
Accepted Manuscript. Accepted on 6 January 2020 

To be Published in Automation in Construction 

1 
 

Artificial intelligence in the AEC industry: Scientometric analysis and 1 

visualization of research activities 2 

Amos Darkoa,1, Albert P. C. Chana, Michael A. Adabrea, David J. Edwardsb, M. Reza Hosseinic, Ernest E. Ameyawd 3 
a Department of Building and Real Estate, The Hong Kong Polytechnic University, Hong Kong 4

b Faculty of Computing, Engineering and the Built Environment, Birmingham City University, Birmingham B4 7XG, UK 5

 c School of Architecture and Built Environment, Deakin University, Geelong 3220, Australia  6
d Department of Architecture and Built Environment, Northumbria University, Newcastle Upon Tyne, UK 7

Abstract 8 

The Architecture, Engineering and Construction (AEC) industry is fraught with 9 

complex and difficult problems. Artificial intelligence (AI) represents a powerful tool 10 

to assist in addressing these problems. Therefore, over the years, researchers have been 11 

conducting research on AI in the AEC industry (AI-in-the-AECI). In this paper, the first 12 

comprehensive scientometric study appraising the state-of-the-art of research on AI-in-13 

the-AECI is presented. The science mapping method was used to systematically and 14 

quantitatively analyze 41,827 related bibliographic records retrieved from Scopus. The 15 

results indicated that genetic algorithms, neural networks, fuzzy logic, fuzzy sets, and 16 

machine learning have been the most widely used AI methods in AEC. Optimization, 17 

simulation, uncertainty, project management and bridges have been the most commonly 18 

addressed topics/issues using AI methods/concepts. The primary value and uniqueness 19 
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of this study lies in it being the first in providing an up-to-date inclusive, big picture of 20 

the literature on AI-in-the-AECI. This study adds value to the AEC literature through 21 

visualizing and understanding trends and patterns, identifying main research interests, 22 

journals, institutions, and countries, and how these are linked within now-available 23 

studies on AI-in-the-AECI. The findings bring to light the deficiencies in the current 24 

research and provide paths for future research, where they indicated that future research 25 

opportunities lie in applying robotic automation and convolutional neural networks to 26 

AEC problems. For the world of practice, the study offers a readily-available point of 27 

reference for practitioners, policy makers, and research and development (R&D) bodies. 28 

This study therefore raises the level of awareness of AI and facilitates building the 29 

intellectual wealth of the AI area in the AEC industry.     30 

Keywords: Architecture-Engineering-Construction; Artificial intelligence; Machine 31 

intelligence; Industry 4.0; Automation; Digital transformation; Scientometric; Review. 32 

1. Introduction 33 

Artificial intelligence (AI) is playing a core role in the Fourth Industrial Revolution 34 

(Industry 4.0), i.e., the digitalization era, wherein intelligent systems and technologies 35 

are used to create an active connection between the physical and virtual (digital) worlds. 36 

AI denotes the science and engineering of creating intelligent machines that exhibit 37 

reasoning, learning, knowledge, communication, perception, planning, and the ability 38 
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to move and operate objects [1]. It has several benefits that have been widely 39 

documented in the literature. For instance, it can use sophisticated algorithms to “learn” 40 

from “big” data, and then use the knowledge gained to assist industry/practice [2]. 41 

Moreover, AI provides vast opportunities for significant productivity improvements via 42 

analyzing large volumes of data quickly and accurately [3]. Additionally, AI systems 43 

and technologies can tackle complicated, nonlinear practical problems and, once trained, 44 

could undertake predictions and generalizations at high speed [4]. 45 

Because of these benefits, AI has attracted substantial attention within a wide range 46 

of industries, including Architecture, Engineering and Construction (AEC) [4], 47 

capturing the attention of AEC researchers. This has resulted in an upsurge in the 48 

number of research works and publications on AI in the AEC industry (AI-in-the-AECI) 49 

[5]. This situation presents danger, as it makes it tough to grasp the status quo of the 50 

knowledge body, posing a major risk of neglecting essential areas and questions for 51 

research and practice improvement [6]. To address this scientific problem, undertaking 52 

a rigorous review and analysis of the domain is necessary. 53 

Previous review studies in this area [7–10] have made valuable contributions. 54 

Nonetheless, they have some limitations. First, they have been qualitative and based on 55 

manual appraisals. Thus, they may be significantly impacted by subjective biases, lack 56 

of reproducibility, and reduced reliability [11]. Ref. [12] indicated that manual reviews 57 
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examine the “trees”, but do not provide a broad overview of the “forest”. Second, 58 

existing review studies have had narrowed perspectives, focusing on limited 59 

applications or on specific AI methods. For example, Ref. [10] focused on “big” data 60 

technologies application in the AEC industry; while Ref. [9] focused on automation in 61 

construction scheduling. Ref. [13] recently published a bibliometric study of 62 

engineering applications of AI. However, their study is limited to only the publications 63 

in one single journal and gives an overview of what has already been done without 64 

providing directions for future work. In the light of these facts, these review studies do 65 

not afford a full picture of the state-of-the-art of research on AI-in-the-AECI. In fact, a 66 

study that offers a complete picture and understanding of the AI literature in the specific 67 

domain of AEC is still missing. 68 

As an attempt to fill this gap, the present review study stands out, being the first to 69 

comprehensively survey the intellectual core and the landscape of the general body of 70 

knowledge on AI-in-the-AECI using a quantitative technique. This study contributes to 71 

the field in several ways by: identifying the scope and assessing the quality of the 72 

existing body of knowledge; detecting omissions and deficiencies; and determining 73 

where best to focus future research efforts. In practical terms, the study serves as a 74 

valuable and up-to-date reference point for enhancing the knowledge of policy makers 75 

and practitioners and assisting them in planning and funding efforts regarding adopting 76 
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AI-in-the-AECI.   77 

2. Research methodology 78 

The present study used the science mapping method to analyze the literature on AI-79 

in-the-AECI. Science mapping, “a generic process of domain analysis and visualization” 80 

[14], aims at detecting the intellectual structure of a scientific domain. This method is 81 

helpful for visualizing significant patterns and trends in a large body of literature and 82 

bibliographic data [15]. It allows researchers to make literature-related discoveries that 83 

would not be possible through other methods [16]. A science mapping study typically 84 

applies a bibliometric or a scientometric analysis method [17]. While the focus of 85 

bibliometric analysis is on the literature per se, scientometric analysis offers a broader 86 

approach, which comprises bibliometric tools, methods, and data, to analyze the 87 

literature and its outputs to recognize the domain’s potentially insightful patterns and 88 

trends [18]. The research methodology was structured to comprise the following phases: 89 

science mapping tools selection, data collection and analysis, modeling, visualization, 90 

and communication of findings.  91 

2.1. Science mapping tools selection 92 

Several science mapping tools exist, with each tool having its own strengths and 93 

capabilities. Consequently, to thoroughly examine any domain, appropriate use of 94 

different tools for different kinds of analyses is necessary [15]. In this research, the 95 
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strengths and weaknesses of various science mapping tools, including VOSviewer®, 96 

Gephi®, CiteSpace®, Sci2®, and HistCite® [14], were evaluated, leading to selecting 97 

VOSviewer, Gephi, and CiteSpace. VOSviewer is a software tool that offers the basic 98 

functionality required for producing, visualizing, and exploring bibliometric networks 99 

[19]. Gephi represents a leading, open-source “all kinds of graphs and networks” 100 

exploration, visualization, and manipulation software tool that can be utilized to provide 101 

in-depth insight into the information attainable from a specific graph or network [20]. 102 

CiteSpace, a software tool “developed to meet the needs for visual analytic tasks of 103 

science mapping” [14], affords opportunity for addressing important questions about a 104 

knowledge domain: what the major research interests are, and how these are linked [21]. 105 

Information on the technical applications of the VOSviewer, Gephi, and CiteSpace can 106 

be found in Refs. [19], [22], and [21], respectively.  107 

2.2. Data collection  108 

This study analyzed bibliographic data collected from Scopus, rather than those 109 

from other databases, such as the Web of Science and Google Scholar. The rationale 110 

behind this is that compared to the other databases, Scopus has a wider range of 111 

scientific publication coverage [23]. Similarly, Scopus has a relatively faster indexing 112 

process, escalating the possibility of more recent publications retrieval [24]. This study 113 

could not use a combination of different literature databases particularly because of the 114 
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difficulty in checking and eliminating duplications of publications from the various 115 

databases, with the large amount of dataset involved – and many previous science 116 

mapping-based studies have been based on Scopus data [25]. Keywords were selected 117 

following related previous review studies [4,8,26]. As a result, a list of keywords related 118 

to AI was created. These keywords along with the keywords “construction industry”, 119 

“civil engineering”, “structural engineering”, “architectural engineering”, 120 

“construction engineering”, “construction management”, and “construction 121 

engineering and management” were used for the literature search, with the query string 122 

being: 123 

“Artificial intelligence” OR “Machine intelligence” OR “Machine learning” OR 124 

“Expert systems” OR “Genetic algorithms” OR “Neural networks” OR “Case-125 

based reasoning” OR “Data mining” OR “Fuzzy logic” OR “Fuzzy sets” OR 126 

“Robotics” OR “Knowledge-based systems” OR “Support vector machines” OR 127 

“Artificial general intelligence” OR “Computational intelligence” AND 128 

“Construction industry” OR “Civil engineering” OR “Structural engineering” OR 129 

“Architectural engineering” OR “Construction engineering” OR “Construction 130 

management” OR “Construction engineering and management” AND (LIMIT-TO 131 

(SUBJAREA, “ENGI”)) AND ( LIMIT-TO (DOCTYPE, “ar”)). 132 

While the use of the keyword “construction industry” has become more popular of 133 
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late, in the past, keywords “civil engineering” and “structural engineering” were more 134 

commonly used for topics related to the AEC industry [27,28], thus the inclusion of 135 

these keywords in the literature search, helping to adequately cover the related areas of 136 

this study. The literature search in Scopus using the selected search keywords was 137 

performed on the title, abstract, and keywords sections of publications; no “date range” 138 

limit was set and the “document type” was limited to “article”. The rationale for limiting 139 

the document type to articles is that, for science mapping purpose, journal articles 140 

represent the most influential and reputable research work [29]. Including all 141 

publication types adds noise to the data, making analyzing and interpreting the findings 142 

“challenging and costly” [17].   143 

As of August 26, 2019, 49,686 publications were initially identified. Scopus was 144 

used to sort these upon “relevance”, and after assessing them and excluding irrelevant 145 

publications, e.g., publications in unrelated journals, 41,827 relevant publications were 146 

finally identified for further analysis. All bibliographic data for the 41,827 publications 147 

were extracted and downloaded from Scopus, forming the dataset for the present study. 148 

It should be noted that non-English language publications are outside the scope of this 149 

study.  150 

2.3. Scientometric techniques 151 

Science mapping was conducted in two stages. The first stage involved constructing 152 
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networks through keywords co-occurrence analysis, document co-citation analysis, 153 

citation burst analysis, outlets direct citation analysis, and co-authorship analysis, as 154 

explained in the next section. The second stage involved generating maps for mining 155 

useful information from network measures, and to display “the conceptual, intellectual, 156 

or social evolution of the research field, discovering patterns, trends, seasonality, and 157 

outliers” [15]. 158 

3. Analysis and results 159 

3.1. Trend of research on AI-in-the-AECI: the 20th and the 21st centuries 160 

The AI research field in general was born in 1956; whereas the first study on AI-in-161 

the-AECI appears to be Ref. [30]’s work, published in the Computer-Aided Design 162 

journal, where computer applications to architecture were studied. This implies that 163 

research regarding AI-in-the-AECI has been around since the 1970s. Fig. 1 shows the 164 

trend in research publications on AI-in-the-AECI from 1974 to 2019. It reveals a steady 165 

and gradual increase in interest in research about AI-in-the-AECI from 1974 onward. 166 

Compared to the 20th century (1974-2000, in Fig. 1), many more publications are 167 

available in the 21st century (2001-2019). This is in line with the argument by Ref. [31] 168 

that AI has become an increasingly important research field in the 21st century. The 169 

increasing need for the AEC industry to process huge amounts of heterogeneous data 170 

to extract useful insights for better decisions and state-of-the-art improvements on 171 
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problems/tasks [10] also provides explanation for the rising interest in AI-in-the-AECI 172 

in this 21st century. Essentially, the increasing publication trend appears promising, 173 

suggesting growth in research on AI-in-the-AECI, as also concluded by Ref. [8]. This 174 

growth is likely to continue as AI – along with the Internet of Things (IoT) – is 175 

progressively permeating the field [32]. In the 20th century, AI-in-the-AECI research 176 

started gaining its momentum only in the late 1990s, where computational power and 177 

researchers’ commitment to using AI for solving more specific problems in a broad 178 

spectrum of areas begun to increase [33]. This might have caused the mini-peak in the 179 

number of publications in 1996, which was not beaten until 2001, the start of the 21st 180 

century, where it has been observed that AI-in-the-AECI research is gaining even more 181 

attention.182 
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 183 

Fig. 1. Trend in research publications on AI-in-the-AECI (1974–Aug 2019). The 2019 publications number may increase at the end of the year. 184 
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3.2. Structure of the body of knowledge on AI-in-the-AECI 185 

3.2.1. Main research interests: keywords co-occurrence analysis 186 

As Ref. [26] noted, analyzing keywords affords an opportunity for discerning the 187 

main research interests in any field. A network of keywords offers a good picture of a 188 

knowledge domain, providing an understanding of the existing research interests, and 189 

how they are intellectually connected and organized [34]. Thus, a keywords co-190 

occurrence network was produced using VOSviewer 1.6.11 software. Co-occurrence 191 

could simply be defined as the situation where two things (keywords in this case) occur 192 

at the same time. A typical co-occurrence network of keywords consists of nodes 193 

(representing the keywords) and edges (representing relations among sets of keywords). 194 

These descriptions apply to other networks later on, substituting keywords with journals, 195 

institutions, or countries, and the co-occurrence relations with direct citation relations, 196 

co-citation relations, or co-authorship relations. As networks of these relations are 197 

usually weighted networks, edges indicate not only relations among nodes but also the 198 

strengths or weights of the relations [34]. In a keyword co-occurrence network, for 199 

example, the strength of the relation between two keywords is computed based on the 200 

number of publications in which the keywords occur together, reflecting the affiliation 201 

of their respective research interests [19].  202 

To attain a reproducible/readable picture of the keywords, author keywords, rather 203 
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than all keywords, were used. Although this approach has been widely used in previous 204 

science mapping-based studies [6,13,17,25], its limitation is that it is largely reliant on 205 

authors’ experience and knowledge in choosing appropriate research keywords. This 206 

limitation could be addressed in future work by using all keywords instead of author 207 

keywords, while attempts to address it in the present study led to 208 

unmanageable/illegible network because of the large amount of dataset and thus 209 

keywords. Based on the fractional counting, a total of 45,790 keywords were extracted 210 

from the dataset. Fractional counting represents a counting method that provides 211 

convenience for reducing the impact of publications with many authors, in co-212 

authorship analysis [19]. Regarding the “minimum number of occurrences” for a 213 

keyword to be included in the network, a value of 50 was selected, an inclusion criterion 214 

met by 147 of the 45,790 keywords. This criterion was selected following previous 215 

studies [25] and based upon multiple experiments to generate the optimum, controllable, 216 

legible, and reproducible, network. Other criterion selections in this research were 217 

based on this same approach. 218 

Identical terms (e.g., safety and construction safety; BIM and Building Information 219 

Modeling; regression and regression analysis) were merged (as safety, BIM, and 220 

regression, respectively) and generic keywords related to research methods (e.g., survey) 221 

were omitted. The resultant network consisted of 106 nodes and 1,654 relations, as 222 
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displayed in Fig. 2. This figure therefore illustrates the main research interests on AI-223 

in-the-AECI, reflected in terms of co-occurrence between AI keywords and keywords 224 

representing various areas of AEC research. Some keywords, for example, concrete and 225 

reinforced concrete were not merged because concrete covers a range of different types, 226 

such as reinforced concrete, plain concrete, glass concrete, etc. [35]. The presence of 227 

reinforced concrete as well as the absence of the other types of concrete in the network 228 

suggest that compared to the other types of concrete, reinforced concrete has received 229 

relatively more attention in the field. Other examples involve the keywords monte Carlo 230 

simulation, system dynamics, and finite element analysis, which are some of the 231 

different types of simulation [36]; energy efficiency and energy consumption, which 232 

are some of the different energy-related issues; shear strength and compressive strength, 233 

which are some of the different types of mechanical properties; etc. This rationale for 234 

not merging such keywords was adopted from Ref. [37].235 
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Fig. 2. Main research interests on AI-in-the-AECI (co-occurrence network of keywords). 
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The measurement of the centrality of nodes represents the most reliable and simplest 236 

approach to detecting what is crucial within a network [38]. Centrality can be measured 237 

via computing degree centrality, which reflects the number of relations a node has to 238 

other nodes [17]. Calculating importance based on the number of relations helps to 239 

determine the influence of a node upon other nodes. Regardless of the value of all 240 

existing relations, degree centrality is computed using Equation 1 [38]. 241 

𝐷𝑖 = ∑ 𝑋𝑖𝑗
𝑛
𝑗=1                                                       Equation 1 242 

Where 𝐷𝑖  = degree centrality value for node 𝑖 ; 𝑋𝑖𝑗  = sum of all relations between 243 

node 𝑖 and node 𝑗; and 𝑛 = total number of nodes in the network. The network was 244 

submitted to Gephi 0.9.2 for calculating the centrality of nodes. The analysis results are 245 

shown in Table 1. The main research interests were ranked based upon the degree 246 

centrality values. The higher the degree centrality value, the more influential the 247 

research area, and where two or more research interests have equal value, the one with 248 

the highest betweenness centrality value is deemed more influential. The betweenness 249 

centrality metric “indicates influential nodes for highest values” [22], by evaluating 250 

how often a node appears on the shortest paths between nodes in the network. 251 

Table 1 252 

Relative influence of existing research interests on AI-in-the-AECI. 253 

Research areas Degree centrality Betweenness centrality Relative influence 

Optimization 89 440.41 1 

Genetic algorithm 80 338.68 2 

Neural networks 72 196.63 3 
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Simulation 65 141.53 4 

Uncertainty 64 157.29 5 

Construction management* 58 100.56 6 

Fuzzy logic 54 119.16 7 

Fuzzy sets 54 100.66 8 

Machine learning 53 112.53 9 

Artificial intelligence 51 80.59 10 

Project management 51 59.70 11 

Bridges 49 95.56 12 

Decision making 47 41.75 13 

Particle swarm optimization 45 91.05 14 

Sensitivity analysis 45 90.76 15 

Algorithms 45 57.61 16 

Design 45 53.35 17 

Maintenance 44 39.65 18 

Multi-objective optimization 43 83.97 19 

Structural health monitoring 43 61.19 20 

Infrastructure 43 50.63 21 

Support vector machine 42 54.36 22 

Risk management 42 39.19 23 

Damage detection 41 55.86 24 

Construction industry* 41 34.27 25 

Concrete 40 41.73 26 

Data mining 39 45.01 27 

Productivity 39 25.51 28 

Structural optimization 38 53.68 29 

Sustainability 38 42.65 30 

Monitoring 38 36.39 31 

Safety 38 28.78 32 

Modeling 37 50.40 33 

Risk 37 22.87 34 

Reinforced concrete 36 39.96 35 

BIM 36 39.54 36 

Inspection 36 24.04 37 

Decision support systems 35 14.27 38 

Automation 34 25.58 39 

Classification 34 24.01 40 

Scheduling 34 23.18 41 
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Buildings 33 34.94 42 

Earthquake 32 30.92 43 

Corrosion 30 26.67 44 

Case-based reasoning 30 22.19 45 

Compressive strength 29 27.59 46 

Damage assessment 29 18.12 47 

Regression 28 17.97 48 

Rehabilitation 28 13.67 49 

Information management 28 12.17 50 

Planning 28 8.13 51 

Monte Carlo simulation 27 18.93 52 

GIS 27 16.93 53 

Performance evaluation 27 16.35 54 

Structural control 26 19.09 55 

Vibration control 26 17.63 56 

Forecasting 26 15.16 57 

Energy efficiency 26 15.05 58 

System identification 26 11.16 59 

Image processing 25 12.53 60 

Expert systems 25 6.86 61 

Deep learning 24 10.37 62 

Cost 24 6.67 63 

Construction equipment 24 6.29 64 

Reliability analysis 23 15.30 65 

Finite element analysis 23 15.11 66 

Cable-stayed bridge 23 11.17 67 

Energy consumption 23 10.78 68 

Knowledge-based systems 23 10.64 69 

Data fusion 23 8.45 70 

Resource allocation 23 6.21 71 

Structural design 22 23.86 72 

Durability 22 11.83 73 

TOPSIS 22 10.78 74 

Knowledge management 22 9.30 75 

Model updating 22 8.38 76 

Computer vision 22 7.66 77 

Structural reliability 22 7.62 78 

Shear strength 21 9.28 79 
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Harmony search 20 12.93 80 

Genetic programming 20 12.60 81 

Firefly algorithm 20 8.28 82 

Differential evolution 20 7.86 83 

ANFIS 20 7.83 84 

System dynamics 20 6.27 85 

Risk analysis 20 5.44 86 

Energy 19 9.04 87 

Thermal comfort 19 8.99 88 

Life cycle cost 19 8.22 89 

Tuned mass damper 18 8.51 90 

Temperature 18 8.46 91 

Simulated annealing 18 7.78 92 

Construction projects 18 5.59 93 

AHP 18 2.48 94 

Optimum design 16 5.38 95 

Active control 16 4.91 96 

MR damper 15 4.94 97 

Life cycle assessment 15 4.25 98 

Wavelet transform 15 2.39 99 

Topology optimization 14 4.97 100 

Mechanical properties 14 3.72 101 

Shape optimization 13 3.16 102 

Truss structures 12 2.43 103 

Semi-active control 12 1.20 104 

Ontology 11 1.29 105 

Fly ash 9 0.77 106 

Note: BIM = Building information modeling; GIS = Geographic information system; TOPSIS = Technique for Order 254 

of Preference by Similarity to Ideal Solution; ANFIS = Adaptive neuro-fuzzy inference system; AHP = Analytic 255 

hierarchy process; MR damper = Magnetorheological damper; * Construction management, in this study, refers to 256 

“a professional service which utilizes project management techniques to oversee the design, planning, and 257 

construction of a project from its start to its end” [39]; whereas construction industry refers to “those individuals, or 258 

groups whose principal activities involve one or more of demolition, design, production, alteration, renovation, 259 

maintenance and re-cycling of building works, and/or of building services works, and/or of civil engineering works 260 

and/or or process engineering works” [40].261 
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The ranking and the relatedness of the research interests – as shown in Table 1 and 262 

Fig. 2, respectively – reveal several key findings:  263 

• Some research interests have received special attention, while others have remained 264 

under-researched. Optimization, genetic algorithm (GA), neural networks (NNs), 265 

simulation, uncertainty, fuzzy logic (FL), fuzzy sets (FSs), machine learning (ML), 266 

project management, and bridges have received considerable attention in AI-in-the-267 

AECI research. The results generally concur with those of Ref. [13] and indicate that 268 

these have been the top themes in the literature. The results could first be explained 269 

by the fact that one of the main aims of AI is to optimize processes, activities, 270 

decisions, and problems. They may further be explained by the promise of NNs, for 271 

example, to tackle prevalent analogy-based decision problems in the AEC industry 272 

[5,41]. Optimization and GA have acquired the most attention within the literature. 273 

GA is an optimization technology and the optimization goals of the AEC industry 274 

(e.g., project scheduling/cost optimization) can be attained by adopting GA [37]. The 275 

link between optimization and GA represents the strongest link in the current body 276 

of knowledge (Fig. 2). This shows that the most common AI application in the AEC 277 

industry has been the deployment of GA for optimization problems (e.g., schedule 278 

optimization) [42–44]. Ref. [45], for instance, created a multi-objective scheduling 279 

optimization model for multiple AEC projects using the fast elitist nondominated 280 



Accepted Manuscript. Accepted on 6 January 2020 

To be Published in Automation in Construction 

21 
 

sorting GA. The model aims at obtaining optimal trade-offs amongst diverse projects’ 281 

objectives. Extending the themes of optimization, GA, and NNs, further research 282 

covered issues such as: using FL and FSs to deal with uncertainty in AEC problems 283 

[46]; 3D simulation of pavements’ deflection basin [47]; digitizing bridges [48]; and 284 

project management issues, e.g., using neurofuzzy genetic system to select project 285 

managers [49] and identifying their competency weights using data-driven 286 

automated methods [50]. Based on the results, it can be concluded that the most often 287 

used AI techniques in the AEC community have been GA, NNs, FL, FSs, and ML; 288 

whilst the most widely addressed topics/issues using AI techniques/concepts include 289 

optimization, simulation, uncertainty, project management, and bridges. This agrees 290 

with Ref. [51]’s finding that ML is one of the commonly adopted AI methods in 291 

structural engineering. It also shows the high applicability of the noted AI methods 292 

to AEC problems, such as those noted herein. Given the level of research on the top-293 

ranked themes, when attempting to expand the body of knowledge on them, future 294 

studies must pay critical attention to adding real value; this may be highly important 295 

to journal editors and funding agencies. 296 

• ML, an AI subfield, represents a data analytics method in which computers are taught 297 

to do what comes naturally to animals and humans: learning from experience [52]. 298 

Although ML is one of the top themes in the literature on AI-in-the-AECI, only 299 
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handful of its myriad techniques (NNs, support vector machine (SVM), etc.) are 300 

present in Fig. 2, with many others [naïve Bayes (NB), gaussian mixture (GM), 301 

reinforcement learning (RL), etc.; see Refs. [51] and [52]] absent. This suggests 302 

disregard for the latter techniques, needing future research attention. Full 303 

development and exploitation of ML methods in AI-in-the-AECI research would be 304 

a promising aid in bridging the technology gap in this industry [53]. Deep learning 305 

(DL) is a specialized form of ML and ML algorithms play key roles in data mining 306 

(DM), explaining the links ML has to DL and DM in the co-occurrence network.  307 

• Among AI-in-the-AECI research interests that have remained under-researched are: 308 

fly ash, ontology, semi-active control, truss structures, shape optimization, 309 

mechanical properties, topology optimization, wavelet transform (WT), life cycle 310 

assessment (LCA), magnetorheological (MR) damper, active control, optimum 311 

design, simulated annealing, tuned mass damper (TMD), life cycle cost, thermal 312 

comfort, energy, adaptive neuro-fuzzy inference system (ANFIS), and differential 313 

evolution (DE). All of these had degree centrality values well below those of the top-314 

ranked research interests (Table 1), indicating that these research interests are yet to 315 

be fully integrated into the core body of AI-in-the-AECI research. The results further 316 

suggest that limited attention has been directed toward applying AI to topics such as 317 

energy, thermal comfort, life cycle cost, optimum design, and LCA in the AEC field. 318 
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This must draw AEC experts’ and researchers’ attention, given that AI can assist in 319 

optimizing these issues. In the existing literature, energy, for instance, is not linked 320 

to any AI technique; while energy consumption and energy efficiency are linked to 321 

only ML and GA. Thermal comfort is also linked to only ML, while life cycle cost 322 

is linked to only GA. Based on the network, similar observations have been made 323 

for other themes. Essentially, it has been identified in this study that there have been 324 

limited efforts on the utilization of AI in AEC for optimizing: energy use/efficiency 325 

[54], thermal comfort [55], LCA and life cycle costs [56], design (especially 326 

structural design) [57], mechanical properties (such as shear strength, compressive 327 

strength, etc.) (of, e.g., composites) [58], and truss structures [59]. This may be 328 

because computers have yet to be fully employed for many AEC tasks [51]. It would, 329 

therefore, be promising to develop more efficient/accurate hybrid methods involving 330 

AI methods, such as ANFIS, DE, etc., and apply such methods to the noted issues in 331 

an aim to also address the inadequacy of investigations on these intelligent 332 

methods/algorithms (Fig. 2/Table 1). DE algorithm combined with biogeography-333 

based optimization method [60], for example, can be implemented for the design 334 

optimization of truss structures. The approach proves to be essentially useful in 335 

solving optimum design problems with discrete and continuous variables.  336 

• Though optimization in general has been extensively tackled with AI methods and 337 
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concepts in the AEC context, some types of optimization problems have been largely 338 

overlooked. A representative example is shape optimization problems [e.g., shape 339 

optimization problems in structural design [61]]. This gives a promising avenue for 340 

future AI-in-the-AECI research, development, and innovations, where AI methods, 341 

such as particle swarm optimization (PSO), GA, harmony search algorithm (HSA), 342 

etc., could be properly integrated and used to solve the problems [62]. Moreover, the 343 

field needs more studies concerning the combined use of AI methods/algorithms and 344 

concepts, and active and semi-active structural control systems, TMD, MR damper, 345 

and WT, for purposes such as damage detection/assessment, structural and vibration 346 

control, and earthquake engineering in civil infrastructure as well as building 347 

structures. The development of reliable AI models is also of interest to model and 348 

optimize the usage of fly ash in producing sustainable concretes. 349 

• According to Ref. [37]’s review study, the topics of cost, productivity, safety, and 350 

risk management, which are key project performance indicators, have been the 351 

mainstream issues in AEC research. However, the findings of the present study show 352 

that these issues have yet to see significant development in terms of the application 353 

of AI methods and concepts in AEC. In the current research network, they are only 354 

weakly linked to few AI methods and not linked to other potentially useful ones. 355 

Risk management, for example, has no link to BIM, though BIM is proving to be an 356 
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efficient alternative risk management technology to classical techniques for 357 

managing risk in the AEC industry [63]. One more observation is that cost is also 358 

(weakly) linked to only case-based reasoning (CBR) and GA, although its link to 359 

BIM is nonexistent. However, it has been expounded that BIM holds the potential 360 

for dealing with cost-associated risks to optimize cost in AEC projects [64]. The 361 

noted missing, unconfirmed, and weak links invite further research on the right 362 

integration and use of AI methods (BIM, CBR, GA, etc.) for optimizing and 363 

improving cost, productivity, safety, risk management, and sustainability in the AEC 364 

industry. Risk management entails risk analysis, which also requires more AI 365 

applications (Table 1). Quality, which is also a key project performance indicator, is 366 

missing in the network. 367 

• Other research interests that are not of notable influence in terms of number of links 368 

in the existing literature on AI-in-the-AECI and hence need further attention include: 369 

firefly algorithm (FA), genetic programming (GP), structural reliability, computer 370 

vision, finite element model updating and analysis, knowledge management, 371 

resource allocation, data fusion, knowledge-based systems (KBS), expert systems 372 

(ESs), reliability analysis, construction equipment, system identification, forecasting, 373 

performance evaluation, geographic information system (GIS), planning, 374 

information management, rehabilitation, corrosion, etc. These have been under-375 
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researched and have no or limited weak links to the central points of interest. AI 376 

technologies afford novel approaches to the creation and capture of value and can 377 

enable exponential changes to business models and practice. Such changes can be 378 

categorized within three groups [65]: automation – when AI technologies are 379 

leveraged for automating processes/activities; extension – when AI technologies are 380 

used to back innovative ways of undertaking business which complement instead of 381 

replacing existing processes/activities; and transformation – when AI technologies 382 

are used to enable novel ways of undertaking business which replace conventional 383 

ones. This explains the presence of automation in the extant AI-in-the-AECI research 384 

network. 385 

• A conspicuous absence of interest in the topic of robotics is observed in the network. 386 

This implies that little attention has been devoted to the topic in the existing literature. 387 

Robotics, a key subfield of AI, simply deals with the development and use of robots 388 

for tasks and, as indicated by Ref. [41], has been of interest to the AEC industry since 389 

the 1990s. Thus, the absence of robotics in the research network seems surprising 390 

but may be attributed to the fact that the AEC industry is still “behind the curve in 391 

implementing AI solutions” [53]. This industry is generally recognized to be a 392 

severely underautomated/underdigitized industry where very few robots are 393 

currently being utilized [66]. In addition, the presence of bridges [alongside cable-394 
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stayed bridge (a bridge type)] as a top-ranked research interest and the absence of 395 

other infrastructure types (e.g., roads, tunnels, and railways) shows that the existing 396 

research has placed remarkable focus on the use of AI solutions in bridge projects, 397 

while there has been limited research on AI implementation in other infrastructure 398 

projects. The research findings essentially indicate that the literature on AI-in-the-399 

AECI is still relatively immature, needing more studies on the application of various 400 

AI methods/algorithms and concepts to various AEC problems/issues. 401 

3.2.2. Citations patterns: document co-citation analysis  402 

Citations patterns among publications, in terms of the clusters formed by accrued 403 

co-citation trends, aid in appreciating the structure of a knowledge domain [17]. With 404 

its clustering function, CiteSpace affords precise means of identifying clusters [21]. 405 

Therefore, CiteSpace 5.5.R2 was utilized to create a network of document co-citation. 406 

Filtering out small clusters generated a network with 13 major clusters (with cluster IDs 407 

#0, #1, etc.), as demonstrated in Fig. 3. Each cluster represents an underlying line of 408 

research, topic, or theme [21]. Moreover, to characterize the nature of each identified 409 

cluster, CiteSpace automatically chooses a label for each cluster based on noun phrases 410 

extracted from the titles, keyword lists, and abstracts of publications in each cluster. 411 

There are three text-mining algorithms available for labelling clusters in CiteSpace – 412 

latent semantic indexing (LSI), log-likelihood ratio (LLR), and mutual information 413 
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(MI). Ref. [21] indicated that LLR usually delivers the best results. Thus, the LLR 414 

algorithm was implemented in this study for generating the cluster labels in Fig. 3. For 415 

this kind of analysis, Ref. [21] advised that “we don’t really need to see the size of a 416 

node”; i.e., the structure rather than the content of clusters must be the focus.417 
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 418 
Fig. 3. Clustering structure for research on AI-in-the-AECI.419 
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Besides picturing the clustering structure, CiteSpace assesses the network’s “overall 420 

structural properties” via the computation of two fundamental metrics, the modularity 421 

Q value and the mean silhouette value [21]. The modularity Q value ranges from 0 to 1 422 

and is used for assessing the extent to which the network can be partitioned into 423 

autonomous clusters [17]. For a network partitioned into b clusters, for instance, the 424 

modularity Q is computed from the symmetric b × b mixing matrix D. The elements of 425 

D along its main diagonal 𝑑𝑖𝑖 provide the fraction of links amongst the nodes within 426 

each cluster 𝑖. As for the other elements of D, 𝑑𝑖𝑗(𝑖 ≠ 𝑗), they indicate the fraction of 427 

links amongst nodes within two dissimilar clusters (𝑖, 𝑗). As such, the modularity Q 428 

value can be computed using Equation 2 [67]: 429 

Q = ∑ [𝑖 𝑑𝑖𝑖  −   (∑ 𝑑𝑖𝑗𝑗 )2]                                            Equation 2  430 

A cluster’s silhouette value ranges from –1 to 1 and assesses the uncertainty 431 

involved in defining the cluster’s nature. A value of 1 signifies that the cluster is 432 

perfectly isolated [68]. Additionally, each cluster’s silhouette value indicates which 433 

nodes fit well into the cluster as well as which nodes lie somewhere in between clusters. 434 

The whole clustering is assessed through combining all silhouette values, generating a 435 

mean silhouette value that provides a measure of clustering homogeneity [69]. 436 

Interested readers are referred to Ref. [69] for details. 437 

The modularity Q value – 0.9229 – was higher than 0.7, indicating that the strength 438 
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of dividing the network into clusters is high with dense links amid nodes within clusters, 439 

but sparse links between nodes in different clusters. The mean silhouette value, on the 440 

other hand, was 0.3466, indicating that the homogeneity of the clusters, on average, is 441 

not high [21]. That is, while the modularity Q value suggests that research on AI-in-the-442 

AECI embodies a network with dense connections at intra-cluster level; the mean 443 

silhouette value shows that studies in the network, in general, address different issues 444 

although those in each cluster may be consistent in addressing similar issues – as 445 

suggested by the high silhouette values of individual clusters in Table 2.  446 

Table 2  447 

Citations patterns and identified clusters (see Fig. 3). 448 

Cluster ID Size Silhouette value Average year published Focus of the cluster 

#0 82 0.893 1993 Genetic algorithms 

#1 69 0.903 1993 Neural networks 

#2 58 0.918 2008 Truss structures 

#3 57 0.956 1986 Design 

#4 54 0.956 2008 Estimation 

#5 49 0.898 1999 Application 

#6 46 0.936 1999 Optimum design 

#9 36 0.961 1994 Reusability 

#10 36 0.999 2017 Convolutional neural networks 

#12 29 0.928 1994 Large steel structures 

#13 22 0.988 1991 Using fuzzy logic 

#15 18 0.980 2000 Structural control implementation 

#21 10 0.983 1992 Forecasting system 

  449 

Regarding the results in Fig. 3 and Table 2, it is worthy to mention that: 450 

• The current body of knowledge on AI-in-the-AECI comprises 13 major clusters. As 451 

per the cluster sizes in Table 2, genetic algorithms (GAs) and neural networks (NNs) 452 
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have been the largest clusters in the existing literature. This is in line with the earlier 453 

observation in Table 1 that GAs and NNs have been among the top research interests 454 

and therefore among the most commonly used AI techniques in the AEC community. 455 

The “average year published” shows the average period within which a given cluster 456 

has been investigated by research studies. While most of the clusters acquired more 457 

attention in years over a decade ago (i.e., 1986-2008), studies focusing on the cluster 458 

convolutional neural networks (CNNs) have been published more during the recent 459 

decade, around 2017 on average. This suggests that the development and application 460 

of CNNs represents an emerging trend in research on AI-in-the-AECI. Deep learning 461 

(DL) affords a machine learning technique in which computers are taught to perform 462 

what comes naturally to humans – learning by example [70]. In DL, computer 463 

models learn to undertake classification tasks directly from sound, images, videos, 464 

or text. Most DL methods use NN architectures, explaining why DL models are 465 

normally referred to as deep NNs [70]. CNNs are a popular class of deep NNs that 466 

are typically deployed for analyzing visual imagery. They eliminate the need to 467 

manually extract and identify features applied in classifying images. The automatic 468 

feature extraction/identification renders CNN models highly accurate and efficient 469 

for many tasks in computer vision, e.g., object recognition and classification. 470 

According to Ref. [70], DL models “can achieve state-of-the-art accuracy, 471 
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sometimes exceeding human-level performance.” Accordingly, as identified in this 472 

study, it is becoming a trend to apply CNNs in research to analyze and resolve AEC 473 

problems, e.g., detection of structural damage [71] and construction workers’ 474 

activities/behaviors detection/monitoring [72]. This study’s finding appears to 475 

concur with Ref. [51]’s claim that the utilization of CNNs in AEC for tasks such as 476 

damage detection and structural health monitoring is a very new trend. 477 

• Ref. [68] indicated that a silhouette value around 0.7 implies that the cluster can be 478 

viewed as an isolated block of the network with clear borders and weak links across 479 

those borders. As Table 2 shows, all silhouette values were greater than 0.7, 480 

representing a homogeneous body of research formed primarily through intra-cluster 481 

citations [17]. As pointed out by Ref. [73], such homogeneous clusters are created 482 

when researchers do not cite studies outside their cluster, and thus do not draw on a 483 

broad range of knowledge sources. Consequently, the existing literature on AI-in-484 

the-AECI appears inward-looking, not benefiting from borrowing applicable 485 

theories/ideas from other research fields. This is interesting, as AI itself is an idea 486 

borrowed from the computer science field. It was expected that this positive attitude 487 

of borrowing research ideas would be widely promoted amongst the various areas of 488 

research on AI-in-the-AECI.  489 

• Table 2 demonstrates that cluster #21, forecasting system, and cluster #15, structural 490 
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control implementation, were the smallest clusters. These clusters respectively had 491 

only 10 and 18 studies in them, signifying insufficient research on AI applications in 492 

these areas. While this supports the earlier observation (section 3.2.1) of few studies 493 

concerning the combined use of AI methods/algorithms and concepts, and active and 494 

semi-active structural control systems, MR damper, etc. for purposes such as 495 

structural control in building and infrastructure structures; examples of forecasting 496 

system include particle swarm optimization integrated with support vector machine 497 

[74] and vector error correction model [75] for construction material prices 498 

forecasting. It was also identified in Fig. 2/Table 1 that forecasting represents a topic 499 

that needs more research attention. 500 

3.3. Hot topics over time: citation burst analysis 501 

Citation bursts illustrate which keywords have frequently been cited within the 502 

literature in a particular time period, namely fast-growing topics, or topics that are 503 

associated with surges in citations [21]. A citation burst analysis was conducted using 504 

CiteSpace. From the dataset, a total of 152 keywords had citation bursts. Fig. 4 presents 505 

the top 50 keywords with the strongest citation bursts. The light green lines in the figure 506 

denote the reviewed literature year range, whereas an orange line represents the length 507 

of a citation burst event.508 
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 509 

Fig. 4. Top 50 keywords with the strongest citation bursts in the literature on AI-in-the-510 

AECI (1974-2019). 511 
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It can be observed that although some themes (e.g., expert system (ES), knowledge-512 

based system (KBS), etc.) had strong citation bursts, as shown in Fig. 4, their influence 513 

in relation to other themes were not notable in Fig. 2/Table 1, as demonstrated by their 514 

relatively small node sizes and degree centrality values. This is because citation burst 515 

is based upon the degree of attention a topic attracted from the scientific community in 516 

a certain period of time; but node size (Fig. 2) is based on degree centrality value, which 517 

reflects the number of links a node has to other nodes within the network – as explained 518 

earlier. Taking KBS for example, the burst took place within the period 1988-2010. This 519 

reveals that its development and application obtained significant attention in this period 520 

but does not necessarily indicate that it was applied or linked to numerous-enough AEC 521 

problems/issues. It could be that it was frequently applied to few areas (e.g., knowledge 522 

management, information management, etc.), but not several others (e.g., sustainability, 523 

life cycle cost, thermal comfort, etc.), as illustrated in Fig. 2. Exploring the potential of 524 

integrating KBS with other AI techniques for tackling the latter areas in future research 525 

would be a promising approach to increase the influence of not only KBS but also these 526 

areas and the integrated AI techniques in the extant research network.  527 

Fig. 4 shows that mathematical model (burst strength, 310.08; 1992-2008), problem 528 

solving (132.30; 1995-2008), computer-aided design (131.12; 1986-2007), fuzzy set 529 

(122.41; 1994-2011), and ES (107.83; 1985-2003) had the strongest citation bursts in 530 
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the literature. This implies that these were the hot topics in the respective years. An ES 531 

“is a knowledge-based computer system which emulates the decision-making ability of 532 

a human expert” [76]. Simply put, an ES is a computer system that captures and uses 533 

the knowledge and experience of human experts in a particular field to support decision-534 

making. This technology was commonly recognized as the “rising IT star of the eighties” 535 

[77]. It has been reported that ES development services and products sales in 1988 536 

reached over $400 million in Europe and the US, with annual market growth of ES in 537 

excess of 30%, more than that of the IT business overall [78]. Ref. [77] also showed 538 

that the number of studies on ES in the UK also grew at a similar pace. These facts 539 

could explain the strong burst obtained by ES in the literature on AI-in-the-AECI, which 540 

started in the 1980s. However, it is identified that this burst ended in 2003, about two 541 

decades ago. The hot topics in the more recent years include: sustainable development, 542 

architectural design, life cycle, energy-related issues (e.g., energy efficiency), learning 543 

system, data mining, intelligent system, numerical method, performance assessment, 544 

stochastic system, Monte Carlo method, reliability analysis, compressive strength, and 545 

particle swarm optimization. Their burst strengths range in descending order from 91.88 546 

to 37.05, and their bursts begun from 2015 up until now, 2019. The findings imply that 547 

these represent emerging themes in research on AI-in-the-AECI. Based on the results 548 

of this detailed literature review (Figs. 2-4), some AI techniques applicable to AEC, and 549 
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certain AEC problems/issues/domains to which AI is applicable have been summarized 550 

in Appendix A and B, respectively.  551 

3.4. Top outlets for research on AI-in-the-AECI: outlets direct citation analysis                      552 

Many studies have underlined and explicated the importance of analyzing academic 553 

journals in any scientific field [79]. Such evidence might be useful to readers on finding 554 

the best sources of information, and to authors on finding journals that may be best 555 

suited for publishing their works on AI-in-the-AECI. It can also help journal editors in 556 

making relevant adjustments to the goals of their journals, and institutions/libraries in 557 

optimizing the allocation of resources for investing in journals [6]. In this study, a direct 558 

citation analysis of outlets was conducted to provide evidence of the prominence of 559 

academic journals that publish research on AI-in-the-AECI. VOSviewer was employed; 560 

the type of analysis was “citation”, and the unit of analysis was “sources”. The 561 

“minimum number of documents of a source” and the “minimum number of citations 562 

of a source” were both set to 150, for achieving the optimum network. Of 103 sources 563 

found, 57 met the threshold and were included in the resultant network, which consisted 564 

of 1,167 links among the 57 outlets. The network was visualized using Gephi, as shown 565 

in Fig. 5.566 
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 567 

Fig. 5. Network of prominent outlets for research on AI-in-the-AECI.568 
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Weighted degree, a modified version of degree centrality, within a network 569 

considers the average mean of the sum of the weights of the relations among all the 570 

nodes within the network. It has been the measure of influence of choice for evaluating 571 

the level of influence of nodes in the control of information flow across the whole 572 

network [38]. In this study, weighted degree values were used for resizing and 573 

recoloring the nodes in the network in Fig. 5, with lighter and larger nodes denoting 574 

higher weighted degree values. Table 3 displays the top 30 outlets for research on AI-575 

in-the-AECI, ranked based on their weighted degree values in the network. 576 

Table 3 577 

Top 30 outlets for research on AI-in-the-AECI. 578 

Ranka Outlets Number of publicationsb Weighted degree value 

1 Automation in Construction 1,353 7,575 

2 Journal of Construction Engineering and Management 994 6,467 

3 Journal of Computing in Civil Engineering 1,037 5,453 

4 Computer-Aided Civil and Infrastructure Engineering 648 4,576 

5 Engineering Structures 717 3,388 

6 Computers & Structures 504 2,863 

7 Expert Systems with Applications 583 2,408 

8 Construction Management and Economics 354 2,200 

9 Journal of Civil Engineering and Management 355 1,811 

10 Journal of Structural Engineering 156 1,619 

11 Construction and Building Materials 737 1,579 

12 Structural Control and Health Monitoring 371 1,502 

13 Canadian Journal of Civil Engineering 367 1,403 

14 KSCE Journal of Civil Engineering 590 1,388 

15 Structural Engineering and Mechanics 456 1,324 

16 Building and Environment 335 1,319 

17 Structural and Multidisciplinary Optimization 282 1,264 

18 Structure and Infrastructure Engineering 246 989 

19 Energy and Buildings 401 953 
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20 Journal of Management in Engineering 237 925 

21 Engineering Optimization 263 903 

22 Engineering, Construction and Architectural Management 186 892 

23 Journal of Cleaner Production 440 869 

24 Engineering Applications of Artificial Intelligence 202 858 

25 Smart Materials and Structures 265 808 

26 Transportation Research Part C: Emerging Technologies 311 800 

27 Smart Structures and Systems 196 797 

28 Journal of Transportation Engineering 216 788 

29 Computers and Concrete 206 734 

30 Engineering with Computers 210 726 

aRanking based upon weighted degree values; bDuring the studied period (1974–Aug 2019).  579 

The findings disclose that Automation in Construction – which obtained the highest 580 

value of weighted degree (7,575) – has been the most influential outlet for research on 581 

AI-in-the-AECI. As indicated in Fig. 5, there is significant flow of information (through 582 

citations) from Automation in Construction to Journal of Construction Engineering and 583 

Management, Journal of Computing in Civil Engineering, and Computer-Aided Civil 584 

and Infrastructure Engineering, which have been the second tier of influential outlets 585 

in the field, as shown in Table 3. As such, these four outlets may serve as the first points 586 

of reference for practitioners, researchers, and students on advances in AI in the domain 587 

of AEC. Automation in Construction, for instance, aims at advancing the field through 588 

publishing works concerning every aspect of the development and utilization of ITs in 589 

“design, engineering, construction technologies, and maintenance and management of 590 

constructed facilities” [80]. In this regard, it covers topics such as automated inspection, 591 

intelligent control systems, computer-aided design/engineering, etc. All the other noted 592 
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outlets also offer useful sources/references for researchers and practitioners working in 593 

the area of AI-in-the-AECI. However, it is worth mentioning that aside from Expert 594 

Systems with Applications, which is the only truly general journal in the top 30, all the 595 

others are AEC industry journals, though the Journal of Cleaner Production, and some 596 

of the other Engineering journals (Journal of Management in Engineering, Engineering 597 

Optimization, Engineering Applications of Artificial Intelligence, Transportation 598 

Research Part C: Emerging Technologies, Journal of Transportation Engineering, and 599 

Engineering with Computers) may include a broader range of engineering – mechanical, 600 

aerospace, manufacturing, etc. – as well. This could link to the earlier observation in 601 

section 3.2.2 that the field has been inward-looking. 602 

3.5. Scientific collaboration networks in AI-in-the-AECI research: co-authorship 603 

analysis 604 

Knowledge of the current scientific collaboration networks in any research domain 605 

can (1) promote access to specialties, funds, and expertise, and (2) expand productivity 606 

[17]. Ref. [81] showed that “almost every aspect of scientific collaboration can be 607 

reliably tracked by analyzing co-authorship networks.” As Ref. [17] noted, “co-608 

authorship is shorthand for scientific collaboration, with the lack of collaboration in a 609 

scientific network being a symptom of lower research productivity.” In this light, a 610 

picture/analysis of the co-authorship network of institutions in the AI-in-the-AECI 611 
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literature is presented in the next sub-section. 612 

3.5.1. Institutions 613 

Discovering the collaboration network of institutions having high investment and 614 

interest in research on AI-in-the-AECI is useful in assisting research partnership and 615 

policy-making [82]. VOSviewer was used to create this network. The type of analysis 616 

was “co-authorship”, the unit of analysis was “organizations”, and the counting method 617 

“fractional counting”. The “minimum number of documents of an organization” and 618 

the “minimum number of citations of an organization” were both set to 15, for achieving 619 

the optimum network. Of 38,401 organizations identified, 40 met the threshold and 620 

were included in the resultant network, which was visualized using Gephi, as illustrated 621 

in Fig. 6.622 
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 623 

Fig. 6. Collaboration network of institutions in the literature on AI-in-the-AECI.624 
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The hyperlink-induced topic search (HITS) in Gephi, usually referred to as hubs 625 

and authorities, represents an algorithm whose work is to discern influential nodes [83]. 626 

For every node in the network, the HITS algorithm produces two disparate scores – an 627 

authority score and a hub score. A higher hub score shows a more influential node in 628 

terms of serving as a key reference source. Authority score, however, provides insight 629 

into the quantity of useful information stored in a node [6]. For additional information 630 

on hub and authority scores, one should see Ref. [84]. The HITS algorithm was used to 631 

rank the network nodes based on their hub scores. That is, hub scores were utilized to 632 

resize and recolor the nodes in the network in Fig. 6, with larger nodes and lighter 633 

shades indicating higher hub scores.       634 

As Fig. 6 shows, only few institutions from Vietnam, China, Iran, Hong Kong, US, 635 

Taiwan, and Turkey have built collaborative relationships in AI-in-the-AECI research 636 

– though most of these collaborations are currently not strong – as evinced by the 637 

thickness of the lines connecting the institutions. For the most part of the network, there 638 

is an obvious lack of collaboration among the institutions, underscoring the desolate 639 

nature of the extant research. Strong institutional-level collaborative relationships 640 

should be fostered across the entire network if the highest standards of scholarship and 641 

debate on AI-in-the-AECI are to be attained [6]. It is interesting to identify the inclusion 642 

of National Center for Research on Earthquake Engineering in the network. This offers 643 
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an example of the contribution of purely research institutes to research regarding AI-in-644 

the-AECI. 645 

3.5.2. Countries 646 

Scientific collaboration network of countries helps in identifying countries that are 647 

particularly active in the relevant research area [21]. To identify these countries, the 648 

most influential ones, and the collaborations amongst them, a network was created 649 

using VOSviewer. The type of analysis was “co-authorship”, the unit of analysis was 650 

“countries”, and the counting method “fractional counting”. The “minimum number of 651 

documents of a country” and the “minimum number of citations of a country” were 652 

both set to 20, for achieving the optimum network. Of 196 countries identified, 67 met 653 

the threshold and were included in the resultant network, which was visualized using 654 

Gephi, as illustrated in Fig. 7. 655 
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 656 
Fig. 7. Collaboration network of countries in research on AI-in-the-AECI. 657 
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Weighted degree values were used to identify the most influential countries in the 658 

network. Nodes were recolored and resized based upon their weighted degree values, 659 

with larger nodes and lighter shades representing higher weighted degree values. The 660 

network (Fig. 7) reveals these key findings:  661 

• Based on the weighted degree values within the network, Table 4 presents the top 30 662 

countries in the network. US and China stand out as the top-ranked countries with 663 

respect to the extent of collaboration in research on AI-in-the-AECI as well as the 664 

number of publications. This implies that US and China have been the biggest 665 

contributors to research on AI-in-the-AECI. Australia, UK, and Hong Kong were, 666 

respectively, the third, fourth, and fifth major contributors. However, the relations 667 

amongst US and these three countries are not strong. This highlights the need for 668 

institutions in such prominent countries to reform policies to nurture collaboration 669 

with each other to further improve global collaboration and knowledge exchange in 670 

this research area. 671 

• Concerning the strength of relations, the strongest relations were amongst the paired 672 

countries US–China, US–South Korea, US–Canada, US–Iran, China–Hong Kong, 673 

China–Australia, China–Canada, and China–UK. Compared against 990 relations in 674 

the network, these kinds of strong collaborations were very limited (only eight). This 675 

may be because of limited cross-country and comparative studies in the existing 676 
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literature. Moreover, the strongest collaboration relations generally existed amongst 677 

few developed countries, with many, especially developing, countries having weak 678 

relations to the main stream of research (key nodes). This should be considered by 679 

these countries in the refinement of their research policies, as they are placed far 680 

from the main collaboration network in research on AI-in-the-AECI. Thus, strategies 681 

that facilitate exchange of ideas/knowledge on AI are needed across AEC research 682 

worldwide.  683 

Table 4 684 

Top 30 countries collaborating in research on AI-in-the-AECI. 685 

Countries Number of publicationsa Weighted Degree value Relative influence 

United States 5,754 2,419 1 

China 5,093 2,159 2 

Australia 1,235 772 3 

United Kingdom 1,363 733 4 

Hong Kong 1,047 670 5 

Canada 1,452 627 6 

Iran 1,888 577 7 

South Korea 1,400 542 8 

Malaysia 554 311 9 

Italy 592 242 10 

Singapore 418 236 11 

India 1,453 227 12 

Taiwan 1,048 216 13 

Germany 333 214 14 

Spain 550 212 15 

Japan 396 191 16 

Turkey 907 189 17 

France 316 175 18 

Egypt 255 149 19 

Vietnam 186 141 20 

Netherlands 251 140 21 
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Portugal 322 136 22 

Switzerland 193 131 23 

Belgium 160 98 24 

Poland 325 90 25 

Saudi Arabia 133 89 26 

Greece 254 84 27 

Brazil 237 83 28 

New Zealand 105 76 29 

Pakistan 100 75 30 

a
During the studied period (1974–Aug 2019). 686 

4. Discussion and future directions  687 

During the last few decades, there has been a growing interest in research applying 688 

AI techniques/algorithms/concepts to AEC problems. This activity has been thoroughly 689 

reviewed in this study through quantitative, text-mining approaches. The review has 690 

been conducted to identify clusters and collaboration networks of the main research 691 

interests (including various AI methods/concepts as well as various AEC topics/issues 692 

addressed using AI methods/concepts), journals, institutions, and countries in the 693 

existing body of literature. The scientometric analysis of the field is requisite to develop 694 

a full picture and understanding of the research focuses on AI-in-the-AECI and to reveal 695 

the relevant gaps and future needs. Fig. 8 presents a summary of findings of this study. 696 

The keywords co-occurrence analysis (see Fig. 2) and the document co-citation analysis 697 

(see Fig. 3) revealed that optimization, genetic algorithms, neural networks, simulation, 698 

and uncertainty are themes receiving much attention in the research on AI-in-the-AECI, 699 

while topics such as robotics, energy, thermal comfort, life cycle cost, and LCA are not 700 
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receiving much attention. Therefore, potential research and development (R&D) efforts 701 

could be directed toward how to integrate robotics and other AI methods with the topics 702 

of energy, thermal comfort, life cycle cost, and LCA. It has been identified in this study 703 

that researchers working within this domain of AI-in-the-AECI often do not borrow and 704 

implement applicable theories and ideas from other research fields; they tend to only 705 

work with and cite studies within their specific areas of expertise. As well, the research 706 

institutions and countries often do not collaborate with each other. These problems need 707 

to be solved because they limit knowledge exchange and the use of potentially useful 708 

and insightful ideas, theories, and models. The borrowing of ideas, theories, and models 709 

from fields such as finance, telecommunications, and automotive, which are well ahead 710 

of AEC in AI solutions implementation [53], is proposed. The outlets direct citation 711 

analysis (Fig. 5) revealed that Automation in Construction is the most influential outlet 712 

for research on AI-in-the-AECI, followed by Journal of Construction Engineering and 713 

Management, Journal of Computing in Civil Engineering, and Computer-Aided Civil 714 

and Infrastructure Engineering. Moreover, the AI-in-the-AECI research emanates from 715 

various countries, with the US and China being the biggest contributors (see Fig. 7). 716 

This study’s results are fully presented and discussed in section 3. Based on the results, 717 

several gaps and emerging trends are also highlighted, based upon which pathways for 718 

future R&D activities on AI-in-the-AECI are discussed in the following sub-sections.719 
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 720 

Fig. 8. Summary of findings.721 
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4.1. Robotic automation application to AEC  722 

There has been limited attention to robotic systems in AEC activities, where 723 

robotics is not among the main areas of the current research on AI-in-the-AECI (Fig. 724 

2). Thus, a significant area for future research is developing advanced, usable, human-725 

friendly, and smart robots [85] for performing dangerous AEC tasks that can cause fatal 726 

injuries and deaths; such as tasks performed above or near the sea [86], at heights [72], 727 

and inside deep trenches [87]. Most of the existing studies have focused on using AI 728 

methods to detect, assess, monitor, and control safety hazards, rather than replacing 729 

humans with robots in dangerous situations that place workers’ lives at risk. To deal 730 

with this problem, it is very important that future research focus on inventing “robots 731 

working without human intervention” [88]. In human-friendly or less dangerous 732 

situations, however, rather than completely replacing humans with robots, it would be 733 

beneficial to develop and use cobots (or collaborative robots), i.e., robots designed to 734 

work with humans, as human workers bring additional value to projects [89]. Cobots 735 

and robots can bring numerous benefits, such as improved productivity, efficiency, 736 

safety, and quality, to the AEC industry. Modularization and prefabrication as well as 737 

3D printing are also becoming predominant approaches to achieve these benefits in the 738 

industry. Therefore, coupling robotics technology with modular construction 739 

technology and 3D printing technology is another fruitful field for further research, 740 
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which could explore, for example, the invention and application of cobots for 741 

constructing buildings in factories. A crucial issue here is how working with 742 

robots/cobots would impact worker sentiment and performance – future studies could 743 

investigate this. Furthermore, future research could study: (1) the performance, 744 

effectiveness, and efficiency (and how to optimize these) of existing robots; such as 3D 745 

printing robots for printing large buildings and bridges, bricklaying robots (e.g., 746 

Construction Robotics’ SAM100), and demolition robots [66,90]; and (2) how these 747 

robots could be promoted and adopted in the AEC industry in a widespread manner.  748 

4.2. Convolutional neural networks application to AEC 749 

An emerging trend is the development and usage of convolutional neural networks 750 

(CNNs) for AEC applications. As indicated earlier, CNNs are a popular class of deep 751 

neural networks (NNs) or deep learning (DL) architectures. Deep NNs here refer to 752 

NNs consisting of multiple hidden layers and increasing the number of layers causes 753 

deeper networks. Inspired by mammalian visual cortex [91], CNNs are capable of 754 

processing datasets that come in the form of multiple arrays [92], e.g., a color image 755 

made up of four 2D arrays with pixel intensities in the four color channels. As Ref. [92] 756 

indicated, several data modalities are in the form of multiple arrays, i.e., 1D for 757 

sequences and signals, involving language; 2D for audio spectrograms or images; and 758 

3D for volumetric images or videos. All NNs (including CNNs) consist of fully-759 
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connected layers of software-based calculators called neurons. Each neuron within a 760 

layer is connected to every neuron in the subsequent layer. CNNs convolve learned 761 

features with input dataset and can concurrently learn and extract optimal, effective, 762 

and very complex features for recognizing visual patterns directly from the raw data. A 763 

key advantage is that, unlike conventional NNs, CNNs require little-to-no pre- and 764 

postprocessing in doing all these, meaning that they learn the filters that in conventional 765 

NNs, necessitate hand-engineering. CNNs, in addition, deliver superior performance in 766 

both computational speed and accuracy [91,93]; and are making major breakthroughs 767 

in overcoming problems that have for several decades resisted the best efforts of the AI 768 

community [70]. They often leverage four central ideas in taking advantage of natural 769 

signals’ properties, namely local connectivity, the sharing of weights, pooling, and the 770 

deployment of multiple layers. Moreover, a typical CNN architecture is made up of 771 

three types of layers, convolutional layers, pooling layers, and fully connected layers. 772 

Detailed discussions/information upon CNNs could be found in, for example, Refs. [70], 773 

[92], and [94]. CNNs have a range of applications in image classification, action 774 

recognition (e.g., action recognition in still images and in video sequences), speech and 775 

natural language processing (e.g., automatic speech recognition, text classification, and 776 

statistical language modeling), visual saliency detection, pose estimation, object 777 

tracking, scene labeling, time series forecasting, object detection, text detection and 778 
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recognition, etc. [94]. 779 

In the domain of AEC, CNNs have only in very recent times been classified and 780 

applied as vision and learning-based methods for solving problems such as: damage 781 

detection [95], facility operations and management [96], construction sites safety 782 

monitoring [97], concrete compressive strength estimation [98], structural health 783 

monitoring (SHM) [99], maximum gradient (MG) decision-making [100], etc. Among 784 

these, the idea of applying CNNs for damage detection has gained the most attention, 785 

besides very few CNN-based methods/models/systems developed for several of the 786 

noted problems. The studies regarding damage detection have also focused more on 787 

concrete structures damage, in particular cracks – a common type of damage. Ref. [101], 788 

for example, proposed a vision-based technique employing a deep CNN architecture to 789 

detect cracks in concrete structures of tunnels without having to compute defect features. 790 

To evaluate the performance of the proposed vision/CNN-based damage assessment 791 

technique, they conducted a comparative study, which demonstrated how the technique 792 

gives better performance than traditional damage detection methods in detecting cracks 793 

in realistic situations. Ref. [102] also presented a “highly accurate” damage detection 794 

method using a deep CNN with transfer learning and Inception-v3 for detecting 795 

concrete surface cracks of hydro-junction infrastructure; whereas Ref. [103] introduced 796 

a CNN-based method to detect concrete bridge cracks. All these works suggest that 797 
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CNNs are an effective, efficient, accurate, and powerful tool for the detection of damage, 798 

and that this class of DL models are evolving themselves as viable techniques for a 799 

novel generation of vision/learning-based structural damage detection systems. 800 

Nevertheless, there is still a critical need for further work on developing CNN-based 801 

methods for damage (such as corrosion, surface delamination, cracks, etc.) detection of 802 

steel structures (e.g., steel trusses and steel bridges). Another fertile and promising 803 

avenue for further research is the invention of more methods to detect damages (such 804 

as leakages) in underground pipeline systems [104] and tunneling shields [105]. In 805 

addition, most of the already developed CNN-based methods are limited in their ability 806 

to detect/recognize multiple damage types simultaneously; they are only able to detect 807 

one particular type of damage, e.g., concrete cracks. Thus, it would be valuable to invent 808 

more quasi real-time vision and learning/CNN-based structural damage detection 809 

techniques capable of detecting multiple types of damage (e.g., concrete cracks, and 810 

steel cracks, corrosion, and delamination) at a time [106]. 811 

It is further observed that nearly all of the AEC-based CNN-based methods have 812 

been restricted in their scope, being image-based. That is, the CNNs’ application of 813 

image recognition where the architectures take images as the input dataset have been 814 

the most common use in the AEC field, wherein very limited work has been carried out 815 

in the video dataset domain. This is largely because CNNs are primarily designed for 816 
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2D spatial signals, making it hard to apply them to video recognition and classification; 817 

as videos hold an extra (temporal) dimension, which fundamentally differs from the 818 

spatial variations images hold. Besides, the sizes of signals of videos, compared to those 819 

of images, are in higher orders [94]. However, some approaches to overcome the noted 820 

drawback to enable the invention of video-based CNN-based methods for AEC 821 

problems have been proposed. One of which is to fuse the features of two CNNs, one 822 

for the spatial dimension and another for the temporal dimension [93]. Another way is 823 

to conduct three- or higher-dimensional convolution inside the CNNs’ convolutional 824 

layers aiming to capture discriminative features along both the temporal dimension and 825 

the spatial dimension [107]. Using these approaches, three- or higher-dimensional (thus 826 

more robust, reliable, efficient, and accurate) CNN-based methods could be developed 827 

for tackling highly complex AEC problems. Moreover, the performance of CNNs for 828 

AEC applications largely depends upon the amount of data used for training. Large 829 

amounts of dataset are usually required for training so as to avoid the problem of 830 

overfitting. Most of the CNN-based methods developed for the AEC industry suffer 831 

from this issue, due to using relatively little training data usually collected through 832 

normal cameras. To address this problem, in the area of project or construction site 833 

safety, for instance, the application of CNNs could be integrated and enriched with 834 

Internet of Things (IoT) devices, drones, laser capabilities, BIM, and data mining 835 
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methods [108]. As a result of exploiting such an intelligent approach, millions of project 836 

site-based drone-collected datasets of images and videos, for example, could be attained. 837 

It should be noted that videos could be more effective than images in continuous 838 

progress monitoring and critical events detection. Such datasets can be used for training 839 

and developing more efficient/reliable 1D, 2D, 3D or higher CNN-based methods for 840 

detecting events/behaviors on sites that are unsafe or not in compliance with safety 841 

measures and standards. These methods should be able to detect these events/behaviors 842 

in real-time and then report them immediately to the right persons. They should also be 843 

trained and developed to be able to learn the repetitive tasks of workers and detect and 844 

alert them of threats coming their way. In this R&D direction, researchers can 845 

collaborate with companies that could afford such large amounts and nature of datasets. 846 

The success of rightly developing and implementing the proposed CNN-based methods 847 

powered by IoT, drones, etc. would have a significant impact on improving safety, 848 

adhering to safety policies, in the AEC industry. Future research could also investigate 849 

the applicability of this approach to areas such as: sustainable development (e.g., in 850 

green/sustainable and modular/off-site construction implementations), architectural 851 

design, life cycle assessment and cost, energy, performance assessment, and reliability 852 

analysis, which are also identified in section 3.3 as emerging themes in research on AI-853 

in-the-AECI. Furthermore, there are opportunities for future AEC studies to go beyond 854 
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image recognition and classification and implement CNNs for speech and natural 855 

language processing, visual saliency detection, pose estimation, scene labeling, time 856 

series forecasting, text detection and recognition, etc. 857 

As researchers try to augment the robustness and depth of CNN-based methods in 858 

AEC, an indispensable issue that should be considered is computational efficiency. 859 

CNN models’ performance are mostly examined and judged with regard to accuracy 860 

and computational efficiency (defined as the ability to process data in real-time and 861 

rapidly – in a feasible amount of time). Although some of the existing studies showed 862 

good performance of the CNN models created, it must be highlighted that increasing 863 

the robustness of data as suggested in this review may demand some fast processing 864 

techniques of CNNs in order to achieve accurate as well as computationally efficient 865 

implementations. It is therefore essential that future studies leverage GPU- and FFT-866 

accelerated software and hardware solutions, for example, in applying CNNs in AEC 867 

[109]. Lastly, future studies could explore the potential of combining CNNs with other 868 

DL architectures – e.g., recurrent neural networks (RNNs) that implement 869 

reinforcement learning (RL) [92], deep Q-networks (DQNs) [110], convolutional deep 870 

belief networks (CDBNs) [111], autoencoders [51], etc. – to develop CNN-based 871 

models tailored for the needs of the AEC industry. Systems combining CNNs with other 872 

DL models are currently uncommon. 873 



Accepted Manuscript. Accepted on 6 January 2020 

To be Published in Automation in Construction 

61 
 

4.3. Collaboration and borrowing of theories and ideas 874 

There is an obvious lack of collaboration between institutions and countries 875 

involved in research on AI-in-the-AECI. As discussed by Ref. [112], despite having 876 

some drawbacks, research collaboration has several important benefits, such as 877 

“increased chance of success”, “grants and funding”, “avoidance of errors”, “complex 878 

projects”, and “respect”. Hence, this problem in the extant AI-in-the-AECI research 879 

should be addressed by funding agencies and research institutions through developing 880 

policies for encouraging global or cross-country and interinstitutional research 881 

collaboration as a requirement to apply for related funding. According to Ref. [113], 882 

cross-country collaboration, for instance, can help countries address major problems 883 

such as skills shortages and inadequate training, education, and research capacities, and 884 

facilitate technology and knowledge transfer among countries. However, in order to 885 

maximize the benefits from collaborating across the globe for conducting research on 886 

AI-in-the-AECI, issues such as the possibility of dealing with different time zones as 887 

well as understanding cultural differences [114] should be properly addressed. 888 

Furthermore, in the light of the research findings, horizontal and vertical borrowing 889 

of applicable theories/ideas is recommended in research on AI-in-the-AECI. These 890 

theory borrowing types have been explained by Ref. [115]. Despite their usefulness, 891 

researchers should apply them with caution; the “validity threat” should be considered, 892 
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as a borrowed theory might operate differently within a different context or at a different 893 

analysis level. 894 

5. Conclusions and recommendations 895 

5.1. Theoretical and practical contributions 896 

AI deals with the science of inventing intelligent machines and computer systems 897 

that can learn and help to solve problems. It is playing a significant role in Industry 4.0, 898 

the era of digitalization, driving the digital transformation of many industries, including 899 

AEC. In the AEC industry, AI provides advantages to deal with a diversity of difficult, 900 

complex engineering and management problems that defy conventional computational 901 

methods-based solutions. Consequently, over the past few decades, researchers have 902 

been conducting research applying AI techniques/algorithms and concepts to AEC 903 

problems. This paper presented the first comprehensive scientometric study appraising 904 

the state-of-the-art of research on AI-in-the-AECI. For theory, the present study is 905 

unique in several ways: unlike prior review studies in the area, the findings are 906 

reproducible and rely on quantitative analysis of the literature, with minimal subjective 907 

judgment; the study targets research activities of AI in the AEC context, rather than 908 

focusing on use cases and applications; the findings provide the first comprehensive 909 

agenda for leveraging and advancing AI in AEC research with showcasing the existing 910 

research, spotting fundamental problems to be addressed, and offering 911 
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recommendations that give directions on how to address the shortcomings in defining 912 

further research. In practical terms, this study can aid practitioners with a synthesized 913 

and readily-available point of reference that captures the state-of-the-art of research on 914 

AI in the AEC sector, through which cutting-edge technologies and methods are 915 

introduced. This gives practitioners a benchmarking tool to assess their maturity in 916 

terms of using AI techniques/concepts and also enhance their readiness for adopting AI 917 

in AEC practices. 918 

5.2. Recommendations for theory and practice 919 

This study encourages the widespread adoption of AI methods in the AEC industry, 920 

in which a few issues should be highlighted. First, AI methods could hone the efficiency 921 

and effectiveness of AEC tasks, but one should neither overlook the complexity of AI 922 

methods development nor this operation’s cost, which could be a significant amount of 923 

time, effort, and money. Therefore, future studies could investigate how to optimize this 924 

cost and achieve value in the implementation of AI. The cost can be a major barrier, but 925 

applications might still come about if the benefits from them are apparent and properly 926 

understood. This necessitates future studies, grounded in good science, concerning the 927 

real quantitative and qualitative benefits of various individual and combined AI systems. 928 

Moreover, adopting AI in AEC requires embracement of change and re-engineering of 929 

processes so as to maximize efficiencies, capturing the full benefits of AI. Such changes 930 
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include, e.g. organizational, technological, mindset, nature of business competition, and 931 

cultural changes. As such, AEC organizations ought to adopt an educative approach to 932 

tackling AI. If they wish to achieve success in their AI journey, then it is very necessary 933 

that they establish AI roadmaps and methodologies that place employee education and 934 

training first. Bill Gates’s “BrainyQuote”, “Technology is just a tool. In terms of getting 935 

the kids working together and motivating them, the teacher is the most important” [116] 936 

underlines this point. That is, AEC organizations must find innovative ways to develop 937 

the knowledge, skills, and capabilities needed for the successful AI transformation and 938 

implementation. They should develop AI-skilled workforce who could smartly embrace 939 

interdisciplinary teamworking, agile development, new thinking ways, and ‘big dataset’ 940 

exploration. One best way to achieve this is to use in-house capacity-building programs 941 

rather than external programs to train employees, as the latter may not afford the holistic 942 

company-specific education/training necessary to drive rapid scaling, agile and cross-943 

functional collaboration, and deep/lasting cultural changes [117]. Finally, future AEC 944 

researchers should be more inclined towards conducting AI-related studies and 945 

developing AI-based methods/models/systems that not just add to the body of 946 

knowledge but can also be applied in real-time in real-world practice.  947 

5.3. Limitations of this study and how they may be addressed in future studies 948 

Despite its contributions, this study has limitations. The analysis was based upon 949 
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dataset extracted from Scopus, therefore may be affected by any intrinsic limitations of 950 

Scopus’s coverage of publications. Besides, the literature was searched using certain 951 

keywords. Moreover, this study was limited to only journal articles. For these reasons, 952 

the research findings might not fully reflect the whole available literature on AI-in-the-953 

AECI. Similarly, this research was mainly guided by social network analysis principles 954 

regarding citation networks. Using citations as the main indicator of quality, impact, 955 

and connections of scholarly works might be open to criticisms. Any measurement in 956 

science has a dose of subjective judgment; researchers’ cognitive limitations and values 957 

are reflected in the choice of methodology, topic, and interpretation of findings. This 958 

study is no exception. Using data collected in longitudinal studies of the literature on 959 

the topic, and using different metrics and methods provide a way forward for validating 960 

the findings here and gradual removal of subjective elements. 961 

The above-mentioned limitations generate fertile grounds for further research, while 962 

one should consider them when interpreting the research findings. Future research may, 963 

however, attempt to address the limitations via using data from various sources and a 964 

variety of indicators for assessing impact, quality, and connections in the literature; it 965 

may also include all literature types. 966 
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Appendix A. Some AI techniques applicable to AEC 972 

• Genetic algorithm • Harmony search 

• Neural network • Differential evolution 

• Fuzzy logic/Fuzzy set • Adaptive neuro-fuzzy inference system 

• Machine learning • Convolutional neural network  

• Particle swarm optimization • Expert system  

• Support vector machine • Genetic programming  

• Data mining • Object oriented programming  

• Building information modeling • Firefly algorithm  

• Case-based reasoning • Evolutionary algorithm  

• Deep learning • Knowledge-based system  

Note: The techniques are listed in no order of importance or applicability to AEC. 973 

Appendix B. Some AEC problems/issues/domains to which AI is applicable 974 

• Optimization • Corrosion 

• Simulation • Mechanical properties 

• Uncertainty • Rehabilitation 

• Construction management • Cost 

• Bridges  • Information management 

• Project management • Planning 

• Decision making • Structural control implementation 

• Concrete • Image processing 

• Design • System identification 

• Reliability analysis • Durability 

• Maintenance • Energy 

• Structural health monitoring • Construction equipment 

• Risk management • Knowledge management 

• Damage detection/assessment • Resource allocation 

• Forecasting • Thermal comfort 

• Safety management/engineering • Temperature 

• Productivity • Life cycle assessment 
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• Inspection • Truss structures 

• Modeling • Fly ash 

• Sustainability/sustainable development • Estimation 

• Performance evaluation/assessment • Reusability 

• Buildings • Large steel structures 

• Scheduling • Problem solving  

• Automation • Civil engineering 

• Vibration control • Roads and streets 

• Classification • Accident 

• Earthquake engineering • Pavement 

Note: The problems/issues/domains are listed in no order of importance. 975 
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