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A B S T R A C T

In order to achieve database-free (DB-free) vision-based monitoring on construction sites, this paper proposes a
deep active learning approach that automatically evaluates the uncertainty of unlabeled training data, selects the
most meaningful-to-learn instances, and eventually trains a deep learning model with the selected data. The
proposed approach thus involves three sequential processes: (1) uncertainty evaluation of unlabeled data, (2)
training data sampling and user-interactive labeling, and (3) model design and training. Two experiments were
performed to validate the proposed method and confirm the positive effects of active learning: one experiment
with active learning and the other without active learning (i.e., with random learning). In the experiments, the
research team used a total of 17,000 images collected from actual construction sites. To achieve 80% mean
Average Precision (mAP) for construction object detection, the random learning method required 720 training
images, whereas only 180 images were sufficient when exploiting active learning. Moreover, the active learning
could build a deep learning model with the mAP of 93.0%, while that of the random learning approach was
limited to 89.1%. These results demonstrate the potential of the proposed method and highlight the considerable
positive impacts of uncertainty-based data sampling on the model's performance. This research can improve the
practicality of vision-based monitoring on construction sites, and the findings of this study can provide valuable
insights and new research directions for construction researchers.

1. Introduction

The 4th edition of “A Guide to the Project Management Body of
Knowledge” [1] underlines that “continuous monitoring gives the
project management team insight into the health of the project, and
identifies any areas that may require special attention.” Practitioners
and researchers have also acknowledged the importance of construction
site monitoring, which is a process of understanding the dynamic and
complex natures of construction worksites [2–8]. Continuous mon-
itoring allows project managers to evaluate the operational efficiency of
input resources (e.g., direct work rate, hourly production rate), discover
potential risk factors that can cause safety accidents (e.g., access to
dangerous areas), and understand the current construction progress
(e.g., schedule delays). By being aware of the performance and project
health of a jobsite, project managers can pay special attention and take
proper corrective actions to handle unexpected events, which could
adversely affect the project's completion. For example, managers can
allocate more dump trucks on site if there are too many loaders waiting

for trucks to arrive. Hazardous objects, e.g., holes on worksites, can be
identified and removed in advance, and potential accidents can be
prevented. This jobsite monitoring and decision-making process can
bring an opportunity to enhance on-site performance and enable suc-
cessful completion of construction projects.

In the past, project managers have directly visited and monitored
construction sites manually. However, they have faced difficulties in
monitoring dynamic and large-scale jobsites owing to time and cost
limitations, and thus many researchers have investigated various au-
tomated monitoring systems. One of the most popular systems is an
Internet-of-Things-based (IoT-based) approach, which involves at-
taching electronic sensors to target construction objects, analyzing their
physical movements (e.g., locations, speeds, accelerations), and evalu-
ating the operational performance, such as hourly productivity [9] and
ergonomic risks [10]. Despite the promising results, there are several
practical issues that limit the applications of IoT systems. For example,
IoT sensors should be tagged onto every single construction object. This
requirement can hinder IoT applications in complex and dynamic
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construction sites where a significant number of objects exist [11],
which means that it would not be possible to attach IoT sensors to all
types of construction equipment and tools (e.g., jack hammers, concrete
cutting saws) [12]. As an alternative, vision-based construction site
monitoring has drawn considerable attention from many practitioners
and researchers. It does not require every object to be tagged with
camera sensors, and multiple objects can be even tracked at the same
time if they appear in a camera's field-of-view. In addition to such
technical benefits, the Korean Government has allowed construction
companies to include camera installation costs in their safety manage-
ment budgets since 2016 [13]. This has increased the willingness of
construction companies to pay for camera installation at construction
sites, and therefore vision-based approaches have become more prac-
tical and affordable.

Numerous researchers have investigated the underpinning vision-
based algorithms and have customized them to fulfil diverse monitoring
purposes, such as productivity measurement [14–21], safety analysis
[22–28], and progress measurement [29]. Despite their successful
achievements, as most state-of-the-art technologies originate from tra-
ditional deep learning algorithms, it is essential to build an extensive
and high-quality training image database (DB) [30]. Moreover, the
traditional method focuses on the quantity of the training DB, rather
than the data quality (i.e., new information included in the data), and
thus a significant amount of human effort can be wasted. To address
such drawbacks, this paper proposes a deep active learning approach
towards DB-free vision-based monitoring on construction sites. DB-free,
hereinafter, refers to a concept, in which the purpose is to minimize the
volume of training data and the cost of human labeling, while max-
imizing the monitoring performance. To this end, this research builds
upon a deep active learning algorithm that selects the most meaningful-
to-learn instances from abundant unlabeled training data, and then
learns the selected data first by interacting with human annotators.

This study makes the following contributions. First, this research
develops a novel technical framework that can significantly reduce the
required number of training images and maximize the performance of
vision-based monitoring. Second, the framework can save time and
costs of human labeling, enhancing the practicality of vision systems at
construction sites. Third, to the authors' knowledge, this is the first
attempt to apply deep active learning, which is one of the most pro-
minent emerging pattern-learning algorithms, in the construction do-
main. Last, the new DB-free approach can provide valuable insights and
research directions in the field of vision-based construction monitoring.
Following this introduction, this paper reviews existing studies relevant
to vision-based construction monitoring. Subsequently, the technical
details of the proposed method are explained. Experiments are then
conducted using video stream data collected from actual construction
sites. The experimental results are analyzed in the next section, and
finally, the research contributions and future works are discussed.

2. Literature review

There have been extensive efforts to automatically monitor con-
struction sites using deep learning-based computer vision techniques.
Fang et al. [31] and Kim et al. [32], for example, employed a region-
based convolutional neural network (R-CNN) to detect various types of
construction objects, including workers and equipment. Other re-
searchers have also demonstrated the great performance of deep
learning models, including Faster R-CNN, even under harsh analysis
conditions, e.g., scale deviations and illumination variations
[25,27,31]. These findings have aided the development of computer
vision techniques for automated productivity and safety monitoring.
Kim et al. [33] fed CNN-based equipment detection results into an
earthmoving process simulation model to monitor productivity. Luo
et al. [16] built an activity recognition method, composed of CNN and
relevant networks, to detect multiple construction resources (e.g.,
workers, equipment, tools) and interpret their spatial interactions (e.g.,

size, distance) in order to extract detailed information about the op-
erational efficiency of construction resources. The authors further im-
proved the method by appending Bayesian nonparametric learning to
capture workers' activities in far-field surveillance videos [18], and they
also proposed a two-stream CNN model for worker activity recognition
[14]. Cai et al. [34] developed a two-step long short term memory
(LSTM) model to recognize working groups and their activity types. In
other studies [35,36], CNN and double-layer LSTM were integrated to
learn and analyze the sequential working patterns of heavy equipment.
They further improved the deep learning-based method to monitor
earthmoving operations from multi-camera views [21]. Bang and Kim
[37] also integrated CNN and LSTM models to transform jobsite images
to detailed information about the position, status, and quantity of
construction resources. Deep learning approaches have also showed
promising results in construction safety analysis. Many studies have
used CNN-based object detection results to capture safety-related in-
formation, such as lapses in wearing personal-protective-equipment
[25,27], non-certified operations [26], and access to dangerous zones
[38,39]. Kim et al. [40] evaluated the possibility of physical inter-
ferences between construction objects using CNN detection results, and
Yan et al. [41] proposed a CNN-based method to estimate spatial
crowdedness from two-dimensional jobsite images. To overcome the
intrinsic shortcomings of CNN models, i.e., frame-by-frame time-in-
dependent analysis, Ding et al. [22] proposed a hybrid deep learning
model composed of CNN and LSTM to continuously monitor unsafe
behaviors of construction workers.

Deep learning algorithms have shown excellent performance on
vision-based construction monitoring. However, to train a reliable deep
learning model, it is vital to build a high quality and extensive training
image DB. This process involves manually labeling target construction
objects and/or their operational information, such as object types and
locations, on every single image frame. Such manual processes not only
require an excessive amount of time and effort, but also have difficulty
in representing a wide range of characteristics of different construction
objects (e.g., different types and colors of construction equipment), and
thus hinder the practical use of vision-based monitoring on construction
sites. To solve this problem, researchers have investigated methods for
reducing the time and effort required to build a training DB. Liu and
Golparvar-Fard [42] examined the feasibility of crowdsourcing tech-
niques, which are an effective way of outsourcing tedious image-la-
beling tasks to a crowd of non-expert individuals from an online com-
munity, such as Amazon Mechanical Turk. As these studies have
focused on labeling only workers and their activity types, a recent study
by Wang et al. [43] improved the crowdsourcing method to label var-
ious safety-rule violations on construction images. However, such
crowdsourcing methods still depend on human efforts and cannot re-
duce the absolute quantity of training data required. In an effort to
automate the annotation process, Soltani et al. [44] generated training
data from a virtual equipment model and showed promising results in
vision-based excavator detection. Braun and Borrmann [45] used
building information modeling to annotate types of building elements
(e.g., columns, walls, and slabs) and create training images. Despite
their valuable efforts, deep learning models that learn from virtual data
may have low performance, because real construction images have
considerably different visual characteristics, e.g., textures and types of
target objects. It would be also difficult to obtain adequate virtual
models for every construction object and site. In order to minimize the
amount of human labeling required, while also maintaining model
performance, this paper proposes a deep active learning approach that
selects the most informative data from a set of real construction images,
and then teaches the selected data for a deep learning model stage-by-
stage. Specifically, the proposed active learning focuses on construction
object detection, which is an essential prerequisite for vision-based
monitoring.
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3. Proposed approach: deep active learning

Fig. 1 shows the proposed approach, which involves three main
processes: (1) uncertainty evaluation of unlabeled data, (2) training
data sampling and user-interactive labeling, and (3) model design and
training. The details of each process are explained in the following
sections.

3.1. Uncertainty evaluation of unlabeled data

The objective of this process is to quantify and evaluate the un-
certainty of model prediction for unlabeled training data. First, a
sample of unlabeled data is selected through uniform distribution-based
random sampling, which means that each sample has an equal prob-
ability of being chosen. In this study, 10% of remaining unlabeled data
were randomly sampled to reduce computational costs and maintain
the model performance. Subsequently, the object detection model
trained in the previous step tests multiple image samples, thereby
predicting the object type and location (i.e., bounding boxes of each
class) of each individual image. In the first training step, a model's
parameters can be initialized using the He normal initializer [46], or an
open-source pre-trained model by TensorFlow [47] can be used. Based
on prediction results, a confidence score for each bounding box can be
calculated using the softmax function (Eq. (1.1)), which describes how
likely the model thinks each predicted bounding box to be reliable.
Finally, the uncertainty for each bounding box is computed as entropy,
and the uncertainty of each image is determined as the sum of entropy of
each bounding box (Eq. (1.2)).
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Here, ci indicates the confidence score of the model's ith prediction
(i.e., bounding box) in each image frame; zi denotes the ith output value
from the prior deep learning layer; and E refers to the sum of entropy
for an image.

As entropy is one of the most popular uncertainty measures that
quantify the amount of information required to encode data distribu-
tion in the area of information theory [48], entropy-based sampling can
discover the meaningful-to-learn instances from unlabeled data, en-
abling to train a more robust object detector. Fig. 2 displays examples of
uncertainty evaluation results. As can be seen in the “Low Uncertainty”

case, there is no additional new information, because the model already
knows which areas are target objects or background. It further means
that the images with low uncertainty have a low possibility of im-
proving the model performance due to the lack of new information. For
the “High Uncertainty” data in Fig. 2, however, there are many true
negatives (i.e., when a target object is not detected) and false positives
(i.e., when a detector misclassifies a non-target object or background as
a target object). In this case, if human accurately annotates the un-
certain-to-predict images (Section 3.2), the model can learn the new
additional information, “uncertainties,” (i.e., true negatives and false
positives) and evolve more effectively. This uncertainty evaluation is
repeated until there is no unlabeled image data left. Eventually, it
would be possible to develop a quality-oriented training DB only with
high uncertainty images, rather than using existing quantity-oriented
approaches.

3.2. Training data sampling and user-interactive labeling

This process selects target training data stage-by-stage based on the
results of uncertainty evaluation and asks human to annotate the se-
lected data (i.e., object types and locations within the images) inter-
actively. Specifically, the top 10% of the high uncertainty images are
selected for manual labeling, and human annotators perform data la-
beling using an open-source image labeling software, LabelImg [49].
According to the authors' experiments, the annotation process aver-
agely took 10 s per one image. Fig. 3 displays an example of user-in-
teractive labeling using LabelImg. The annotator can draw bounding
boxes on the image by using computer mouse and insert the names of
the selected objects. Annotation data [object_type, xmin, ymin, width,
height] are subsequently produced for each image frame. As a result, the
previous high quality training DB becomes more informative with ac-
curately labeled object information.

3.3. Model design and training

In this process, the research team designs and trains a deep learning
model to detect construction objects using the labeled images. The
authors build upon one of the most popular and outstanding object
detection models, i.e., Faster Region-proposal CNN (Faster R-CNN).

As depicted in Fig. 4, the Faster R-CNN model comprises three main
modules: feature extraction, region proposal, and detection modules.
First, a raw red–green–blue (RGB) image is fed into the feature ex-
traction module designed with 13 convolution and five max-pooling

Fig. 1. Process flowchart for deep active learning.
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layers. The convolution layers play a key role in extracting visual fea-
tures from input images, whereas max-pooling layers reduce spatial
dimensions of the feature map. The feature map provides key in-
formation as to where objects are more likely to exist in an image. Next,
the feature map is used as input to the region proposal module, and
n × n spatial windows are slid over the feature map for proposing
possible regions of interest (ROIs). To be specific, each window region
is processed in three convolution layers, and the results obtained are
subsequently fed into two types of fully-connected layers: box-object-
ness and box-regression. The box-objectness layer computes object and
non-object probabilities (i.e., background), whereas the box-regression
layer re-corrects proposed ROIs. ROIs classified as objects are then
projected onto the feature map with lower dimensions, and each pro-
jected region is taken to the detection module comprising box-classifi-
cation and box-regression layers. Finally, the box-classification layer
classifies types of ROI objects and calculates confidence scores using the
softmax function (Eq. (1.1)) [50,51]. The box-regression layer predicts
two-dimensional coordinates of bounding boxes, [xmin, ymin, width,
height].

During region proposals, different sizes and aspect ratios of anchor
boxes are used to manage scale variations. As default, this research
employed 12 anchors in each sliding position. The anchors were char-
acterized by four different scales (322, 642, 1282, and 2562) and three
aspect ratios (1:1, 1:2, and 2:1). These default conditions were observed
to be sufficient to detect different object types, the appearance and
shapes of which continuously changed during the authors' heuristic
experiments. Further, to alleviate redundant computation complexity,
the number of region proposals pertaining to each image was limited to
100, thereby maintaining consistency with findings of an extant study
[50]. In particular, box-regression layers learn two-dimensional co-
ordinate differences between predicted ROIs and the ground truths
(Eqs. (2.1)–(2.8)) during the training stage.

= −t x x w( )/x a a (2.1)

= −t y y h( )/y a a (2.2)

=t w wlog( / )w a (2.3)

=t h hlog( / )h a (2.4)

= −∗ ∗t x x w( )/x a a (2.5)

= −∗ ∗t y y h( )/y a a (2.6)

=∗ ∗t w wlog( / )w a (2.7)

=∗ ∗t h hlog( / )h a (2.8)

In the above equations, x and y denote center coordinates of the
bounding box; w and h denotes the bounding-box width and height; x,
xa, and x∗ denote x-coordinates pertaining to the predicted, anchor, and
ground truth boxes, respectively (likewise for y); w, wa, and w∗ denote
widths of the predicted, anchor, and ground truth boxes, respectively
(likewise for h); lastly, tx, y, w, h and tx, y, w, h

∗ denote vectors that re-
present four parameterized coordinates pertaining to the predicted box
and ground truth, respectively.

Using these configurations, the proposed deep learning model was
trained using image data selected and labeled, as described in Sections
3.1 and 3.2 (Fig. 1). Stochastic gradient descent was used with a
learning rate of 0.0001, a weight decay of 0.00001, a momentum of 0.9,
an epoch of 30, and training iterations of 75 per each stage.

4. Experimental results and analysis

To validate the proposed approach, comprehensive experiments
were performed using video-stream data collected from four different
construction sites. A part of video data was recorded using normal
cameras installed at jobsites, whereas others were obtained from an
online video-sharing website—YouTube. For the first case, cameras
were installed at jobsites according to a systematic camera placement
framework developed in the previous research [52,53]. Fig. 5 shows
examples of collected video data covering four different types of con-
struction equipment: “excavator,” “dump truck,” “forklift,” and
“loader.” The data obtained from various sources facilitated reflecting

Fig. 2. Examples of low-and high-uncertainty images. In “Low Uncertainty” image, there exists no new information to learn as model can accurately detect excavator
and dump truck, whereas “High Uncertainty” image contains new information in terms of true negatives and false positives.

Fig. 3. Example of user-interactive labeling. Annotation data [object_type, xmin, ymin, width, height] are generated for each image.
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the real-world analytics conditions of occlusions, illuminations, and
pose/viewpoint/scale variations. A total of 17,000 image frames were
collected with 1280 × 720 resolution and 10 frames per second. The
collected data were further split into training and testing data com-
prising 9400 (55.3%) and 7600 images (44.7%), respectively. Object
detection models were trained using two different learning approaches:
one with active learning and the other without active learning (i.e.,
random learning). Random learning is a previously used approach in-
volving random selection of training instances from unlabeled data to
develop a training DB. This allowed the authors to confirm both ap-
plicability and practicality of the proposed active learning approach as
well as determine its beneficial effects.

The performance of the trained models were measured with the
mean Average Precision (mAP), which is one of the most popular me-
trics in vision-based object detection challenges, e.g., PASCAL VOC
[54].

4.1. Performance of the proposed approach

Table 1 compares performances of all models considered in this
study in terms of mAP values depending on the volume of training data
used. The highest performance of the proposed method was

approximately 93.0% with a total of 1110 training images. The devel-
oped Faster R-CNN model successfully detected various types of con-
struction objects, such as “excavator” (91.3%), “dump truck” (94.7%),
“forklift” (95.1%), and “loader” (91.0%). To achieve similar perfor-
mance, it is general to build a training DB composed of over 10,000
images, as reported in the authors' previous studies: [17,21,35]. Com-
pared to those results, the proposed active learning method could sig-
nificantly reduce the labeling time from 1800 to 185 min, approxi-
mately 90% reduction.

To confirm the expandability of the proposed approach, other types
of deep learning models were also examined in this study using active
learning. The single shot detector (SSD) [55] and you only look once
(YOLO) [56], which are well-known architectures for object detection,
were trained. Table 1 summarizes quantitative results obtained by using
each model. As can be observed, the Faster R-CNN model demonstrated
the best performance among all models with 93% mAP, whereas per-
formances of the SSD and YOLO models were given by mAP values of
92.1% and 89.7%, respectively. Moreover, YOLO showed the highest
convergence speed compared to the SSD and Faster R-CNN models.
These results are consistent with the existing body of knowledge in
computer vision, i.e., complex models usually demonstrate better per-
formance while achieving slow convergence.

Fig. 4. Working process of Faster R-CNN model that extracts feature maps from input image, proposes possible regions, and detects target objects.

Fig. 5. Visual data samples collected from four different construction sites covering various construction objects and their characteristics, such as illumination and
pose/viewpoint/scale variations.
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4.2. Performance with and without active learning

The authors also observed significant impacts of the active learning
from the experiments. Fig. 6 shows the learning curves of the proposed
and traditional methods, which visualize the models' performances
according to the volume of training data used. Under the same condi-
tions (i.e., a set of identical training data and the same prediction
model), the performance of the model with the active learning method
was always greater than that of the random learning method. From the
first training stage with 30 images, the performance difference could be

easily recognized. The model trained using active learning was able to
detect construction objects with 40.1% mAP, while the performance of
the random learning remained in the vicinity of 17.6%. This difference
decreased over the entire span of training stages, but did not disappear
completely. In detail, the active learning could obtain mAP of 70% with
only 150 images (1.6% of the training data), whereas the random
learning approach required at least 690 images. To achieve mAP of
80%, 180 and 720 images were required for the active learning and
random learning approaches, respectively. In the case of random
learning, the highest performance was 89.1%, and a total of 3300
images were required to achieve this value. In contrast, only 240
images were required to achieve the same mAP of 89.1% for the model
trained using active learning. Additionally, the performance of the ac-
tive learning reached the level of over 90% with only 390 training
images and keep remained; the best mAP was about 93.0%. These
findings indicate that the active learning approach can not only reduce
the number of training data required to generate a robust deep learning
model but also increase the model's performance.

5. Results and discussion

The proposed method performed well in detecting construction
objects from images collected at actual construction sites. The model
localized the different types of construction resources, such as “ex-
cavator,” “dump truck,” “forklift,” and “loader,” with the mAP of
93.0%. Fig. 7 depicts the sequential detection results of the developed
model. The proposed method enabled to localize heavy equipment even
when the equipment was partially occluded by obstacles (e.g., other
nearby dump trucks) or it was not visible from the camera's field-of-
view due to dynamic movements. The method was also able to correctly
classify construction objects that have diverse visual characteristics
(e.g., size, color, and shape) under different camera positions and
cluttered backgrounds. These results imply that the proposed model is
sufficiently robust to handle a range of image qualities affected by
image resolution, presence of occlusions, illuminations, and pose/
viewpoint/scale variations.

The results also demonstrated the considerable impacts of active
learning on model training. As reported by the experiments, the mAPs
over the entire training stages were higher for the active learning ap-
proach than for random learning (Fig. 6). It means that the proposed
method can build an object recognition model with the same perfor-
mance, while requiring less training data and reducing the required
labeling effort. For example, to generate a model with mAP of over
80%, the required number of training data samples decreased from 720
to 180 images when the active learning was applied. These benefits can
be explained by the results of uncertainty evaluation and data sampling
(Section 3.1), which is a vital component of active learning. Fig. 8

Table 1
Quantitative results in accordance with the number of training images, learning
methods, and model architectures.

Number of
training images

Faster R-
CNN
(Active
learning)

Faster R-CNN
(Random
learning)

Single shot
detector
(Active
learning)

You only look
once
(Active
learning)

30 0.406 0.176 0.376 0.369
60 0.432 0.218 0.422 0.432
90 0.570 0.308 0.599 0.589

120 0.612 0.350 0.643 0.633
150 0.701 0.384 0.733 0.720
180 0.803 0.486 0.834 0.744
210 0.779 0.541 0.809 0.741
240 0.905 0.557 0.888 0.852
270 0.869 0.511 0.858 0.827
300 0.827 0.493 0.805 0.796
330 0.877 0.495 0.868 0.836
360 0.908 0.570 0.894 0.873
390 0.924 0.599 0.902 0.863
420 0.907 0.613 0.891 0.869
450 0.921 0.620 0.898 0.897
480 0.881 0.616 0.852 0.841
510 0.918 0.665 0.896 0.857
540 0.871 0.649 0.846 0.824
570 0.896 0.638 0.868 0.846
600 0.914 0.648 0.907 0.873
630 0.909 0.600 0.886 0.868
660 0.900 0.636 0.902 0.859
690 0.879 0.645 0.851 0.830
720 0.912 0.806 0.893 0.861
750 0.895 0.722 0.886 0.844
780 0.919 0.773 0.921 0.882
810 0.906 0.741 0.884 0.842
840 0.893 0.769 0.860 0.846
870 0.891 0.715 0.874 0.849
900 0.895 0.725 0.857 0.843

1050 0.902 0.753 0.877 0.854
1080 0.888 0.742 0.872 0.839
1110 0.930 0.740 0.902 0.878

Fig. 6. Learning curves pertaining to active- and random-learning-based models.
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shows the model's predictions, i.e., bounding boxes and confidence
scores, on the images selected as the training data for active and
random learning; the images at the left column were sampled based on
the uncertainty evaluation (active learning), and the images at the right
column were selected through the random sampling (random learning).
In the case of active learning, when the first 30 images were in-
vestigated, total 25 out of the 30 images had high uncertainty with
some false alarms, as marked as “High Uncertainty”. This indicates that
the model can be enhanced if human performs the user-interactive data
labeling (Section 3.2) and corrects the occurred false alarms in the
“High Uncertainty” images. The other five images with low uncertainty
may not improve the detection performance even if they are used as the
training data; it is because the model already knows which areas are
target objects or background. In contrast, for the random learning, only
six among the 30 images were “High Uncertainty” and the remaining 24
images were “Low Uncertainty”. It implies that only six images were
meaningful-to-learn and the other ones could not contribute to im-
proving the model performance. Quantitatively, the model's perfor-
mance was increased by 12.6% for active learning, whereas only 1.6%
increment for random learning. It can be concluded that the proposed
method has a great ability to sample the meaningful-to-learn instances
from abundant unlabeled data, and thereby accelerate the performance
improvement.

It was also notable that the model performance was averagely
13.6% higher when using active learning, compared to the random
learning. Besides, the active learning ultimately raised the model's final
performance by 3.9%, which is approximately 2% greater than the

results of the previous studies: [57,58]. It seems that the detector suc-
cessfully evolved by actively selecting and learning the most uncertain
and informative images at every training stage, resulting in the best
performance at the end. This can be quantitatively explained by the
coefficient of determination R2—a well-known indicator that explains
how stably and sensitively a model evolves through training stages, i.e.,
model convergence [59]. As shown in Fig. 9, when fitting the deriva-
tives of the learning curves to a logarithmic function, the values of R2

were approximately 0.171 for active learning and 0.092 for random
learning. This implies that when using active learning, a model con-
verges about twice more stable than random learning. Therefore, using
the proposed approach can lower the risk of being stuck at a local op-
timum across all training stages. These findings indicate that the pro-
posed method affords significant advantages in terms of model con-
vergence and overall performance.

6. Conclusions

In working towards DB-free vision-based monitoring on construc-
tion sites, this study presented a deep active learning approach that
automatically evaluates the uncertainty of training images, selects the
most meaningful-to-learn data, and trains a deep learning model using
the selected data in a sequential manner. The proposed approach in-
volved three main processes: (1) uncertainty evaluation of unlabeled
data, (2) training data sampling and user-interactive labeling, and (3)
model design and training. Through the active learning approach, it
was possible to minimize the human effort required for data labeling

Fig. 7. Experimental results of construction object detection. The developed model can detect different construction objects under different conditions involving
occlusions, illuminations, and pose/viewpoint/scale variations.
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Fig. 8. Examples of images selected for active and random learning.

Fig. 9. Learning curve derivatives and their logarithmic fitting. The model converges about twice more stable when using active learning than using random learning.
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and to train more powerful object detectors. As reported in the ex-
periments conducted with and without active learning, the number of
training images required to obtain mAP values of 70% and 80% were
reduced by 540 images, when the active learning approach was used.
Furthermore, while the performance of the best model remained at
89.1% in the traditional method (i.e., random learning), the active
learning approach enhanced the model's performance up to 93.0%,
implying that the optimal solutions at each training stage finally re-
sulted in the near-global optimum. The object detection model also
evolved about twice more stably in the authors' experiments with the
active learning approach.

Considering the benefits of the proposed method, this study made
the following contributions. First, this study documented the develop-
ment of a novel technical framework that can both significantly reduce
the required number of training images and maximize the performance
of vision-based monitoring. Second, the framework can save time and
costs needed for human labeling, thereby enhancing the practical ac-
ceptability of vision systems on construction sites. Third, to the authors'
knowledge, this study represented the first attempt to apply deep active
learning, which is one of the most prominent and emerging pattern-
learning algorithms, in the construction domain. Last, the novel DB-free
approach can provide valuable insights and new research directions in
the field of not only vision-based construction monitoring but also other
research areas, e.g., natural language processing [60], sound recogni-
tion [61,63], and wearable sensing [62].

Building on the interesting findings of this study, there are several
opportunities for further research. As further efforts to achieve DB-free
vision-based construction monitoring, the active learning approach can
be integrated with other state-of-the-art technologies. For instance,
when applying crowdsourcing labeling techniques [42,43], active
learning can recommend informative-to-learn data to crowds (i.e.,
human annotators) and train a model more robustly and efficiently.
Integration with virtual models is another effective way of reducing
human effort needed to training data acquisition. One study [44] fea-
tured the successful training of an object detection model using images
generated from virtual equipment models. The model (learned from
virtual images) can be fine-tuned using active learning, and thereby it
would be available to further reduce the required volume of training
data and human effort, when compared to the learning-from-scratch
method (i.e., when training a completely new model). With further
achievements, it is believed that DB-free vision-based monitoring can
become a reality in future construction projects.
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