az United States Patent
Wang et al.

US010642657B2

US 10,642,657 B2
May 5, 2020

(10) Patent No.:
45) Date of Patent:

(54) CLIENT-SERVER ARCHITECTURE FOR
MULTICORE COMPUTER SYSTEM TO
REALIZE SINGLE-CORE-EQUIVALENT
VIEW

(71) Applicant: THE HONG KONG POLYTECHNIC
UNIVERSITY, Hong Kong (CN)

(72) Inventors: Qixin Wang, Hong Kong (CN); Zhu
Wang, Hong Kong (CN)

(73) Assignee: THE HONG KONG POLYTECHNIC
UNIVERSITY, Hong Kong (CN)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 204 days.

(21) Appl. No.: 16/019,723
(22) Filed: Jun. 27, 2018

(65) Prior Publication Data
US 2020/0004594 A1l Jan. 2, 2020
(51) Imt. CL

GO6F 15/16
GO6F 9/50

(2006.01)
(2006.01)
(Continued)
(52) US. CL
CPC ... GO6F 9/5027 (2013.01); GOGF 9/3877
(2013.01); GOGF 9/48 (2013.01); GOG6F 9/544
(2013.01); GO6F 15/16 (2013.01); GO6F
217123 (2013.01); GO6T 1/20 (2013.01); HO4L
67/42 (2013.01)
(58) Field of Classification Search
CPC GO6F 9/5027; GO6F 9/3877; GOGF 9/48;
GOG6F 9/544; GO6F 15/16; GOGF 21/123
See application file for complete search history.

Obtain a plurality of stacks.

l

Divide the stacks into a client stack and one or
more server stacks. 41420

l

Obtain a shared cache having shared cache
blocks. Each such block is coupled to the client y
stack and to one or more server stacks.

l

Configure each shared cache block to provide a N 440
next level of cache memory to the client stack 4

Y1 410

1 430

(56) References Cited
U.S. PATENT DOCUMENTS

8,332,866 B2* 12/2012 Kelleyccccoeuenene GOGF 9/547

719/312

9,787,791 B2* 10/2017 Chetlurcc.cc.... HO4L 67/02
(Continued)

OTHER PUBLICATIONS

L. Sha et al., “Real-Time Computing on Multicore Processors,”
IEEE Computer, pp. 69-77, Sep. 2016.

(Continued)

Primary Examiner — Moustafa M Meky
(74) Attorney, Agent, or Firm — Spruson & Ferguson
(Hong Kong) Limited

(57) ABSTRACT

A client-server architecture is used in a multicore computer
system to realize a single-core-equivalent (SCE) view. In the
system, plural stacks, each having a core and a local cache
subsystem coupled thereto, are divided into a client stack for
running client threads, and server stacks each for running
server threads. A shared cache having shared cache blocks,
each coupled to the client stack and to one or more server
stacks, is also used. The core of an individual server stack is
configured such that computing resources utilizable in
executing the server thread(s) are confined to the individual
server stack and the shared cache block coupled thereto,
isolating an inter-core interference caused by the server
thread(s) to the client thread(s) to within the individual
server stack, the shared cache block coupled thereto, any
server stack coupled to this shared cache block, and the
client stack to thereby realize the SCE view.

20 Claims, 4 Drawing Sheets

Obtain an additional cache subsystem coupled):/l/ 450
to the client stack. i

Configure the additional cache subsystem to ya% 460
provide next level(s) of cache memory to the %
client stack. !

Integrate at least the stacks and the shared
cache to form the multicore computer system.
The system is also integrated with the additional”
cache subsystem if present.

!

1 470

and a respective server stack.

Configure the processing core of a server stack 480

to confine computing resources utilizable in e

server thread execution to the server stack and
the shared cache block coupled thereto.

US 10,642,657 B2
Page 2

(51) Int.CL

GOGF 9/48 (2006.01)
GOG6F 21/12 (2013.01)
GO6F 9/38 (2018.01)
HO4L 29/06 (2006.01)
GO6T 1/20 (2006.01)
GOGF 9/54 (2006.01)
(56) References Cited

U.S. PATENT DOCUMENTS

2005/0283529 Al* 12/2005 HSU .ooovviviinnnne HO04L 67/1095
709/224
2008/0126762 Al* 5/2008 Kelley ... GOG6F 9/547
712/225
2015/0215417 Al* 7/2015 Chetlur HO04L 67/02
709/213

OTHER PUBLICATIONS

L. Sha et al., “Position Paper on Minimal Multicore Avionics
Certification Guidance,” draft 3.8, published by Federal Aviation
Administration, United States Department of Transportation, Feb.
22, 2016.

R. Pellizzoni and H. Yun, “Memory Servers for Multicore Systems,”
Proceedings of the IEEE Real-Time and Embedded Technology and
Applications Symposium (RTAS), Apr. 11-14, 2016.

G. Yao, H. Yun, Z. P. Wu, R. Pellizzoni, M. Caccamo and L. Sha,
“Schedulability Analysis for Memory Bandwidth Regulated Multicore

Real-Time Systems,” IEEE Transactions on Computers, vol. 65,
issue 2, pp. 601-614, Feb. 2016.

H. Yun, G. Yao, R. Pellizzoni, M. Caccamo and L. Sha, “Memory
Bandwidth Management for Efficient Performance Isolation in
Multi-Core Platforms,” IEEE Transactions on Computers, vol. 65,
issue 2, pp. 562-576, Feb. 2016.

R. Mancuso, R. Pellizzoni, M. Caccamo, L. Sha and H. Yun,
“WCET(m) Estimation in Multi-Core Systems using Single Core
Equivalence,” Proceedings of the 27th Euromicro Conference on
Real-Time Systems, pp. 174-183, Jul. 8-10, 2015.

H. Yun, R. Pellizzoni and P. K. Valsan, “Parallelism-Aware Memory
Interference Delay Analysis for COTS Multicore Systems,” Pro-
ceedings of the 27th Euromicro Conference on Real-Time Systems,
pp. 184-195, Jul. 8-10, 2015.

H. Kim, D. de Niz, B. Andersson, M. Klein, O. Mutlu and R.
Rajkumar, “Bounding Memory Interference Delay in COTS-based
Multi-Core Systems,” Proceedings of the 20th IEEE Real-Time and
Embedded Technology and Applications Symposium (RTAS), pp.
145-154, Apr. 15-17, 2014.

R. Mancuso, R. Dudko, E. Betti, M. Cesati, M. Caccamo and R.
Pellizzoni, “Real-Time Cache Management Framework or Multi-
core Architectures,” Proceedings of the 19th IEEE Real-Time and
Embedded Technology and Applications Symposium (RTAS), pp.
45-54, Apr. 9-11, 2013.

H. Yun, G. Yao, R. Pellizzoni, M. Caccamo and L. Sha, “MemGuard:
Memory Bandwidth Reservation System for Efficient Performance
Isolation in Multi-core Platforms,” Proceedings of the 19th IEEE
Real-Time and Embedded Technology and Applications Sympo-
sium (RTAS), pp. 55-64, Apr. 9-11, 2013.

* cited by examiner

US 10,642,657 B2

Sheet 1 of 4

May 5, 2020

U.S. Patent

001

(My Jouid) | 'OI

oSl —=2+ i I (s)omegol i I
ovL —2+ “ " Alowa urey " "
oL 24 _ _ sng _ _
ocL =2 _ I ayde) |aAaT-1se] | I
Y _ m Y m Y ! 'Y
: ! ! : ! : ! :
- 1 I . 1 : | H
= PLLL - . = OLLL - . : = BLLL
v vm L. ! v 4, | 4 QNFI— ! \ A
! | T | 1
ayoed 11 ! ! ayoe) 1] ! ayoe) 1] ! ayoe) 11
1 1 1 |
POLL; : o011 ; wo_m—: w eoLL
m _ _ 4 _ 4
210D _ _ 210D _ 210D _ 210D
i | i i
i i i i
I I I I
speaJtyl _ _ speayl _ speatyl _ speaJyl
I I I I

US 10,642,657 B2

Sheet 2 of 4

May 5, 2020

U.S. Patent

00c

¢ Old

u-¢ée
/

o 7

)20|g =2yde)

ayoe
/ Yoeo 11

u-91e §

T _fu-112
/

35

speaJyl
JEYVELS

¢-¢dc l-¢cc
/ /
¢ Nm.. ¢ —.m..
320|g 8Yoe) 320|g 8YoED)

¢7 ayed 71

m A " " Fig " " o'l

w Nmm;umu 1 " " .\.\.msumu 1 " _ wasumu 11

_ Je-rie: Tr-nei f oie

z-o1z [C0C ezl Ve g | O

ity /

“ ¢) 240D " " k) 240D _ " 0 210D

m speaJyl P speaJyl i speatyl

m SEYSENS " " JEYNELS " " waip
¢-L€C \ -LE€C \ 0€¢C \

US 10,642,657 B2

Sheet 3 of 4

May 5, 2020

U.S. Patent

€ 'Old

06€

((s)221n0p O] ‘Adowaw ulew “3'3) seaunosay suindwo) eyl <€

— 00€

U-ZZE~ 0ZE 2-22E ~ 14228 ~ | N e (517 _S-b-G9E
0|g dYe) 320|g ay2ed 0|8 ay2ed “HHHMHHH_m
Umw_w\cm ayoe) (T+)1 Um:rm;m/ paJeys ““ ayae) (T+¥)1 JW_I_.umwm
gGe
w auoed 1 {=-4-9VE | | 2weeon ||]] aweoon |1]| awedn JE-A-GYE
i x m m x ;! x | x m
m v | m v | v] v i
i || awoeo T1 5 HOVE | sweatt || Tf] sueen Tt || 1| eused 114 H-GVE
! A ¢ ! " A " " 7 Y ¢|" " 7 Y ¢|"
| u-glg ! m Z-91E ! | 1-9LE ! | Gig |
B e : IS MhGhS I m S0€
[oTre | zTie | Toe || 0IE m)
m 2107 " i 240D " _ 210D " m 210D "
m mnmmgm_.r...gmiwm " i mvmem._....LwEwm " _ mvmwgﬁ._..._wiwm " i mvmwm_.m.pcw__u "
u-1g¢ \. ¢ LEE \ I-LEE \ 0€e \

US 10,642,657 B2

Sheet 4 of 4

May 5, 2020

U.S. Patent

¥ "Old

‘0}J9Y} pa|dno2 %20|q aYyoed paleys sy}
PUB YOB]S JOAISS 8U] 0} UOIINJSXS pedly) JoAIoS

AN ul 8|qezIin $824nosal Buiindwod suljuod 0}
(11214

YOBIS JoAIBS B JO 0109 Buissesoud ayi aunbiyuon

")oeJS IoAISS BAI0adsal e pue

A

"uasaid JI weisAsgns ayoeo
|, [leuolippe ayi yum pejelbelul osie s welsAs sy

0Ly “U ‘WwolsAs JaINdwod 810213 NW 8y} W0} 0] 8yded

paJeys 8y} pue SYJels ay} 1ses| Je ajelbaju|

")OBIS Judl|0
ay1 o1 Alowaw ayaoed Jo (s)jaAs] 1xau apinoid

097 \~_\ 0] WLaIsSASgNSs ayoeo [euonippe ayi ainbiyuon
1

SOBIS JUBID Y 0}

1
1
oSt \~\“\ pa|dnoo welsAsgns eyoeo [RUONIPPE UB URIgqO

ovy U

, YOBIS JudI[0 8y} 0} Alowaw 8YIEeI JO [9A9] XU
B apiaoid 0} %20|g 8yoed paleys yoes ainbiyuon

f

"SYOB]S JOAIS IO 0 BUO 0] PUB YOB]S
, Jua112 8u3 0} PoIdNOD S| %00] YINS YOBT "$H400|q

0ev “U1 syoeo peseys Buiney 8yoed peseys e urelqo
N
L, "SYOBIS JOAISS 8J0W
ozy “U 10 SUO PUE XIBJS JUdI|D B OJul SHOBIS 8Y) SpIAIQ
F N
o ‘U

‘syoels Jo Alean|d e urelqgo

US 10,642,657 B2

1
CLIENT-SERVER ARCHITECTURE FOR
MULTICORE COMPUTER SYSTEM TO
REALIZE SINGLE-CORE-EQUIVALENT
VIEW

BACKGROUND
Field of the Invention

The present invention generally relates to a multicore
computer system. In particular, the present invention relates
to such computer system having a single-core-equivalent
view.

LIST OF REFERENCES

There follows a list of references that are occasionally
cited in the specification. Each of the disclosures of these
references is incorporated by reference herein in its entirety.
[1] L. Sha et al.,, “Real-Time Computing on Multicore

Processors,” IEEE Computer, pp. 69-77, September 2016.
[2] L. Sha et al.,, “Position Paper on Minimal Multicore

Avionics Certification Guidance,” draft 3.8, published by

Federal Aviation Administration, United States Depart-

ment of Transportation, Feb. 22, 2016.

[3] R. Pellizzoni and H. Yun, “Memory Servers for Multi-
core Systems,” Proceedings of the IEEE Real-Time and
Embedded Technology and Applications Symposium
(RTAS), Apr. 11-14, 2016.

[4] G. Yao, H. Yun, Z. P. Wu, R. Pellizzoni, M. Caccamo and
L. Sha, “Schedulability Analysis for Memory Bandwidth
Regulated Multicore Real-Time Systems,” [FEE Trans-
actions on Computers, vol. 65, issue 2, pp. 601-614,
February 2016.

[5] H. Yun, G. Yao, R. Pellizzoni, M. Caccamo and L. Sha,
“Memory Bandwidth Management for Efficient Perfor-
mance Isolation in Multi-Core Platforms,” IEEE Trans-
actions on Computers, vol. 65, issue 2, pp. 562-576,
February 2016.

[6] R. Mancuso, R. Pellizzoni, M. Caccamo, L. Sha and H.
Yun, “WCET(m) Estimation in Multi-Core Systems using
Single Core Equivalence,” Proceedings of the 27th Euro-
micro Conference on Real-Time Systems, pp. 174-183,
Jul. 8-10, 2015.

[7] H. Yun, R. Pellizzoni and P. K. Valsan, “Parallelism-
Aware Memory Interference Delay Analysis for COTS
Multicore Systems,” Proceedings of the 27th Euromicro
Conference on Real-Time Systems, pp. 184-195, Jul. 8-10,
2015.

[8] H. Kim, D. de Niz, B. Andersson, M. Klein, O. Mutlu
and R. Rajkumar, “Bounding Memory Interference Delay
in COTS-based Multi-Core Systems,” Proceedings of the
20th IEEE Real-Time and Embedded Technology and
Applications Symposium (RTAS), pp. 145-154, Apr.
15-17, 2014.

[9] R. Mancuso, R. Dudko, E. Betti, M. Cesati, M. Caccamo
and R. Pellizzoni, “Real-Time Cache Management
Framework for Multi-core Architectures,” Proceedings of
the 19th IEEE Real-Time and Embedded Technology and
Applications Symposium (RTAS), pp. 45-54, Apr. 9-11,
2013.

[10] H. Yun, G. Yao, R. Pellizzoni, M. Caccamo and L. Sha,
“MemGuard: Memory Bandwidth Reservation System
for Efficient Performance Isolation in Multi-core Plat-
forms,” Proceedings of the 19th IEEE Real-Time and

20

25

30

35

40

45

60

65

2

Embedded Technology and Applications Symposium
(RTAS), pp. 55-64, Apr. 9-11, 2013.

Description of Related Art

Most of today’s computers have evolved from using
single core processors to using multicore processors. Typi-
cally, for such computers, each processor hosts multiple
cores that typically run threads (in this document, we refer
to processes and/or threads generically as “threads™) in
parallel.

Although parallelism can generally speed up computing,
it complicates per-thread behavior due to resource sharing:
from cache(s), to bus(es), main memory, and input/output
(I0) device(s). Conflict in resource sharing can cause serious
problems in certain application domains. For example, in
avionics, software is required to pass rigorous certification
procedures to prove real-time performance that is claimed.
With parallelism introduced by the presence of multiple
cores, threads can interfere each other in more complicated
ways due to resource sharing. Existing certifications based
on single-core processor models no longer sustain. Yet how
to certify the software based on a multicore processor model
is still an open problem. As such, it is desirable to have a
technical solution to realize a single-core-equivalent (SCE)
view of multicore computer systems, e.g., [1] and [2]. That
is, although the computer processor hardware has a plurality
of processing cores, threads running on the multicore pro-
cessor can be analyzed as if the threads were running on a
single core processor.

Existing solutions for realizing the SCE view for a
multicore computer system are generally focused on verti-
cally isolating cores and their respective share of resources,
e.g. [3]-[10]. FIG. 1 pictorially depicts this approach. A
multicore computer system 100 comprises a plurality of
cores 110a-110d. Although it is straightforward for a system
designer to allocate level-1 caches (simplified as “L1
caches”; in the following, we use the term “level-h cache”
and “Lh cache” interchangeably, where h=1, 2, . . .)
111a-111d (which are local cache memories) to the cores
110a-110d, the system designer is required to allocate other
commonly-shared computing resources to the cores 110a-
110d. These commonly-shared computing resources include
lower level cache(s) 120, bus(es) 130, main memory 140
and one or more IO devices 150 such as a WiFi transceiver.
Realizing vertical isolation of computing resources depends
heavily on configuration details of the aforementioned com-
monly-shared computing resources. These configuration
details are often proprietary and difficult to obtain. Missing
one of such details can hamper the entire vertical isolation
effort. As more computing resources (and hence configura-
tion details) are often involved in new designs, more effort
is expected to be required in designing vertical isolation of
computing resources.

There is a need in the art for a technique that leads to
simplicity in designing a multicore computer system by a
system designer.

SUMMARY OF THE INVENTION

A first aspect of the present invention is to provide a
multicore computer system having an SCE view.

The multicore computer system comprises a plurality of
stacks and a shared cache. Each stack comprises a process-
ing core and a local cache subsystem coupled thereto. The
local cache subsystem is configured to provide one or more
levels of cache memory for caching data and/or programs

US 10,642,657 B2

3

exclusively for the said processing core. The plurality of
stacks is divided into a client stack and one or more server
stacks. The shared cache comprises one or more shared
cache blocks, each is coupled to the client stack and to one
or more server stacks. The client stack is used for running
one or more client threads, and an individual server stack is
used for running one or more server threads. A client thread
can access any resource on the computer system (e.g. the
client stack, lower level cache(s), bus(es), main memory, 10
devices) except the server stack(s). A server thread, how-
ever, can only access the resources on its hosting server
stack, plus the shared cache block(s) coupled thereto (strictly
speaking, a server thread is also allowed to access the
bus(es) connecting the resources inside the server stack, and
between the server stack and the shared cache block(s)
coupled thereto; but for simplicity, we do not explicitly
identify such bus(es) in the forthcoming description). An
individual shared cache block is configured to provide a next
level of cache memory to both the client stack and a
respective server stack so as to facilitate communication
between the client thread(s) and the server thread(s). Advan-
tageously, the processing core of the individual server stack
is configured such that computing resources utilizable in
executing the server thread(s) are confined to the individual
server stack and the shared cache block coupled thereto.
Hence, an inter-core interference caused by the server
thread(s) to the client thread(s) is isolated to within the
individual server stack, the shared cache block coupled
thereto (and other server stack(s) coupled to this shared
cache block, if any) and the client stack. Thereby, the SCE
view of the multicore computer system is realized.

The multicore computer system may further comprise an
additional cache subsystem coupled to the client stack. The
additional cache subsystem is configured to provide next one
or more levels of cache memory to the client stack.

In one embodiment, the local cache subsystem of each
stack is configured to provide only one level of cache
memory.

In another embodiment, a scratchpad memory (SPM)
and/or other faster-than-main-memory storage components
(simplified as “fast-storage” in the following) is/are used to
serve the purpose of the shared cache block(s).

According to a certain embodiment, the multicore com-
puter system further comprises one or more additional
computing resources coupled to the client stack. The one or
more additional computing resources may include one or
more buses, main memory, and/or IO devices.

A second aspect of the present invention is to provide a
method for forming a multicore computer system having an
SCE view.

The method comprises obtaining a plurality of stacks, and
dividing the plurality of stacks into a client stack and one or
more server stacks. Each stack comprises a processing core
and a local cache subsystem coupled thereto. The local
cache subsystem is configured to provide one or more levels
of cache memory for caching data and/or programs exclu-
sively for the said processing core. The client stack is used
for running one or several client threads, and an individual
server stack is used for running one or several server threads.

The method further comprises: obtaining a shared cache
comprising one or more shared cache blocks, each is
coupled to the client stack and to one or more server stacks;
and configuring an individual shared cache block to provide
a next level of cache memory to both the client stack and a
respective server stack so as to facilitate communication
between the client thread(s) and the server thread(s).

20

25

40

45

60

65

4

In the method, at least the plurality of stacks and the
shared cache are integrated to form the multicore computer
system.

The method additionally comprises configuring the pro-
cessing core of each individual server stack to confine
computing resources utilizable in executing the server
thread(s) to the individual server stack and the shared cache
block coupled thereto. As a result, an inter-core interference
caused by the server thread(s) to the client thread(s) is
isolated to within the individual server stack, the shared
cache block coupled thereto (and other server stack(s)
coupled to this shared cache block, if any) and the client
stack, thereby realizing the SCE view.

Optionally, the method further comprises obtaining an
additional cache subsystem coupled to the client stack, and
configuring the additional cache subsystem to provide next
one or more levels of cache memory to the client stack. In
forming the multicore computer system, the additional cache
subsystem is further integrated into the multicore computer
system.

Other aspects of the present invention are disclosed as
illustrated by the embodiments hereinafter.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 pictorially depicts an existing approach of verti-
cally partitioning computing resources for realizing an SCE
view of a multicore computer system.

FIG. 2 depicts a client-server architecture of a multicore
computer system in a simple but representative case for
illustrating a working principle of realizing the SCE view.

FIG. 3 depicts a multicore computer system having an
SCE view in accordance with an exemplary embodiment of
the present invention.

FIG. 4 depicts, in accordance with an exemplary embodi-
ment of the present invention, a flowchart showing steps of
forming a multicore computer system having an SCE view.

DETAILED DESCRIPTION

The following terms are used herein in the specification
and appended claims. “A core” and “a processing core” are
used interchangeably to mean a processing unit that reads
and executes program instructions. “A single-core proces-
sor” means a computing processor having only one core. “A
single-core computer system” is a computer system contain-
ing only one core. “A multicore processor” means a com-
puting processor containing a plurality of cores where the
cores are configured to operate, or execute instructions,
simultaneously or in parallel. Apart from the plurality of
cores, the multicore processor may be integrated with other
processing components such as a cache, a memory manage-
ment unit (MMU), etc. “A multicore computer system” is a
computer system containing a plurality of cores where the
cores are configured to operate, or execute instructions,
simultaneously or in parallel. To realize (or to have) an “SCE
view” means that a multicore computer system is configured
so that the real-time schedulability of any given task set on
the system is equivalent to the real-time schedulability of a
same (or deterministically transformed) task set on a single-
core computer system.

In the present disclosure, a client-server architecture is
disclosed for realizing an SCE view of a multicore computer
system so as to achieve simplicity in system implementation
and reduction in dependency on hardware and/or software
configuration details of computing resources used in build-
ing the system. The working principle of the disclosed

US 10,642,657 B2

5

client-server architecture is hereinafter illustrated by, with-
out loss of generality, considering a simple but representa-
tive case that resources utilizable in a multicore computer
system are limited to a plurality of cores, level-1 (L1) caches
and level-2 (L2) caches. FIG. 2 depicts a client-server
architecture of the aforesaid case. A multicore computer
system 200 having this architecture comprises a plurality of
processing cores 210, 211-1:n, a plurality of L1 caches 215,
216-1:n and an L2 cache 220.

In the system 200, one of the cores 210, 211-1:n is chosen
as the unique “client core” in the client-server architecture.
The client core is arranged to run client threads. A server
core is arranged to run server threads. Without loss of
generality, the core C, 210 is chosen as the client core. All
the other n cores 211-1:n involved in the client-server
architecture are “server cores,” respectively denoted as C,
@i=1, . .., n). The client core C, 210 and its exclusive L1
cache 215 (denoted as L, ,,) are collectively referred to as a
“client stack” 230. The exclusive L1 cache 215 is a local
cache for caching data and/or programs exclusively for the
client core C, 210. Fori€{1, 2, . . ., n}, the server core C,
211-i and its exclusive L1 cache 216-i (denoted as L, ,) are
grouped as the ith server stack 231-i. Similarly, the exclusive
L1 cache 216-i is a local cache used for caching data and/or
programs exclusively for the server core C, 211-i.

The L2 cache 220 is organized as follows. The 1.2 cache
220 includes a plurality of independent cache blocks 222-
1:n. Server threads running on an individual server core C,
211-,i€{1, 2, . . ., n}, can only access L, , 216-i (i.e. the
L1 cache in the same server stack 231-i) and a designated
cache block (namely, S, 222-i) in the L2 cache 220. The
cache block S, 222-i is also accessible by client threads
running on the client core C, 210. That is, S, 222-i is the
shared storage to allow communications between the client
threads on C, 210 and the server threads on C, 211-i. Hence,
S, 222-i is named as the ith shared cache block.

An advantageous arrangement for realizing the SCE view
of the multicore computer system 200 is that server threads
running on C, 211-i, i€{1, 2, . . ., n}, cannot access any
computing resource other than the ith server stack 231-i and
S, 222-i. In this way, interferences caused by the server
thread(s) running on C, 211-i are isolated within the ith
server stack 231-i, S; 222-i (and other server stack(s)
coupled to S, 222-i, if any), and the client stack 230. There
is no need to consider inter-core interferences caused by the
server core(s) 211-1:n at lower-level cache(s) (i.e. lower
than the 1.2 cache 220, if there is any), bus(es), main
memory and IO device(s). When scheduling resources, it is
only required to analyze the client threads running on the
client core C, 210. Executions in the server threads are
reflected as blocking (or non-blocking) reads/writes (of the
corresponding shared cache block) in the corresponding
client thread’s execution. Thus, it leads to a convenient,
simple way to realize the SCE view, and this realization is
much less dependent on hardware and/or software configu-
ration details.

It is also easy to migrate legacy programs to the above-
disclosed client-server architecture. Those skilled in the art
can examine a program’s code (including, but not limited to,
a source code, an intermediate code (e.g., an assembly code),
and/or a machine code) to identify excerpts of the code,
where each of the identified excerpts is frequently executed
and has a respective memory/cache footprint size small
enough to fit in a server stack. Those skilled in the art may
revise each of such excerpts to run as a server thread, and
revise the remainder of the code to run as one or more client
threads on the client core C, 210.

20

25

40

45

60

65

6

Based on the above-disclosed client-server architecture,
and by generalizing the architecture for more than two levels
of cache memory, the present invention is detailed as fol-
lows.

A first aspect of the present invention is to provide a
multicore computer system having an SCE view. Exemplar-
ily, the system is illustrated with reference to FIG. 3, which
depicts a multicore computer system 300 that realizes an
SCE view in accordance with an exemplary embodiment of
the present invention.

The multicore computer system 300 comprises a plurality
of stacks 330, 331-1:n. Each of the stacks 330, 331-1:n
comprises a processing core and a local cache subsystem
coupled thereto. For example, a certain first stack 330
includes a first core 310 and a first local cache subsystem
315. Similarly, the remaining stacks 331-1:n comprise cores
311-1:n and local cache subsystems 316-1:n, respectively.
An individual local cache subsystem is configured to pro-
vide one or more levels of cache memory for caching data
and/or programs exclusively for the processing core of the
corresponding stack. For instance, in the first stack 330, the
first local cache subsystem 315 is formed by a cascade of an
L1 cache 345-1 up to a level-k (Lk) cache 345-k, where the
L1 cache 345-1 is coupled to the first core 310. As another
example, a second local cache subsystem 316-» of a second
stack 331-z is a cascade of an L1 cache 346-1 up to an Lk
cache 346-k. In the special case that there is only one level
of cache memory in the first local cache subsystem 315 (as
shown in FIG. 2), k is equal to 1. The plurality of stacks 330,
331-1:n is divided into a client stack 330 and one or more
server stacks 331-1:n. In the special case that there are only
two stacks in the system 300, n takes a value of 1. The client
stack 330 is used for running client threads (e.g., a client
thread 340). An individual server stack (e.g., the server stack
331-n) is used for running server threads (e.g., a server
thread 341).

The system 300 further comprises a level-(k+1) cache 320
that comprises one or more shared cache blocks 322-1:n.
Each shared cache block 322-1:n is coupled to one or more
server stacks 331-1:n. For example, the shared cache block
322-n is coupled to the server stack 331-n. Furthermore,
each shared cache block 322-1:n is coupled to the client
stack 330. As a result, each shared cache block 322-1:n
provides a communication channel between the client stack
330 and the corresponding server stack (e.g., the server stack
331-n). In this way, communication between the client
thread(s) 340 and the server thread(s) 341 is facilitated.

Furthermore, the processing core of an individual server
stack is configured such that computing resources utilizable
in executing server threads by the aforesaid processing core
are confined to the individual server stack and the shared
cache block coupled thereto. As an example for illustration,
consider execution of the server thread 341 by the core 311-»
in the server stack 331-n. The computing resources usable
for executing the server thread 341 by the core 311-n are
confined to the core 311-z itself, the local cache subsystem
316-2 and the shared cache block 322-r. As a result of this
confinement, an inter-core interference caused by a server
thread 341 to a client thread 340 is isolated to within the
server stack 331-n, the shared cache block 322-n coupled
thereto (and other server stack(s) coupled to this shared
cache block 322-n, if any) and the client stack 330. This
isolation of the inter-core interference simplifies estimation
of worst case execution time (WCET) of task sets, thereby
realizing the SCE view of the multicore computer system
300.

Other aspects of the system 300 are elaborated as follows.

US 10,642,657 B2

7

The system 300 may further include additional computing
resources 390 usable by the core 310 of the client stack 330
in running the client thread(s) 340. These additional com-
puting resources 390 may include a main memory, one or
more IO devices, etc.

Depending on practical situations, an additional cache
subsystem 355 coupled to the client stack 330 may be
desirable to provide a cache for caching data and/or pro-
grams when the core 310 accesses the additional computing
resources 390 in running the client thread(s) 340. For
example, if the local cache subsystem 315 has only an L1
cache, it is often advantageous to include at least an L2
cache in the additional cache subsystem 355 for achieving a
greater percentage of hits when the core 310 accesses the
main memory. The additional cache subsystem 355 is con-
figured to provide one next level of cache memory (namely,
an L(k+1) cache 365-1) to the client stack 330. Depending
on practical situations, alternatively the additional cache
subsystem 355 may be configured to provide plural subse-
quent levels of cache memory (e.g., L(k+1) cache 365-1 to
L(k+q) cache 365-¢) to the client stack 330.

In some implementations, one or more of the cores 310,
311-1:n may each be connected to a scratchpad memory
(SPM) and/or other faster-than-main-memory storage com-
ponents (denoted as “fast-storage” in the following). In the
system 300, the SPM and/or other fast-storage may be used
to serve the purpose of the shared cache block(s) 322-1:n.

Each of the cores 310, 311-1:n may be a general-purpose
processing unit, or a specialized processing unit such as a
graphics processing unit (GPU) or a secure crypto processor.
In the system 300, the cores 310, 311-1:n may be identical
or may not entirely be the same. The present invention is not
intended to limit the types of individual cores used in
implementing the system 300.

In practical implementation, the cores 310, 311-1:n and
various caches (including the local cache subsystems 315,
316-1:n, the shared cache 320, and the additional cache
subsystem 355 if present) are often fabricated on an inte-
grated circuit (IC) as a processor chip 305. The additional
computing resources 390 in the system 300 may also be
integrated with the cores 310, 311-1:n and the aforemen-
tioned various caches to form a system-on-chip (SoC). In
this case, the disclosed client-server architecture may be
referred to as a system-on-chip client-server (SoCCS) archi-
tecture.

A second aspect of the present invention is to provide a
method for forming a multicore computer system having an
SCE view. The development of the method is based on the
rationale of developing the multicore computer system 300
as disclosed above. The method is illustrated with the aid of
FIG. 4, which depicts a flowchart showing exemplary steps
of forming the multicore computer system with the SCE
view.

In a step 410, a plurality of stacks is obtained. Each stack
comprises a processing core and a local cache subsystem
coupled thereto. The local cache subsystem is configured to
provide one or more levels of cache memory for caching
data and/or programs exclusively for the aforesaid process-
ing core.

The plurality of stacks is divided into a client stack and
one or more server stacks in a step 420. The client stack is
used for running client thread(s). An individual server stack
is used for running server thread(s).

Afterwards, a shared cache is obtained in a step 430. The
shared cache comprises one or more shared cache blocks,
each is coupled to the client stack and to the one or more

25

35

40

60

65

8

server stacks. In some implementations, SPM and/or other
fast-storage may be used to serve the purpose of the shared
cache block(s).

In a step 440, configure an individual shared cache block
to provide a next level of cache memory to both the client
stack and a respective server stack. Thereby, communication
between the client thread(s) and the server thread(s) is
facilitated and enabled.

Optionally, an additional cache subsystem coupled to the
client stack is obtained in a step 450. Subsequently in a step
460, configure the additional cache subsystem to provide
next one or more levels of cache memory to the client stack.

After the shared cache and the plurality of stacks are
obtained, in a step 470 the multicore computer system is
formed by integrating at least the plurality of stacks and the
shared cache. If the additional cache subsystem is present,
the additional cache subsystem is also integrated into the
multicore computer system in the step 470.

In a step 480, configure the processing core of the
individual server stack to confine computing resources uti-
lizable in executing the server thread(s) to the individual
server stack and the shared cache block coupled thereto. As
a result, an inter-core interference caused by the server
thread(s) to the client thread(s) is isolated to within the
individual server stack, the shared cache block coupled
thereto (and other server stack(s) coupled to this shared
cache block, if any) and the client stack. Thereby, the SCE
view is realized for the multicore computer system.

The present invention may be embodied in other specific
forms without departing from the spirit or essential charac-
teristics thereof. The present embodiment is therefore to be
considered in all respects as illustrative and not restrictive.
The scope of the invention is indicated by the appended
claims rather than by the foregoing description, and all
changes that come within the meaning and range of equiva-
lency of the claims are therefore intended to be embraced
therein.

What is claimed is:

1. A multicore computer system comprising:

a plurality of stacks, each stack comprising a processing
core and a local cache subsystem coupled thereto, the
local cache subsystem being configured to provide one
or more levels of cache memory for caching data or
programs, or both, exclusively for the said processing
core, the plurality of stacks being divided into a client
stack and one or more server stacks, the client stack
being used for running one or more client threads, an
individual server stack being used for running one or
more server threads; and

a shared cache comprising one or more shared cache
blocks, each coupled to the client stack and to the one
or more server stacks, an individual shared cache block
being configured to provide a next level of cache
memory to both the client stack and a respective server
stack so as to facilitate communication between the one
or more client threads and the one or more server
threads;

wherein:

the processing core of the individual server stack is
configured such that computing resources utilizable in
executing the one or more server threads are confined
to the individual server stack and the shared cache
block coupled thereto, isolating an inter-core interfer-
ence caused by the one or more server threads to the
one or more client threads to within the individual
server stack, the shared cache block coupled thereto,
any server stack coupled to this shared cache block, and

US 10,642,657 B2

9

the client stack to thereby realize a single-core-equiva-
lent (SCE) view of the multicore computer system.

2. The multicore computer system of claim 1 further
comprising:

an additional cache subsystem coupled to the client stack,

the additional cache subsystem being configured to
provide next one or more levels of cache memory to the
client stack.

3. The multicore computer system of claim 2, wherein the
system is formed as an integrated circuit chip.

4. The multicore computer system of claim 2, wherein the
system is formed as a system-on-chip.

5. The multicore computer system of claim 1, wherein the
local cache subsystem of each stack is configured to provide
only one level of cache memory.

6. The multicore computer system of claim 5, wherein the
system is formed as an integrated circuit chip.

7. The multicore computer system of claim 5, wherein the
system is formed as a system-on-chip.

8. The multicore computer system of claim 1, wherein a
scratchpad memory and/or other fast-storage is used to serve
the purpose of the one or more shared cache blocks.

9. The multicore computer system of claim 8, wherein the
system is formed as an integrated circuit chip.

10. The multicore computer system of claim 8, wherein
the system is formed as a system-on-chip.

11. The multicore computer system of claim 1, wherein
each core is a general-purpose processing unit or a special-
ized processing unit.

12. The multicore computer system of claim 11, wherein
the specialized processing unit is a graphics processing unit
(GPU) or a secure crypto processor.

13. The multicore computer system of claim 11, wherein
the system is formed as an integrated circuit chip.

14. The multicore computer system of claim 11, wherein
the system is formed as a system-on-chip.

15. The multicore computer system of claim 1 further
comprising:

one or more additional computing resources coupled to

the client stack, wherein the one or more additional
computing resources may include one or more buses,
main memory, and/or input/output (JO) devices.

16. The multicore computer system of claim 15, wherein
the system is formed as a system-on-chip.

17. The multicore computer system of claim 1, wherein
the system is formed as an integrated circuit chip.

5

15

20

25

40

45

10

18. The multicore computer system of claim 1, wherein
the system is formed as a system-on-chip.

19. A method for forming a multicore computer system
having a single-core-equivalent (SCE) view, the method
comprising:

obtaining a plurality of stacks, wherein each stack com-

prises a processing core and a local cache subsystem
coupled thereto, the local cache subsystem being con-
figured to provide one or more levels of cache memory
for caching data and, or programs, or both, exclusively
for the said processing core;

dividing the plurality of stacks into a client stack and one

or more server stacks, wherein the client stack is used
for running one or more client threads, and an indi-
vidual server stack is used for running one or more
server threads;

obtaining a shared cache comprising one or more shared

cache blocks, each coupled to the client stack and to
one or more server stacks;
configuring an individual shared cache block to provide a
next level of cache memory to both the client stack and
a respective server stack so as to facilitate communi-
cation between the one or more client threads and the
one or more server threads;
integrating at least the plurality of stacks and the shared
cache to form the multicore computer system; and

configuring the processing core of the individual server
stack to confine computing resources utilizable in
executing the one or more server threads to the indi-
vidual server stack and the shared cache block coupled
thereto, whereby an inter-core interference caused by
the one or more server threads to the one or more client
threads is isolated to within the individual server stack,
the shared cache block coupled thereto, any server
stack coupled to this shared cache block, and the client
stack to thereby realize the SCE view.

20. The method of claim 19 further comprising:

obtaining an additional cache subsystem coupled to the

client stack;

configuring the additional cache subsystem to provide

next one or more levels of cache memory to the client
stack; and

in forming the multicore computer system, further inte-

grating the additional cache subsystem into the multi-
core computer system.

* *® *® *® *®

