by the choice of the relevance 
factor.  In terms of the highest accuracy achieved, GSV and i-
vector give very similar performances, while FASV performs 
worse than the other two.  Practically, GSV is simpler and 
faster to be calculated than i-vector and FASV (because the 
EM algorithm used for parameter estimation in the factor 
analysis model is time consuming). 

Regarding MV (Tables III and IV), on using GMM as the 
classifier, the performance is highly dependent on the number 
of mixture components in the GMM, and a larger number of 
mixture components does not always give a better 
performance.  On using MLP as the classifier, the performance 
is slightly influenced by the number of neurons in the hidden 
layer; however, increasing the number of neurons in the hidden 
layer does not guarantee performance improvement.  DNN 
seems to perform a little better than MLP, but worse than 
GMM.  As indicated in [9] and [26], MLP and DNN do not 
work very well purely as a classifier.  In addition, no matter 
using GMM, MLP or DNN, different MV schemes tend to give 
quite similar performances. 

In terms of the highest accuracy achieved, Supervector 
tends to give a slightly better performance than MV, 
nonetheless, the performances are quite similar.  Both feature 
aggregation methods have their own advantages and 
disadvantages.  On using Supervector, the frame-level features 

are mapped to a single feature vector, meaning that each 
acoustic signal is represented by only one feature vector.  This 
reduces the time for training and testing, but the feature vector 
may be contaminated and sensitive to noise.  Nevertheless, 
since the number of feature vectors is small, extra processing 
techniques can be applied for possible performance 
improvement, for example, applying Fisher Discriminant 
Analysis (FDA) based projection techniques [19][27][28].  On 
using MV, the frame-level features are directly fed to the 
classifier, meaning that each acoustic signal is represented by 
multiple feature vectors.  This increases the time for training 
and testing, but can be noise robust, as the decision is made by 
a group of feature vectors instead of a single feature vector. 

VI. CONCLUSION 

In this paper, we compare two feature aggregation methods 
for acoustic scene identification.  One method is Majority 
Voting (MV), and the other is Supervector.  Regarding MV, we 
propose three classification schemes, and experimental results 
indicate that these schemes show few differences.  Regarding 
Supervector, we investigate three popular types of Supervector, 
namely Gaussian Supervector (GSV), Factor Analysis 
Supervector (FASV), and i-vector.  Experimental results 
indicate that GSV and i-vector give similar performances 
whereas FASV performs worse than the other two.  We also 
compare the performance of different MV schemes and 
different types of Supervector.  Although Supervector gives a 
slightly better performance than MV, their performances are 
quite similar.  Both feature aggregation methods have their 
advantages and disadvantages.  On using MV, one acoustic 
signal is represented by multiple features, meaning that the 
computation takes more time; however, the performance is 
more robust to noise, as the decision is made based on a group 
of features but not a single feature.  On using Supervector, one 
acoustic signal is represented by a single feature, meaning that 
the computation takes less time; however, the performance is 
more sensitive to noise, as the decision is made based on only 
one feature.  In particular, on using Supervector, extra 
processing techniques can be applied to the single feature to 
improve its quality, whereas it is difficult to apply these 
techniques if there are multiple features, especially when there 
are too many features, which is the case of using MV. 
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