
 

 

1 

  

Abstract—Microphone recognition aims at recognizing 

different microphones based on the recorded speeches. In the 

literature, Gaussian Supervector (GSV) has been used as the 

feature vector representing a speech recording, which is obtained 

by adapting a Universal Background Model (UBM). However, it is 

not clear how the performance of GSV will be affected by the 

number of mixture components in the UBM. Besides, the raw 

GSV obtained from a speech recording contains both the 

microphone response information as well as the speech 

information, meaning that the raw GSV can be quite noisy as the 

feature vector for microphone recognition. In this paper, we 

investigate how GSV will be affected by the UBM as well as other 

parameters during the calculation of GSV. In addition, in order to 

improve the quality of the raw GSV, we propose a kernel-based 

projection method to be applied to the raw GSV. This projection 

method maps the raw GSV onto another dimensional space. It is 

expected that in the projected feature space, the microphone 

response information and the speech information can be 

separated into different dimensions, meaning that the projected 

GSV should be better as the feature vector for microphone 

recognition compared to the raw GSV. Two classifiers that have 

been used in the literature, namely linear Support Vector 

Machine (SVM) and Sparse Representation based Classifier 

(SRC), are employed to compare the performance of the raw GSV 

and the projected GSV. Experimental results demonstrate that 

the projected GSV can outperform the raw GSV no matter using 

linear SVM or SRC as the classifier, which shows the effectiveness 

of the projection method. 

 
Index Terms—Kernel-based projection, linear support vector 

machine, microphone recognition, sparse representation based 

classifier 

 

I. INTRODUCTION 

HE speech content conveyed by a speech recording is 

usually the most important information. However, some 

other information carried by a speech recording can also be 

useful. For example, the speech recording may embed the 

information about the recording device, such as the microphone, 

that is used to record the speech. A speech recording may also 

embed the recording date information; for example, if the 

speech is recorded near a power grid, it will embed the Electric 

Network Frequency (ENF) signal, which may be used as a time 
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stamp [1]. This extra information can be very useful, or even 

used as court evidence if the speech is not tampered. In this 

paper, the focus is on the microphone information (i.e. 

recording device information) embedded in the speech signal, 

and the objective is to recognize the recording microphone 

based on the recorded speech. 

In [2], Naïve Bayes was employed as the classifier to do 

microphone classification. Although the classification accuracy 

was not good, the research showed the possibility of 

recognizing the recording microphone based on the recorded 

audio. After that, different feature vectors have been proposed 

to capture the device information, and different classifiers have 

been employed to identify the recording device. For example, 

in [3], two classifiers were employed: one is the decision tree, 

and the other is a linear regression model. After carefully fusing 

the results from the two classifiers, the classification accuracy 

can be better than that using a single classifier. In [4] and [5], 

Gaussian Mixture Model (GMM) was employed as the 

classifier in identifying 16 different microphones, and the 

accuracy was good on three datasets. 

Since speech recordings are usually of different lengths, it is 

necessary to first divide a speech recording into a sequence of 

frames to obtain a sequence of frame-level features, and then 

form a single feature vector from the frame-level features. A 

good choice of the frame-level feature is the Mel-frequency 

Cepstral Coefficient (MFCC) vector, which has been widely 

used in speech recognition and speaker verification. In 

microphone recognition, some other frame-level features have 

also been evaluated, such as the Multi-taper MFCC [5], or the 

Linear Prediction Cepstral Coefficient (LPCC) [4]. Directly 

using the spectrum instead of using MFCC or LPCC has also 

been shown to perform well in telephone handset identification, 

such as the Random Spectral Features (RSFs) [6], the Sketches 

of Spectral Features (SSFs) [7], and the Labelled Spectral 

Features (LSFs) [8]. 

On how to form a single feature vector from a sequence of 

frame-level features, one way is simply to average the 

frame-level features, and another way is to construct a Gaussian 

Supervector (GSV). GSV has been successfully applied to 

speaker recognition and verification, and is also shown to give 

good performance in microphone recognition and telephone 

handset recognition [9]. In fact, besides microphone 

recognition, GSV has also been applied to other recording 

device recognition tasks, such as mobile phone identification 

[10], mobile phone verification [11] and comparison [12]. 

Regarding the classifier, Support Vector Machine (SVM) 
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has been shown to be good in microphone recognition [9] and 

telephone handset recognition [6]-[10]. In addition, Sparse 

Representation based Classifier (SRC) has also been found to 

be good in telephone handset recognition [6]-[8], with its 

performance comparable to that of SVM. SRC has also been 

applied to mobile phone verification [11] and comparison [12]. 

While the aforementioned studies are focusing on closed-set 

microphone recognition using clean audio recordings, some 

studies try to deal with noisy audio recordings [13] or open-set 

microphone recognition [14]. Instead of identifying different 

models of microphones, [15] tried to identify two microphones 

with the same model. Besides using some machine learning 

techniques in microphone identification, [16] modelled the 

response of a microphone as a nonlinear system. Microphone 

classification was also shown to be useful in audio tampering 

detection [17]. 

It is known that a recorded speech signal can be regarded as 

the convolution of the source speech signal and the recording 

device impulse response [18]. For microphone recognition, the 

device information is useful whereas the speech information is 

not only useless but also interfering. However, it is inherently 

difficult to separate the device information from the speech 

information, because both the device information and the 

speech information are unknown beforehand. Thus some 

studies try to make use of the near-silence segments of the 

recorded audio signal [19], or non-speech segments [20] or 

noise signal [21], to extract features. These segments usually 

contain a small amount of speech information, thus the features 

extracted from these segments may be less interfered by the 

speech information. However, these near-silence signals are 

unstable since they are quite noise-like, and insufficient to train 

a good classifier if the audio signal is filled with speech 

information. Instead, in [22], the low-energy segments (i.e. 

near-silence segments) and the high-energy segments were 

combined in a weighted manner, and the Weighted Support 

Vector Machine (WSVM) was employed. 

In this paper, to carry out microphone recognition, GSV is 

used as the feature vector representing a speech recording, and 

both linear SVM and SRC are used as the classifier. GSV is 

believed to be a good feature vector, as it is of high 

dimensionality, and thus can capture enough information about 

the recording device. However, this device information is 

usually interfered by other prominent information, such as the 

speech information. In order to separate the source information 

(i.e. speech signal) and the device information (i.e. the impulse 

response of the recording device), a kernel-based projection 

method is proposed. This method projects the raw GSV onto 

another dimensional space. It is expected that in the projected 

space, the source information and the device information can be 

well separated, meaning that the projected GSV should be 

better oriented towards microphone recognition than the raw 

GSV. This projection method is inspired by the Nuisance 

Attribute Projection (NAP) method [23][24] applied to speaker 

recognition and verification. It will be shown later that no 

matter using linear SVM or SRC, the projected GSV 

outperforms the raw GSV. An overview of different feature 

extraction methods and classifiers is depicted in Fig. 1. 

This paper is organized as follows. In Section II, the 

formulation of GSV is described. In Section III, the 

kernel-based projection method is described. In Section IV, 

sparse representation and SRC are briefly explained. In Section 

V, the microphone speech corpus is briefly described. In 

Section VI, experimental results on how GSV will be affected 

by the UBM as well as other parameters, and the comparison of 

the raw GSV and the projected GSV employing linear SVM 

and SRC as the classifier, are presented and discussed. In 

Section VII, the conclusion is drawn. 

Fig. 1.  Overview of different feature vectors (averaged frame-level feature, raw GSV, projected GSV) and different 

classifiers (linear SVM, SRC). 
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II. FRAME-LEVEL FEATURE AND GAUSSIAN SUPERVECTOR 

A. Frame-level Feature 

The popular MFCC vector is used as the frame-level feature, 

whose detailed formulation can be found in [25]. Hamming 

window with 50ms frame length and 10ms frame shift is used 

to obtain the short-time frames. Then 48 Mel-scale triangular 

filters are used to filter the frequency spectrum of a frame, 

followed by the Discrete Cosine Transform (DCT) applied to 

the filtered spectrum. Finally, the first 24 DCT coefficients 

(starting from the second coefficient) are used to form a 

24-dimension MFCC vector, which excludes the energy 

coefficient. 

B. Gaussian Supervector 

GSV is constructed through adapting a Universal 

Background Model (UBM), which is namely a GMM. The 

UBM is used to reflect the general statistics of a large number 

of speech recordings, while a GSV corresponding to one speech 

recording combines the statistics from this specific speech 

recording and the statistics from the UBM. Given a set of 

speech recordings for the UBM construction, each speech 

recording is first divided into short-time frames. Then, the 

short-time frames are transformed into MFCC vectors. These 

MFCC vectors are used to construct the UBM, using the 

mixture splitting technique [26] and the 

Expectation-Maximization (EM) algorithm [27][28]. The 

mixture splitting and EM retraining process is carried out as 

follows. Suppose there have already been an m-mixture UBM 

with the parameter set denoted as }...2,1|,,{ miiiim ==  , 

where πi, μi and σi are the weight, the mean vector and the 

standard deviation vector (assuming a diagonal covariance 

matrix in the UBM) for the i-th Gaussian mixture component in 

the UBM. Having the parameter set θm, in order to build a 

2m-mixture UBM, two new parameter sets are first constructed 

from θm, denoted as }...2,1|,2.0,
2

{)1( miiii
i

m =+= 


  and 

}...2,1|,2.0,
2

{)2( miiii
i

m =−= 


  respectively. Then the 

initial parameter set for the 2m-mixture UBM is the 

combination of these two sets, denoted as 
)2()1(

2 mmm  = . 

θ2m is then retrained using EM algorithm. To build a UBM with 

M (which is assumed to be a power of 2) Gaussian mixture 

components, a UBM with a single Gaussian mixture 

component is split for log2M times, and each time the number 

of Gaussian mixture components is doubled. 

Suppose there have already been an M-mixture UBM, then 

for a training or testing speech recording, a sequence of MFCC 

vectors {z1, z2…zT} are first calculated, where T is the total 

number of MFCC vectors obtained from this speech recording. 

Then, GSV is calculated using (1) ~ (4). In (1) ~ (4), zt is the t-th 

MFCC vector, }...2,1|,,{ MiiiiM ==  is the parameter set 

for the M-mixture UBM, ),|( iitzp  is the Gaussian 

probability density function of the i-th Gaussian mixture 

component, and γ is a relevance factor [27]. After calculating 

the statistics using (1) ~ (3), the adapted mean vector 

i calculated from (4) is concatenated to form GSV 

[9][29][30]. GSV is therefore denoted by the column vector 

 TT
M

TT
GSV  = 21 , which is a “super” vector, 

whose dimensionality is M times that of i . If the 

dimensionality of the MFCC vector is D×1, then the 

dimensionality of GSV is MD×1. 
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III. KERNEL-BASED PROJECTION 

In this section, the derivation of the proposed kernel-based 

projection method is described in detail. Suppose there are N 

training vectors {x1, x2…xN}, for the i-th feature vector xi (i.e. 

the raw GSV in this paper), instead of directly using it, xi is first 

mapped to another dimensional space using a mapping function 

φ(xi). The reason of using the mapping is that, in the mapped 

space, the projection method may find better projecting 

directions since the feature space is different. 

In the mapped space, we would like to find a D(φ)×P 

projection matrix V(φ) where D(φ) is the dimensionality of φ(xi) 

and P is the number of projecting directions, so that after the 

projection, 1) the feature vectors belonging to the same device 

are moved closer together, and 2) the feature vectors belonging 

to different devices are moved farther apart. It is expected that 

the device information is mainly concentrated in some 

projecting directions whereas the interfering information is 

mainly concentrated in other projecting directions, as the 

projection is oriented to different devices. Through applying 

this projection, it is hoped that the device information and the 

interfering information could be well separated into different 

dimensions, which will be beneficial for recognition. Let yi be 

the projected version of φ(xi), then yi (i.e. the projected GSV in 

this paper) can be expressed using (5), where V(φ) comprises P 

columns with each column denoting a projecting direction. 

 

)()(
i

T

i xVy =          (5) 

 

The above two goals of the projection method can be 

achieved by minimizing the objective function in (6) for those 

pairs of xi and xj belonging to the same device, and maximizing 

the objective function in (6) for those pairs of xi and xj 
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belonging to different devices. 
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Through utilizing an N×N coefficient matrix W defined in (7), 

the two goals of the projection method can be achieved by 

minimizing the objective function J, which is defined in (8). 

 







−
=

devicesdifferentfromarexxif

devicesamethefromarexxif
W

ji

ji

ij
,1

,1
  (7) 

 


= =

−=

N

i

N

j

j

T

i

T

ij xVxVWJ

1 1

2
)()( )()(  

    (8) 

 

To make the projection matrix V(φ) unique, the unit-length 

constraint is applied on each column vector 
)(

pv  of V(φ), as 

shown in (9) below. 

 

Ppforvv p

T

p ...2,11)()( ==
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Instead of using the compact expression in (8), J can be 

expanded in terms of the summation of 
)(

pv , as shown in (10). 
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Through combining all the mapped training vectors into a 

D(φ)×N matrix X(φ) whose i-th column vector is the i-th mapped 

training vector φ(xi), and introducing an N×1 vector e whose 

elements are all one, (10) can be rewritten as (11). 
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where 

 

WWediagWZ −= )()(        (12) 

 

Combining (9) and (11) and neglecting the constant factor 2 

in J, the minimization problem can be formulated as shown in 

(13), where J' is the new objective function to be minimized in 

place of J. Minimizing J' is equivalent to minimizing J. 
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The objective function J' and the constraint can be combined 

using Lagrange multipliers λ1, … λP, as shown in (14) below, 

where L(V(φ), λ1, … λP) is the Lagrangian function to be 

minimized in place of J'. 
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The optimal solution of (14) can be obtained by setting the 

partial derivative of L(V(φ), λ1… λP) to be zero with respect to 
)(

pv  and λp, as shown in (15). 
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Rearranging the expression in (15), an eigenvalue problem 

can be formulated as shown in (16). Then 
)(

pv  is the p-th 

eigenvector of (16) and λp is the p-th eigenvalue. The 

unit-length constraint can be fulfilled by normalizing the 

eigenvectors. 
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)()()()( )(   ppp

T
vvXWZX =       (16) 

 

Rearranging (16), 
)(

pv can be expressed as follows. 
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It can be seen from (17) that, in fact 
)(

pv  can be expressed as 

a linear combination of the mapped training vectors φ(xi). In 

other words, if defining the coefficient 
)(

pc  as in (18), 
)(

pv  

can then be expressed in terms of X(φ), as shown in (19). 
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By substituting 
)(

pv  in (16) by (19), (16) can then be 

rewritten as (20). 

 

)()()()()()( )(   ppp

T
cXcXXWZX =     (20) 

 

By multiplying 
T

X )(
 on both sides of (20), we have, 

 

)()()()()()()()( )(   p

T

pp

TT
cXXcXXWZXX =   (21) 

 

By substituting 
)()(  XX

T
 in (21) by an N×N kernel matrix 

K, whose ij-th entry is given by a kernel function k(xi,xj) defined 

in (22) below, (21) can be reformulated as (23). 
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)()()(   ppp KcKcWKZ =       (23) 

 

By introducing a diagonal matrix Λ=diag(λ1, … λP) whose 

size is P×P, a compact form of (16) can be obtained, which is 

given by (24). By defining an N×P coefficient matrix C(φ) 

whose p-th column vector is 
)(

pc , a compact form of (23) can 

be obtained, which is given by (25). 

 

ΛVVXWZX
T )()()()( )(  =      (24) 

 

ΛKCKCWKZ )()()(  =        (25) 

 

Now instead of directly solving (24) for 
)(

pv , it is feasible to 

first solve (25) for 
)(

pc  and then make use of (19) to solve 

)(
pv . As can be seen from (25), the sizes of KZ(W)K and K are 

both N×N, meaning that there are at most N independent 
)(

pc , 

namely P≤N. At the very beginning, the raw input feature 

vector xi is first mapped to a new vector φ(xi). On using (24) to 

find the projection matrix V(φ), the mapping φ(xi) has to be 

expressed explicitly. However, on using (25) to find the 

projection matrix, it is only necessary to know the inner product 

of the two mapped vectors )()( j

T

i xx  , instead of knowing 

the mapping function. This kernel trick gives great flexibility, 

since it is possible to employ any valid kernel function without 

knowing the explicit mapping, as long as the kernel function 

satisfies the Mercer’s condition [31]. In this paper, the Gaussian 

kernel defined in (26) is employed, where d is the kernel 

parameter. 
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On using the Gaussian kernel in (26), φ(xi) and φ(xj) are of 

infinite dimensionality if written out explicitly (i.e. D(φ) has 

infinite dimensions), but fortunately, on using the kernel 

version (25), it is only necessary to calculate the inner product 

)()( j
T

i xx  , which is finite [31]. Gaussian kernel has the 

capability to map the feature vector onto an infinite 

dimensional space. In this mapped space, as the dimensionality 

is higher than that of the original feature space, the projected 

feature vectors may work better. This kind of mapping can only 

be applicable when using (25) to find the projection matrix. It is 

impossible to use (24) to find the projection matrix, as the 

column vectors of X(φ) have infinite dimensions. In addition, on 

using the Gaussian kernel, as D(φ)>>N, K will be of full rank 

(assuming the training vectors are linearly independent of each 

other), then solving (25) is equivalent to finding the 

eigenvectors of Z(W)KC(φ)=C(φ)Λ. 

After solving (25) and obtaining 
)(

pc , for a given vector t, its 

projected version t' can be calculated using (27), where pt  is 

the p-th element of t', and ipc )( )(
 is the i-th element of 

)(
pc . 
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After finding pt , 
)(

pv  can be normalized implicitly by 

normalizing pt  with respect to
)(

pv  as shown in (28). 
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IV. SPARSE REPRESENTATION AND SRC 

In order to apply the Sparse Representation based Classifier 

(SRC) for a given feature vector, the sparse representation of 

the feature vector must be computed first. Suppose there is a 

matrix A whose dimensionality is D×N, (this matrix A is often 

called the dictionary), for a given input vector a whose 

dimensionality is D×1, the sparse representation of a is 

obtained by solving the optimization problem defined in (29) 

below, where as is the sparse representation of a, and both as 

and b are of dimensionality N×1. ||.||0 is L0 norm. 

 

Abatosubjectba
b

s ==
0

minarg     (29) 

 

The optimization problem in (29) aims at finding a linear 

combination of the column vectors of A, such that the number 

of nonzero coefficients are minimized, i.e. the number of 

nonzero elements in as is minimal [32]. Under some conditions, 

the solution of (29) can be approximated by solving the 

optimization problem in (30). If the solution is sparse enough, 

(29) is equivalent to (30), where (30) can be more easily solved 

because L0 norm is replaced by L1 norm [32]. 

 

Abatosubjectba
b

s ==
1

minarg     (30) 

 

Having the sparse representation, the Sparse Representation 

based Classifier (SRC) was introduced in [33]. SRC is found to 

be good in telephone handset recognition [6]-[8] and mobile 

phone verification [11] and comparison [12]. According to [33], 

for a given input feature vector (i.e. the raw GSV or the 

projected GSV), the corresponding sparse representation is 

obtained by solving (30). In this paper, the optimization 

problem in (30) is solved by the Basis Pursuit (BP) algorithm 

[34] implemented by SparseLab [35]. The i-th column vector Ai 

of the dictionary A in (30) is the i-th raw GSV or the i-th 

projected GSV in the training set with L2 normalization. In 

other words, the training data are used to form the dictionary. 

SRC then works as follows. 

Suppose there are totally K classes. After obtaining the 

sparse representation as for the feature vector a, the residual 

)()( ar k
 of a with respect to class k is calculated using (31), 

where 
)(k

sa  is an N×1 vector whose i-th element is given by 

(32). 

 

KkforAaaar k
s

k ...2,1)(
2

)()( =−=      (31) 

where 

 





=
otherwise

kclasstobelongsAifa
a

iis
i

k
s

0

)(
)( )(     (32) 

 

Having obtained the residual )()( ar k
, the feature vector a 

will then be classified to the class having the minimum residual, 

as given by (33). 

 

Kkforaraclass k

k

...2,1)(minarg)( )( ==     (33) 

V. MICROPHONE SPEECH DATASET 

In this paper, Ahumada-25 is used to carry out the 

microphone recognition task. Ahumada-25 is a part of 

AHUMADA Spanish speech corpus [36]. It consists of the 

speech recordings coming from 25 speakers. The speeches are 

recorded using 4 different microphones, as listed in Table I. 

The contents of the speeches vary from isolated numbers to 

texts, and from sentences to continuous speeches. This dataset 

is then divided into three separate subsets: a training set, a 

testing set, and a UBM set. The training set consists of the 

speeches coming from 12 speakers, while the testing set 

consists of the speeches coming from the remaining 13 

speakers. There are 20 speech recordings coming from each 

speaker used in the training set and the testing set. Another 599 

speech recordings are used to construct the UBM set, where all 

the 25 speakers are involved, and each speaker contributes 

almost the same number of speech recordings. Totally 960 

speech recordings are used in the training set, 1040 speech 

recordings are used in the testing set, and 599 speech recordings 

are used in the UBM set. 

VI. EXPERIMENTAL RESULTS AND DISCUSSIONS 

In Part A of this section, different methods used to form the 

feature vector are compared, including the averaged 

frame-level features and GSV, as illustrated in Fig. 1. Different 

UBMs are used to calculate GSV, in order to investigate how 

the performance of GSV will be influenced by the number of 

mixture components in the UBM. The number of mixture 

components in the UBM determines the dimensionality of GSV, 

and the larger the number of mixture components, the higher 

the dimensionality will be. Different relevance factors are also 

TABLE I 

MICROPHONE DATASET 
 

Set Microphone model Number of speeches Duration 

Training Testing 

M1 AKG C410B Head 

Mounted 

240 260 2s ~ 5s 

M2 AKH D80S Desktop 240 260 

M3 SONY ECM 66B Lapel 240 260 

M4 TARGET Lapel 240 260 

UBM All the models 599 10s ~ 100s 
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used in the calculation of GSV. Two different kinds of 

classifiers, namely linear SVM and SRC, are employed. The 

linear SVM is implemented using LIBSVM [37]. In Part B and 

C of this section, the performance of the raw GSV and the 

projected GSV is compared, employing both linear SVM and 

SRC as the classifier. On using the projection method, different 

values of the kernel parameter are evaluated. The value of the 

kernel parameter is chosen in a heuristic way, varying from 50 

(smaller than the dimensionality of the raw GSV) to 2000 

(larger than or approximately the same as the dimensionality of 

the raw GSV), so as to investigate the performance change 

trend with respect to the kernel parameter. The number of 

projecting directions is set to be equal to the number of training 

vectors, namely P=N, hoping that making use of all the 

projecting directions may give the best performance. In Part D 

of this section, how different UBMs influence the effectiveness 

of the projection method is investigated, employing both linear 

SVM and SRC as the classifier. In Part E of this section, 

whether the performance improvement offered by the 

projection method is statistically significant, is illustrated with 

respect to different confidence levels. In Part F of this section, a 

brief summary is given. 

A. Investigation of the Influence of Different UBMs on GSV 

In this part, the performance of the averaged frame-level 

feature and GSV is compared, and how the performance of 

GSV will be influenced by the number of mixture components 

in the UBM is investigated. The recognition results of using the 

averaged frame-level feature and GSV are shown in Table II 

and Table III. Table II shows the results on employing SVM as 

the classifier. Table III shows the results on employing SRC as 

the classifier. On using GSV, different relevance factors (γ=5, 

10, 15, 20) and different UBMs (with M=32, 64, 128, 256) are 

evaluated. As explained in Section II, the larger the M, the 

higher the dimensionality of GSV. The results are also 

illustrated in Fig. 2. 

Regarding the feature vector, GSV can outperform the 

averaged MFCC when a large enough number of mixture 

components in the UBM (i.e. M=64, 128, 256) is used. The 

reasons could be explained from two aspects. First, GSV is of 

high dimensionality and makes full use of each frame-level 

feature; while the averaged MFCC simply averages all the 

frame-level features, which results in loss of information. So 

intrinsically, GSV can carry more information than the 

averaged MFCC. Second, GSV is calculated based on a UBM, 

and therefore can absorb extra information from the UBM. 

It is also noticed that increasing M may not always improve 

the performance of GSV. The performance of GSV tends to 

stabilize when M is large; for example, when M=128. This may 

be explained from the construction procedure of the UBM, 

which involves lots of frame-level features (i.e. MFCC vectors 

in this paper). These frame-level features carry both the source 

speech information and the recording device information. 

When people are listening to speeches recorded using different 

devices, usually they are unable to distinguish one recording 

device from another because the effect due to device response 

is weaker than the source speech signal. This causes the UBM 

to model more of the source speech signal than the device 

response. Hence, in the UBM, the device response information 

is distorted. This distortion becomes severer as the value of M 
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Fig. 2.  Microphone recognition accuracy using raw GSV and the averaged 

MFCC as the feature vector, and SVM and SRC as the classifier. 

  

TABLE II 
MICROPHONE RECOGNITION ACCURACY USING AVERAGED MFCC AND GSV 

EMPLOYING SVM AS CLASSIFIER (%) 

 

Feature vector No. of mixtures 

M in UBM 

Relevance 

factor γ 

Recognition 

accuracy 

Averaged MFCC n/a n/a 79.23 

Raw GSV 32 5 78.17 

10 78.65 

15 79.62 

20 79.71 

64 5 83.27 

10 84.71 

15 85.19 

20 85.48 

128 5 85.58 

10 85.67 

15 85.10 

20 84.81 

256 5 85.10 

10 84.04 

15 83.27 

20 82.98 

 

 

TABLE III 
MICROPHONE RECOGNITION ACCURACY USING AVERAGED MFCC AND GSV 

EMPLOYING SRC AS CLASSIFIER (%) 

 

Feature vector No. of mixtures 

M in UBM 

Relevance 

factor γ 

Recognition 

accuracy 

Averaged MFCC n/a n/a 75.87 

Raw GSV 32 5 69.04 

10 69.62 

15 71.15 

20 70.58 

64 5 77.02 

10 79.04 

15 78.56 

20 78.65 

128 5 85.77 

10 84.13 

15 83.46 

20 82.69 

256 5 85.67 

10 85.00 

15 83.46 

20 83.08 
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increases. This results in the quality of GSV being affected. 

Regarding the classifier, on using the averaged MFCC, SVM 

outperforms SRC. On using GSV, SVM can perform better 

than SRC when M is small (e.g. M=32, 64), but may perform 

worse than SRC when M is large (e.g. M=256). The different 

behaviors of SVM and SRC are probably owing to the different 

classification mechanisms adopted by SVM and SRC. SVM 

builds a model for classification and therefore the performance 

is more dependent on the quality of the feature vector (i.e. 

GSV). On the contrary, SRC does not build any model, and the 

classification is based on the reconstruction error of a group of 

feature vectors, as can be seen from (31) and (32). Hence, SRC 

is more resilient and less dependent on the quality of the feature 

vector (i.e. GSV). However, practically, SVM is faster than 

SRC. 

B. Effectiveness of the Projection Method with SVM as the 

Classifier 

In this part, SVM is employed as the classifier for the 

comparison of the raw GSV and the projected GSV in doing 

microphone recognition. The results are shown in Table IV; the 

effectiveness of the projection method on GSV calculated from 

different UBMs (i.e. number of mixture components M=32, 64, 

128) are also illustrated in Figs. 3 ~ 5. On using the projection 

method, different kernel parameters d are evaluated. 

From Figs. 3 ~ 5, it can be seen that the projected GSV with a 

suitable choice of the kernel parameter can give improvement 

over the raw GSV, which exhibits the effectiveness of the 

kernel-based projection method. Comparing Figs. 3 ~ 5, it 

seems the larger the M, the less heavily the solid polylines will 

overlap. This indicates that the relevance factor γ increases its 

influence on the projected GSV with the increase of M. In 

addition, it seems the larger the M, the smaller the improvement 

of the projected GSV over the raw GSV. This is probably 

owing to two reasons. First, the larger the M, the possibly better 

the performance of the raw GSV, due to the increase of the 

dimensionality, as illustrated in Fig. 2. So, the performance of 

the raw GSV may be improved by increasing M and therefore 

the performance gap between the raw GSV and the projected 

GSV may be narrowed. Second, the larger the M, the possibly 

lower the quality of the GSV, due to the quality of the UBM, as 

explained in Part A of this section. So, the effectiveness of the 

projection method may be affected, resulting in the 

performance gap between the raw GSV and the projected GSV 

being narrowed. 

 

TABLE IV 

MICROPHONE RECOGNITION ACCURACY USING GSV AND PROJECTED GSV 

EMPLOYING SVM AS CLASSIFIER (%) 

 

No. of 

mixtures 
in UBM 

Feature 

vector 

Kernel 

parameter 
d 

Relevance factor γ 

5 10 15 20 

32 Raw GSV n/a 78.17 78.65 79.62 79.71 

Projected 

GSV 

50 86.06 86.15 86.06 85.87 

100 86.44 86.06 86.06 86.35 

200 87.40 87.12 86.92 87.12 

500 87.02 86.83 86.35 86.06 

1000 85.77 85.29 85.29 85.10 

2000 85.10 84.33 83.65 83.17 

64 Raw GSV n/a 83.27 84.71 85.19 85.48 

Projected 
GSV 

50 88.27 88.46 88.37 87.88 

100 89.04 88.65 88.27 87.79 

200 88.46 88.37 88.94 88.17 

500 89.04 88.46 87.31 86.63 

1000 87.88 87.12 86.25 85.58 

2000 86.83 86.15 84.71 82.88 

128 Raw GSV n/a 85.58 85.67 85.10 84.81 

Projected 
GSV 

50 88.08 87.40 86.15 85.10 

100 88.08 86.54 85.77 85.19 

200 87.12 86.73 85.87 85.77 

500 87.79 87.21 86.83 85.77 

1000 87.88 86.73 85.48 82.98 

2000 87.50 85.58 81.35 80.87 
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Fig. 3.  Microphone recognition accuracy employing SVM as the classifier, 

with the GSV adapted from a 32-mixture UBM. 
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Fig. 4.  Microphone recognition accuracy employing SVM as the classifier, 

with the GSV adapted from a 64-mixture UBM. 
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Fig. 5.  Microphone recognition accuracy employing SVM as the classifier, 
with the GSV adapted from a 128-mixture UBM. 
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C. Effectiveness of the Projection Method with SRC as the 

Classifier 

In this part, SRC is employed as the classifier for the 

comparison of the raw GSV and the projected GSV in doing 

microphone recognition. The results are shown in Table V; the 

effectiveness of the projection method on GSV calculated from 

different UBMs are also illustrated in Figs. 6 ~ 8. On using the 

projection method, different kernel parameters d are evaluated. 

It can be seen from Figs. 6 ~ 8, on employing SRC as the 

classifier with suitably chosen kernel parameters, the projected 

GSV can also give improvement over the raw GSV, which is 

similar to what has been observed on employing SVM as the 

classifier. Like the observation in Part B of this section, the 

larger the M, the more influence the relevance factor will exert 

on the projected GSV, and the smaller improvement the 

projection method will give. 

 

 

D. Investigation of the Influence of Different UBMs on the 

Projection Method 

In this part, the influence of the number of mixture 

components on the effectiveness of the projection method is 

investigated. The recognition results of the projected GSV are 

shown in Figs. 9 ~ 12, where each figure corresponds to one 

relevance factor. 

From Figs. 9 ~ 12, on using SVM, the performance of the 

projected GSV starts to degrade when M is large (e.g. 

comparing M=64 and M=128). On using SRC, the performance 

of the projected GSV tends to stabilize when M is large (e.g. 

comparing M=64 and M=128 in Fig. 12). The different 

behaviors between SVM and SRC are induced by the different 

classification mechanisms adopted by SVM and SRC as 

explained in Part A of this section. SVM is a model-based 

classifier, while SRC is an example-based classifier. These 

figures also indicate that too many mixture components may 

lower the quality of GSV, and consequently may not benefit the 

projection method much. 

Comparing SVM and SRC, in general, SVM outperforms 

SRC when M is small (e.g. M=32, 64), whereas SRC 

outperforms SVM when M is large (e.g. M=128). Besides, on 

using SVM, the performance of the projected GSV degrades 

faster (e.g. M increases from 64 to 128) when the relevance 

factor is large (e.g. comparing γ=5 and γ=10). On using SRC, 

the performance of the projected GSV tends to stabilize faster 

(e.g. M increases from 64 to 128) when the relevance factor is 

TABLE V 

MICROPHONE RECOGNITION ACCURACY USING GSV AND PROJECTED GSV 

EMPLOYING SRC AS CLASSIFIER (%) 

 

No. of 

mixtures 

in UBM 

Feature 

vector 

Kernel 

parameter 

d 

Relevance factor γ 

5 10 15 20 

32 Raw GSV n/a 69.04 69.62 71.15 70.58 

Projected 

GSV 

50 81.35 82.50 84.23 84.52 

100 83.94 84.52 85.38 85.77 

200 85.48 86.06 86.63 86.63 

500 86.15 86.35 86.25 85.77 

1000 86.54 85.87 84.81 84.23 

2000 86.15 84.42 83.37 82.79 

64 Raw GSV n/a 77.02 79.04 78.56 78.65 

Projected 

GSV 

50 82.69 84.81 86.92 87.88 

100 84.81 87.40 87.98 87.88 

200 86.73 87.69 87.79 87.50 

500 86.63 86.92 87.12 86.92 

1000 85.67 85.77 85.58 85.58 

2000 84.62 84.13 83.94 83.65 

128 Raw GSV n/a 85.77 84.13 83.46 82.69 

Projected 

GSV 

50 84.04 86.73 87.69 87.98 

100 87.21 88.17 87.60 87.69 

200 88.65 88.27 87.60 87.60 

500 88.37 87.50 86.63 85.48 

1000 87.88 86.44 85.38 84.23 

2000 87.40 85.67 84.33 83.65 
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Fig. 6.  Microphone recognition accuracy employing SRC as the classifier, 
with the GSV adapted from a 32-mixture UBM. 
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Fig. 7.  Microphone recognition accuracy employing SRC as the classifier, 

with the GSV adapted from a 64-mixture UBM. 
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Fig. 8.  Microphone recognition accuracy employing SRC as the classifier, 
with the GSV adapted from a 128-mixture UBM. 
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large (e.g. comparing γ=15 and γ=20). As can be seen from (4), 

for a speech recording, its corresponding GSV contains the 

information from this recording as well as the UBM. The larger 

the relevance factor, the more information GSV obtains from 

the UBM. Since the UBM is shared by all GSVs, the more 

information GSV obtains from the UBM, the more similar to 

the others this GSV will be. In other words, the larger the 

relevance factor, the higher the similarity of different GSVs. 

Since the projection method aims to group those GSVs coming 

from the same device and separate those GSVs coming from 

different devices, the similarity of different GSVs indeed 

affects the effectiveness of the projection method. 

E. Statistical Significance of the Improvement Offered by the 

Projection Method 

In this part, whether the performance improvement offered 

by the projection method is statistically significant, is evaluated 

with respect to different confidence levels. Let (1−α) be a 

confidence level where 0≤α≤1, zα be a value related to α, β0 be 

the recognition accuracy of using the raw GSV and β1 be the 

recognition accuracy of using the projected GSV. According to 

[38], if the relationship between β0 and β1 satisfies the 

inequality as given by (34) where N is the number of testing 

data (N=1040 in this paper), then we can say that the 

performance improvement is statistically significant with the 

confidence level being (1−α). 

 

)1()1( 1001   −+−−
N

z
     (34) 

 

Taking square on both sides of (34), an equivalent inequality 

can be obtained as given by (35), where a new variable Δ is 

defined in (36) for simplification. 
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Fig. 9.  Microphone recognition accuracy using projected GSV, with the 

relevance factor equal 5. 
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Fig. 10.  Microphone recognition accuracy using projected GSV, with the 

relevance factor equal 10. 
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Fig. 11.  Microphone recognition accuracy using projected GSV, with the 

relevance factor equal 15. 
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Fig. 12.  Microphone recognition accuracy using projected GSV, with the 

relevance factor equal 20. 
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According to (35), if ( ) 2/)2/( 0
2

1 +−−   Nz , then 

the difference between β0 and β1 is considered to be statistically 

significant with the confidence level being (1−α). 

( ) 2/)2/( 0
2 +−−  Nz  is namely the lower bound for the 

recognition accuracy to be statistically significant. With this 

lower bound, it is then feasible to evaluate whether the 

performance of the projected GSV is statistically significantly 

better than that of the raw GSV. 

Fig. 13 shows the lower bound for the performance 

improvement to be statistically significant with respect to 

different confidence levels. According to [38], zα=2.33 

corresponds to the confidence level of 99% (i.e. α=0.01), 

zα=1.65 corresponds to the confidence level of 95% (i.e. 

α=0.05), zα=1.28 corresponds to the confidence level of 90% 

(i.e. α=0.1). Fig. 14 and Fig. 15 illustrate the recognition 

accuracy of using the projected GSV and the raw GSV, and the 

lower bound for the recognition accuracy of the projected GSV 

to be statistically significantly better than that of the raw GSV 

(dotted polylines). The relevance factor γ is chosen to be 5 and 

the kernel parameter d is chosen to be 200 as an example. On 

using SVM as the classifier (Fig. 14), when the number of 

mixture components in the UBM is small (i.e. M=32, 64), the 

performance improvement offered by the projection method is 

statistically significant with the confidence level being 99%, 

while the number of mixture components is large (i.e. M=128), 

the performance improvement is not statistically significant or 

at least the confidence level is below 90%. On using SRC as the 

classifier (Fig. 15), the performance improvement offered by 

the projection method is statistically significant with the 

confidence level being 99%, for M=32, 64 and 128. 

F. A Brief Summary 

By employing both SVM and SRC as the classifier, it is 

shown that the kernel-based projection method can improve the 

performance of GSV, when suitable kernel parameters are used. 

On increasing the number of mixture components in the UBM, 

the performance of the raw GSV and the projected GSV cannot 

always be improved, and the performance tends to stabilize 

when the number of mixture components in the UBM is large. 

As explained in previous parts, although the increase in the 

number of mixture components in the UBM increases the 

dimensionality of GSV and consequently increases the 

information that GSV can provide to the classifier (i.e. SVM or 

SRC in this paper), this increase may distort the device 

information embedded in GSV and consequently lower the 

quality of GSV. 

  By comparing the recognition results using SVM and SRC, 

it has been observed that when the number of mixture 

components in the UBM is small (i.e. the dimensionality of 

GSV is small), SVM is more effective; when the number of 

mixture components in the UBM is large, SRC tends to work 

better. The difference is caused by the different classification 

mechanisms adopted by SVM and SRC. SVM is a model-based 

classifier while SRC is an example-based classifier. Thus, 

SVM is more dependent on the quality of the feature vector (i.e. 

GSV). Since SRC relies on a group of feature vectors for 

classification, it is less dependent on the quality of the feature 

vector. However, practically SVM is usually faster than SRC in 

doing classification. 

VII. CONCLUSION 

In this paper, the focus is on a closed-set microphone 

recognition task. In terms of feature extraction, different feature 

formation methods have been compared, including the 

averaged frame-level feature and Gaussian Supervector (GSV). 

It is shown that GSV can outperform the averaged frame-level 
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Fig. 13.  Lower bound for the improvement in recognition accuracy to be 

statistically significant. 
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Fig. 14.  Statistical significance of the performance improvement offered by 

the projection method employing SVM as the classifier. 
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feature, as GSV makes full use of all the frame-level features. 

The influence of the Universal Background Model (UBM) on 

GSV has also been investigated. It is found that, increasing the 

number of mixture components in the UBM (i.e. increasing the 

dimensionality of GSV) may not always improve the 

performance, because the device information carried by GSV 

may be more severely distorted on increasing the 

dimensionality. In terms of recognition, the performance of 

using linear Support Vector Machine (SVM) and Sparse 

Representation based Classifier (SRC) as the classifier, has 

been compared. Although SVM and SRC exhibit different 

behaviours in different situations (e.g. different 

dimensionalities of GSV), the performances of these two 

classifiers are basically quite similar. 

Facing the situation that the raw GSV may not always 

perform very well, a kernel-based projection method is 

proposed, which can project the original feature vector (i.e. 

GSV in this paper) onto another dimensional space. As GSV 

embeds both the speech information (which is useless) as well 

as the device information (which is useful), hopefully the 

proposed projection method can separate these two types of 

information into different dimensions in the projected GSV, 

which benefits the recognition. Experimental results 

demonstrate that, with suitably chosen kernel parameters, the 

projected GSV can outperform the raw GSV, no matter using 

SVM or SRC as the classifier. The improvement shows the 

effectiveness and the potential of the kernel-based projection 

method in microphone recognition. 
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