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ABSTRACT:

Range normalization is a common data pre-process that aims to improve the radiometric quality of airborne LiDAR data. This radio-
metric treatment considers the rate of energy attenuation sustained by the laser pulse as it travels through a medium back and forth
from the LiDAR system to the surveyed object. As a result, the range normalized intensity is proportional to the range to the power of
a factor a. Existing literature recommended different a values on different land cover types, which are commonly adopted in forestry
studies. Nevertheless, there is a lack of study evaluating the range normalization on multispectral airborne LiDAR intensity data. In
this paper, we propose an overlap-driven approach that is able to estimate the optimal a value by pairing up the closest data points of
two overlapping LiDAR data strips, and subsequently estimating the range normalization parameter a based on a least-squares adjust-
ment. We implemented the proposed method on a set of multispectral airborne LiDAR data collected by a Optech Titan, and assessed
the coefficient of variation of four land cover types before and after applying the proposed range normalization. The results showed
that the proposed method was able to estimate the optimal a value, yielding the lowest cv, as verified by a cross validation approach.
Nevertheless, the estimated a value is never identical for the four land cover classes and the three laser wavelengths. Therefore, it is not
recommended to label a specific a value for the range normalization of airborne LiDAR intensity data within a specific land cover type.
Instead, the range normalization parameter is deemed to be data-driven and should be estimated for each LiDAR dataset and study area.

1. INTRODUCTION

Fine-scale land cover monitoring has taken a great leap forward
with the advent of airborne light detection and ranging (LiDAR)
technology. Airborne LiDAR is capable of probing the Earth’s
surface with a number of partially overlapping flight lines, result-
ing in a set of high-density 3D point clouds. The laser scanning
method is deemed to be a favorable alternative than the tradi-
tional optical imaging system with respect to the data accuracy
and 3D capability (Yan et al., 2015). Nevertheless, conventional
monochromatic LiDAR system still has its limitation, since only
a single record of reflectance measurement (i.e. intensity, I) can
be obtained. Although data fusion with on-board camera or an-
cillary imaging sensor can be adopted to compensate the lack of
spectral measurements, a multispectral LiDAR system, which is
able to collect the laser intensity with multiple wavelengths, is
still desired. Recently, a number of experimental multispectral
and hyperspectral LiDAR systems have been invented for labora-
tory testings and short-range measurements (Hakala et al., 2012;
Wei et al., 2012). The first commercial topographic multispec-
tral airborne LiDAR system has been rolled out in late 2014.
Teledyne Optech announced the world’s first tri-laser wavelength
system, Optech Titan, which equips with three channels: green,
near-infrared (NIR) and infrared (IR). RIEGL also launched a
dual-laser wavelength system, RIEGL VQ-1560i-DW, which of-
fers measurements of green and IR lasers. All these develop-
ments further improve the capability of LiDAR in different ap-
plications, such as land cover mapping (Morsy et al., 2017), tree
species classification (Yu et al., 2017), forest stand characteriza-
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tion (Dalponte et al., 2018), and computation of spectral vegeta-
tion index (Okhrimenko and Hopkinson, 2019).

Similar to microwave remote sensing, airborne LiDAR data
should undergo certain radiometric pre-processing in order to
maximize its full potential for the aforementioned analyses. The
backscattered laser energy, though somehow correlates to the
spectral reflectance, suffers a certain degree of attenuation due
to the environmental and system-induced distortions. Therefore,
different radiometric calibration, correction and normalization
techniques have been developed to improve the LiDAR intensity
homogeneity (Kashani et al., 2015). These techniques mainly
consider the effects of range, incidence angle and atmospheric
attenuation, all of which can be corrected with reference to a
physical or empirical model (Höfle and Pfeifer, 2007). As a sim-
plified version of radiometric correction, range normalization has
been commonly used, particularly in forestry studies (Hopkin-
son, 2007). Range normalization simply takes into account of the
effect of range without considering other parameters. This thus
leads to the normalized intensity (Ic) being proportional to the
range (R) to the power of a factor a, i.e.

Ic = I

[
R

Rr

]a

(1)

where Rr can be referred to a reference range, such as the min-
imum range value found in the LiDAR dataset. The correction
parameter a represents the rate of energy attenuation sustained
by the laser pulse as it travels through a medium back and forth
from the LiDAR system to the surveyed object. Although the pa-
rameter a is recommended to set as two according to the radar
(range) equation (Jelalian, 1992), such a setting may not always
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yield to the best intensity homogeneity. Therefore, research ef-
forts can be found in searching for an optimal a value for the
range normalization on monochromatic airborne LiDAR data.

By examining a range of a value, Korpela et al. (2010) concluded
that the range-normalized intensity variation, as measured by co-
efficient of variation, was minimum when awas set as two for tar-
get objects with well-defined large surfaces, three for linear fea-
tures such as electric wires, and four for point-like target objects.
Regarding natural features, the optimal a value ranging from 2.3
to 2.5 deems to be ideal for grass cover or barely vegetation (Ko-
rpela, 2008). The author explained the intensity variation found
on different vegetation objects, such as trees and shrubs, which
can be attributed to the differences in leaf size, shape, orienta-
tion, and density of foliage and branches. After the implemen-
tation of range and automatic gain control (AGC) normalization,
the correction parameter a with a value of two was appropriate
for vegetation in Scandinavia, and the accuracy of tree species
classification results could be improved up to near 90% for pine,
spruce, and birch. These studies suggested that range normaliza-
tion is an effective process in vegetation analysis if the intensity
value is used. Similar findings can be found in Gatziolis (2011),
where setting the a value close to two can lead to a reduction of
coefficient of variation by 55.3% in forest canopies.

Despite these attempts, most of the existing studies focus on the
monochromatic airborne LiDAR system, and there is a lack of
studies examining the range normalization method on multispec-
tral airborne LiDAR data. In addition, it is impractical to evalu-
ate a range of a values all the time for different LiDAR datasets.
Therefore, this paper aims to propose an automatic approach to
estimate the optimal a value based on the use of overlapping data
strips. This method is implemented and compared to the results
derived by range normalization on a multispectral airborne Li-
DAR dataset collected by Optech Titan. Thus, the coefficient of
variation found on different land cover classes with respect to
different parameter a and laser wavelengths can be used as an
indicator to measure the improvement of intensity homogeneity.

2. ESTIMATION OF RANGE-NORMALIZATION
PARAMETER

Assuming a LiDAR dataset (L) is composed of two partially
overlapped data strips, L1 and L2 (see Fig. 1). The process be-
gins by pairing up n number of closest points of the two LiDAR
data strips based on a kd-tree search. Since a pair of closest Li-
DAR points are assumed to be located on the same surface/object,
therefore, the normalized intensity value (Ic) should be identical.
As a result, the Eq. 1 can be reformulated as:

I1

[
R1

Rr

]a

= I2

[
R2

Rr

]a

(2)

The above Eq. 2 leads to the following linearized form after tak-
ing a logarithm on both sides of the equation:

ln

[
R2

R1

]
· a = ln

[
I1
I2

]
(3)

or
Ax = b (4)

Thus, the parameter a can be estimated through using a least-
squares adjustment:

x = (AᵀA)−1Aᵀb (5)

Once the parameter a is estimated, it can be substituted back to
Eq. 1 in order to compute the normalized intensity Ic for L1 and
L2 .

Figure 1. Overlapping LiDAR data strips.

3. EXPERIMENTAL SETUP

3.1 Multispectral LiDAR Data

The range normalization method was tested on a multispectral
airborne LiDAR dataset collected by Optech Titan, which has
three laser channels: channel 1 (1550 nm), channel 2 (1064 nm)
and channel 3 (532 nm). The collected LiDAR dataset covers the
Petawawa Research Forest, Ontario, Canada. The scanning con-
figuration of LiDAR survey can be summarized as follows: pulse
repetition frequency = 375kHz, scan frequency = 40 Hz, scan an-
gle = ±20◦, and flying height ≈ 1, 100 m. As a result, the mean
point density of channel 1 to 3 is ,respectively, 11.9 points/m2,
12.4 points/m2, and 4.8 points/m2, yielding to an approximate
0.5 m of mean point spacing. Although a total of 33 LiDAR
data strips were intentionally collected to study forest attribute
modelling (van Ewijk et al., 2019) and tree species classification
(Rana et al., 2018), we selected two pairs of LiDAR data strips,
with an approximate 55% of overlapping in each, to study the
intensity variation before and after implementing the proposed
range normalization.

3.2 Measurement of Intensity Homogeneity

To calculate the optimal parameter a value, four land cover types
found within the overlapping region of LiDAR data strips were
selected to evaluate the range normalization. Samples of data
points of tree top, rooftop, grass cover and road were selected
and extracted. These four types of land cover have different val-
ues of surface roughness, shape, size, and spectral reflectance.
The intensity homogeneity can be measured by computing the
coefficient of variation (cv) on the multispectral LiDAR data be-
fore and after implementing the range normalization. The cv can
be computed as:

cv =
σ(ci)

µ(ci)
(6)

where σ refers to the standard deviation of the intensity value of
the selected LiDAR sample data points of a land cover class (ci),
and µ is the respective mean intensity value. Computation of cv
was implemented on the four land cover types with respect to the
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Figure 2. Experimental multispectral LiDAR data (from left to
right: grass cover, road, roof top, tree top; from top to bottom:

channel 1 (1550 nm), channel 2 (1064 nm), channel 3 (532 nm)
and the multispectral airborne LiDAR data).

three laser channels. A reduction of cv after implementing the
range normalization implies an improvement of intensity homo-
geneity.

3.3 Cross Validation of Optimal Parameter

Although cv was used to measure the effect of range normaliza-
tion on the intensity homogeneity, the cross validation approach
adopted by (Korpela et al., 2010) was implemented in order to
compute and obtain an optimal value of parameter a for compar-
ison. A pre-defined set of a value from 0.1 to 6.0 with a 0.1-
interval was examined in Eq. 1 for the four land cover classes.
The optimal parameter a was achieved by looking for the lowest
value of cv of the corrected assembly of data strips. The multi-
spectral airborne LiDAR data with three laser wavelengths prob-
ing the four land cover classes - tree top, roof top, grass cover
and road also underwent the range normalization using the cross
validation approach.

4. RESULTS AND DISCUSSION

4.1 Impact of Range Normalization on Single Data Strip

The results of range normalization on single LiDAR data strip
are shown in Fig. 3. The 12 sub-figures present the cv against the
parameter a on the range-normalized intensity data. In each of
the subfigures, the horizontal line represents the cv of the original
LiDAR intensity data. For the data returns of treetop, there is
no improvement of cv when applying the range normalization in
channel 1, where the cv increases together with the parameter
a. In channel 2, the cv slightly rises above the cv of original
intensity when the value of a is less than 0.5. The cv gradually
drops when the a value increases. The cv still decreases even a
reaches to 6.0. As a result, the cv is reduced by 4.22% at the
largest a inputted. Ironically, the cv against a curve fluctuates
in channel 3. The cv remains at original when a is below 0.8. It

touches the lowest cv when a is set to 4.3, resulting in a reduction
of 3.38%.

Considering the data returns of rooftop, the cv against a curve
follows a trend similar to a U-shape in channel 1. The cv reaches
to an optimal a value of 4.1, leading to a reduction by 5.58%.
In channel 2, the cv behaves similar to that of tree top. The cv
continuously drops when a increases from 0.0 to 6.0. The cv
is reduced by 9.56% when a is set to 5.8. In channel 3, the cv
remains at the original value when a ranges from 0.1 to 0.8. The
value of cv subsequently rises above the cv value of the original
intensity when a ranges from 0.9 to 1.3. Afterwards, the cv drops
at a = 1.4 and onwards. Finally, the cv fluctuates when a is set
larger than 3.0 and reaches the bottom value when a is equal to
4.6, leading to a 9.22% of cv reduction.

For data returns of grass cover, the cv slightly increases when a
ranges from 0.6 to 0.9 in channel 1. The cv reduces when a is
greater than 1.2 and reaches the first local minimum at a = 1.8.
It bounds up and drops to the second local minimum when a is
equal to 5.3, which results in a reduction of 2.37% in cv. In chan-
nel 2, it slightly rises above the cv of original intensity when a
is set between 1.0 and 2.3. It forms a U-shape afterwards and
reaches to the lowest value of cv at a = 4.0, resulting in a reduc-
tion of 2.19%. Finally, the cv stays at the original value when a
ranges from 0.1 to 4.6 in channel 3. The cv increases at a negli-
gible value when the a value is between 4.7 and 4.8. It falls to a
minimum when a is 5.9 with a total of 2.13% of reduction. For
the data samples extracted for road, the cv maintains at its orig-
inal value when a ranges from 0.1 to 0.4 in channel 1. It meets
the first local minimum of U-shape at a = 1.6 and the second lo-
cal minimum at a = 4.6 with a 9.57% reduction in cv value. In
channel 2, the cv remains unchanged till a = 0.9. It rises over the
original cv value and bounds back in between 0.9 and 1.8. The
cv value drops and follows a U-shape afterwards. Finally, the cv
reaches to the lowest point when a = 3.7, having a 4.5% of re-
duction. In channel 3, the cv remains steady at the original value
when a ranges from 0.1 to 2.1. It rises at a minor value at a = 2.2
and 2.3, and the cv drops against the value of a to a bottom at a
= 4.6, resulting in a 1% reduction.

Among the 12 sub-figures covering channel 1 to channel 3 for
the four different types of land cover, the results of range normal-
ization are diverse and inconsistent. Regarding the percentage of
reduction in cv, only three segments reach near 9% (i.e. channels
2 and 3 of on rooftop, and channel 1 of road) and the reduction of
cv of all the other varies from 1% to 5.58%. Concerning the trend
between cv and a, only the results of grass and road in channel
2 form a curve, which follows a U-shape pattern with an obvi-
ous local minimum. Also, the cv remains steady at certain value
of a in channel 3 across the four different types of land cover.
It is interesting that the resulting cv of tree top in channel 1 goes
upwards above the original cv when the a value increases. There-
fore, the range normalization model has no effect on this set of
data return from tree top in individual LiDAR data strip.

4.2 Impact of Range Normalization on Overlapping Data
Strips

Referring to Fig. 4, the cv against the parameter a of data returns
of different types of land cover within the overlapping region of
data strips are presented in the respective 12 sub-figures. In gen-
eral, the majority of the the results follow a trend of quadratic
equation. The lowest cv corresponding to the value of a can be
snapped from the U-curve. For the data returns of tree top in
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(a) Channel 1 - 1550 nm (Grass) (b) Channel 1 - 1550 nm (Road) (c) Channel 1 - 1550 nm (Roof top) (d) Channel 1 - 1550 nm (Tree top)

(e) Channel 2 - 1064 nm (Grass) (f) Channel 2 - 1064 nm (Road) (g) Channel 2 - 1064 nm (Roof top) (h) Channel 2 - 1064 nm (Tree top)

(i) Channel 3 - 532 nm (Grass) (j) Channel 3 - 532 nm (Road) (k) Channel 3 - 532 nm (Roof top) (l) Channel 3 - 532 nm (Tree top)

Figure 3. Results of range normalization on individual LiDAR data strip: cv against the parameter a

channel 1, the cv is below the cv of the original intensity data
when a ranges from 0.1 to 2.8. It reaches to the lowest value at
a = 1.3 with a 0.49% of reduction in cv. The curve of channel 2
lays below the original cv all the time. At a = 3.0, the cv comes
to the lowest with 1.9% of reduction. In channel 3, the cv goes
down from a = 0.5 and reaches to the bottom at a = 0.6, resulting
in a reduction by 1.88%. The cv rises above the cv of original
intensity data, when a is 0.9 and onwards.

Regarding the data returns of roof top, the cv reaches the bottom
at a = 2.3 with a total reduction of 2.71% in channel 1. In chan-
nel 2, the bottom is at a = 5.9 and cv is reduced by 4.45%. In
channel 3, the lowest point of curve is at a = 4.4 with a reduction
of 27.54%. For the data returns of grass cover, the cv has a more
significant reduction of cv. It is reduced mostly by 23.84% at a
= 3.1 in channel 1. In channel 2, the cv reaches to its lowest at a
= 2.3 with a total decrease of 11.28%, and the cv increases above
the original value of cv when a is greater than 4.7. In channel 3,
the cv is significantly reduced by 42.90% at a = 3.2. Finally, the
data return of road feature also has a notable improvement of in-
tensity homogeneity in channel 1, where the lowest cv is recorded
when a is set to be 2.9. In channel 2, the cv reaches to its lowest
at a = 2.3, resulting to a 9.12% reduction, and subsequently, the
cv rises above the original value at a = 4.7 and onwards. In chan-
nel 3, the cv is at the bottom at a = 3.4 with a total of 31.79% of
reduction.

After applying the range normalization on the overlapping Li-

DAR data strips, the reduction of cv is significant (up to 42.9%),
particularly on the data returns of rooftop in channel 3, grass
cover in both channels 1 and 3, and road in both channels 1 and
3. The range normalization does not seem to be effective on the
returns of tree top, where the reduction of cv is found only rang-
ing from 0.49% to 1.90%. Among the rooftop, grass and road,
the effect of range normalization in channel 2 are less compara-
ble (4.45% to 11.28% reduction in cv) to that of channels 1 and 3.
In addition, the reduction of cv found on the roof top of channel
1 is low (i.e., 2.71%).

4.3 Estimation of Optimal Parameter based on Overlapping
LiDAR Data Strips

As reported in section 2, the optimal parameter of range normal-
ization can be estimated based on the overlapping LiDAR data
strips. Table 1 summarizes the estimated a value together with
the corresponding cv determined by the proposed method and
the cross validation method (Fig. 4). Among the four land cover
classes, the estimated a value of road feature found in the three
channels has a difference of 0.1 between the proposed method
and the cross validation. The computed cv is identical between
the two methods in the three laser channels.

In the data samples of grass cover, the estimated a value of chan-
nels 2 and 3 are close. The proposed method estimates the opti-
mal a as 2.255 and 3.116, while the cross validation reveals the
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(a) Channel 1 - 1550 nm (Grass) (b) Channel 1 - 1550 nm (Road) (c) Channel 1 - 1550 nm (Roof top) (d) Channel 1 - 1550 nm (Tree top)

(e) Channel 2 - 1064 nm (Grass) (f) Channel 2 - 1064 nm (Road) (g) Channel 2 - 1064 nm (Roof top) (h) Channel 2 - 1064 nm (Tree top)

(i) Channel 3 - 532 nm (Grass) (j) Channel 3 - 532 nm (Road) (k) Channel 3 - 532 nm (Roof top) (l) Channel 3 - 532 nm (Tree top)

Figure 4. Results of range normalization on overlapping LiDAR data strips: cv against the parameter a

Table 1. A comparison between the estimated a value by the
proposed and the cross validation.

Proposed Method Cross Validation
a cv a cv

Grass Channel 1 3.482 0.164 3.1 0.163
Channel 2 2.255 0.194 2.3 0.194
Channel 3 3.116 0.099 3.2 0.098

Road Channel 1 2.978 0.107 2.9 0.107
Channel 2 2.389 0.212 2.3 0.212
Channel 3 3.514 0.133 3.4 0.133

Rooftop Channel 1 2.251 0.163 2.3 0.163
Channel 2 4.866 0.290 5.9 0.289
Channel 3 4.420 0.069 4.4 0.070

Tree Channel 1 1.449 0.588 1.3 0.588
Channel 2 2.436 0.619 3.0 0.619
Channel 3 1.822 0.278 0.6 0.266

lowest cv being found when a is 2.3 and 3.2 in the two respec-
tive channels. Although the a value of channel 1 does not seem
close (i.e. proposed method = 3.482 and cross validation = 3.1),
the determined cv by both methods are almost identical. Similar
achievement can be found in the rooftop. The estimated a value
by the proposed method is close to the cross validation method
with a difference of 0.1 in channels 1 and 3. In channel 2, the a
value estimated by the proposed method is 4.866, and the cross

validation reveals the optimal a would be 5.9. Despite a signifi-
cant difference in the a value, the cv determined by both methods
is almost the same. Finally, the range-normalized LiDAR inten-
sity data of channels 1 and 2 found on tree top behaves similar as
what has been reported in channel 2 of rooftop. An identical cv is
found despite the difference of the determined a value. However,
the proposed method being implemented on the tree top of chan-
nel 3 yields the worse result. The estimated cv has a difference
of 0.012 between the two methods, where the proposed method
estimates the optimal a as 1.822 but this value is found to be 0.6
as shown in Fig. 4(i).

4.4 Discussion

Based on the experiment, one can note that there is no consistent
a value for the range normalization of multispectral airborne Li-
DAR intensity data with respect to the land cover classes. Even
within the same land cover class, the optimal a value is different
for the three laser wavelengths. Therefore, it is mostly impracti-
cal to recommend a specific a value for the range normalization
of LiDAR intensity data for a specific land cover type. In addi-
tion, it is surprised that the a value even goes beyond the value
of four (e.g. rooftop data samples of channels 2 and 3), which
has been set as the maximum value in the previous studies (Kor-
pela, 2008; Korpela et al., 2010; Gatziolis, 2011). Regardless of
the land cover type, the proposed method can consistently yield
the best estimation of a value, which is able to generate the low-
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est cv. In future, other parameters, such as the incidence angle, 
atmospheric attenuation, etc. can also be considered in the nor-
malization / correction model. The use of robust statistics can be 
incorporated in the parameter estimation so as to cater the appear-
ance of outliers. Finally, a radiometric pre-process, i.e. LiDAR 
scan line correction (Yan and Shaker, 2018), can be implemented 
prior to the range normalization, since the multispectral airborne 
LiDAR data is observed with a notable banding effect (Fig. 2).

5. CONCLUSIONS

Range normalization is a common pre-process to improve the 
radiometric quality of airborne LiDAR intensity data, and this 
method was only examined on monochromatic LiDAR intensity 
data in the existing literature. In this study, an in-depth exami-
nation of the range normalization model was achieved with the 
multispectral airborne LiDAR data collected by Optech Titan. 
Based on our experimental testing, it is noted that the impact of 
range normalization is not significant, where no obvious function 
(i.e. quadratic function) can be observed when applying the nor-
malization on a single LiDAR data strip. On the other hand, the 
range normalization can provide a significant reduction of cv (up 
to 42.9%) on the data samples collected in the overlapping Li-
DAR data strips. Most of the results form a quadratic equation 
between the cv and the parameter a, and an optimal value of a is 
obtainable for the lowest cv resulted. Since it is mostly imprac-
tical to implement a cross validation approach to test different a 
values and look for the lowest cv, therefore, we propose to use 
an automatic overlap-driven approach to estimate the optimal a 
for the range normalization. Most of the findings of the four land 
cover classes yield close or identical to the results derived by the 
cross validation approach.

Based on the experiment, one can conclude that there is no con-
sistent a value that should be specified for a certain land cover 
type. Also, the optimal a value is not the same for any specific 
land cover with respect to the three laser wavelengths. There-
fore, it is recommended to estimate the optimal a value by pair-
ing up the closest points in the overlapping LiDAR data strips 
and subsequently estimating the a value for the range normaliza-
tion based on the least-squares adjustment. In future, the above-
mentioned process can be further enhanced by incorporating the 
use of robust regression, such as RANSAC or M-estimator. Also, 
the multispectral airborne LiDAR data should undergo the pro-
cess of LiDAR scan line correction prior to the range normaliza-
tion. With the intensity banding effect removed, the combined 
effect can yield the best improvement of intensity homogeneity, 
particularly on the multispectral airborne LiDAR intensity data.
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