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Abstract. Machine learning models trained by large volume of propri-
etary data and intensive computational resources are valuable assets of
their owners, who merchandise these models to third-party users through
prediction service API. However, existing literature shows that model pa-
rameters are vulnerable to extraction attacks which accumulate a large
number of prediction queries and their responses to train a replica model.
As countermeasures, researchers have proposed to reduce the rich API
output, such as hiding the precise confidence level of the prediction re-
sponse. Nonetheless, even with response being only one bit, an adver-
sary can still exploit fine-tuned queries with differential property to in-
fer the decision boundary of the underlying model. In this paper, we
propose boundary differential privacy (ε-BDP) as a solution to protect
against such attacks by obfuscating the prediction responses near the
decision boundary. ε-BDP guarantees an adversary cannot learn the de-
cision boundary by a predefined precision no matter how many queries
are issued to the prediction API. We design and prove a perturbation
algorithm called boundary randomized response that can achieve ε-BDP.
The effectiveness and high utility of our solution against model extrac-
tion attacks are verified by extensive experiments on both linear and
non-linear models.

1 Introduction

Recent advance in deep learning has fostered the business of machine learning
services. Service providers train machine learning models using large datasets
owned or acquired by themselves, and use these models to offer online services,
such as face and voice recognition, through a public prediction API. Popular
products include Microsoft Azure Face API, Google Cloud Speech-to-Text, and
Amazon Comprehend. However, a prediction API call, which consists of a query
and its response, can be vulnerable to adversarial attacks that disclose the in-
ternal states of these models. Particularly, a model extraction attack [19] is able
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to restore important model parameters using the rich information (e.g., model
type, prediction confidence) provided by the prediction API. Once the model is
extracted, an adversary can further apply model inversion attack [7] to learn the
proprietary training data, compromising the privacy of data contributors. An-
other follow-up attack on the extracted model is evasion attack [23, 16], which
avoids a certain prediction result by modifying its query. For example, a hacker
modifies the executable binaries of a malware or the contents of a phishing email
in order not to be detected by an antivirus or spam email filter.

There are two state-of-the-art countermeasures against model extraction at-
tacks. One is to restrict rich information in the prediction API, for example, by
rounding the prediction confidence value to a low granularity. However, even if
the service provider completely eliminates this value in the prediction API, that
is, to offer prediction label only, an adversary can still defeat this protection
by issuing large number of fine-tuned queries and train a replica of the original
model with great similarity [13, 19, 16]. The second countermeasure is to detect
malicious extraction by monitoring feature coverage [10] or query distribution
[9], and stop the service when a certain threshold is reached. However, since we
cannot preclude user collusion, all queries and responses must be considered ag-
gregately, which leads to significant false positive cases and eventually the early
termination of service.

To address the disadvantages, in this paper we propose a new countermeasure
that obfuscates the output label of a prediction response. There are three main
concerns when designing this obfuscation mechanism. First, the accuracy of pre-
diction API is highly correlated with the degree of obfuscation — if obfuscation
needs to be applied to most queries, the utility of the machine learning service
will degrade severely. Second, the obfuscation mechanism should be independent
of both the adversarial attacks stated above and the underlying machine learn-
ing models. Third, the obfuscation mechanism should be customizable. That is,
it should allow user-defined parameters that can trade utility for model privacy
or vice versa.

Our key observation is that most model extraction attacks exploit fine-tuned
queries near the decision boundary of a machine learning model. The responses
of these queries disclose the details of model parameters and therefore should
be obfuscated with priority. To this end, we propose a boundary differentially
private layer (BDPL) for machine learning services. BDPL provides a parameter-
ized approach to obfuscate binary responses whose queries fall in a predefined
boundary-sensitive zone. The notion of differential privacy guarantees the re-
sponses of all queries in the boundary-sensitive zone are indistinguishable from
one another. As such, adversary cannot learn the decision boundary no matter
how many queries are issued to the prediction API. On the other hand, the
majority of queries from normal users are far away from the decision boundary
and therefore are free from obfuscation. In this way, we can make the best use
of the obfuscation and retain high utility of the machine learning service. To
summarize, our contributions in this paper are as follows.
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– We propose a new protection mechanism, namely, boundary differential pri-
vacy, against model extraction with fine-tuned queries while balancing ser-
vice utility and model protection level.

– We develop an efficient method to identify queries in the boundary-sensitive
zone, and design a perturbation algorithm called boundary randomized re-
sponse to guarantee boundary differential privacy.

– We conduct extensive empirical study on both linear and non-linear machine
learning models to evaluate the effectiveness of our solution.

The rest of the paper is organized as follows. Section 2 introduces the prelim-
inaries for machine learning and model extraction. Section 3 elaborates on the
threat model and problem definition with boundary-sensitive zone and bound-
ary differential privacy. Section 4 presents the details of boundary differentially
private layer. Section 5 introduces evaluation metrics and shows the experimen-
tal results of BDPL against model extractions. Section 6 reviews the related
literature, and Section 7 concludes this paper and discusses future work.

2 Preliminaries

2.1 Supervised Machine Learning Model

A dataset X contains samples in a d-dimensional feature space. Each sample
has a membership in a set of predefined classes called labels. Supervised machine
learning trains a statistical model by such sample-label pairs to make predictions
of labels on unknown samples. Without loss of generality, in this paper we focus
on binary models which have only two labels — positive and negative. Formally,
a binary model f produces a response y to a query sample x as follows.

y = f(x) =

{
“positive” label

“negative” label

Binary models have been widely adopted in many machine learning applications,
particularly in spam filtering, malware detection, and disease diagnosis. Depend-
ing on the nature of these applications, the model f can be either linear (e.g.,
logistic regression) or non-linear (e.g., neural network).

2.2 Model Extraction With Only Labels

In a model extraction attack, a malicious party attempts to replicate a model
from the original one by continuously exploiting the prediction API. Technically
any queries can constitute such an attack. However, the more queries the more
likely this malicious attack will be exposed. As such, in the literature most model
extraction attacks fabricate fine-tuned queries by differential techniques such as
line search [19, 13] and Jacobian augmentation[16]. These queries are carefully
selected to capture the information about decision boundary where prediction
results vary drastically.
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Formally, a model extraction attack selects a set of fine-tuned queries Xdiff
and obtains their responses Ydiff to train a replica model f ′.

Xdiff = {x1,x2, . . . ,xn}, x ∈ Rd,
Ydiff = {y1, y2, . . . , yn}, y ∈ R1,

∃x, x′ ∈ Xdiff , dist(x,x′) = δ ∧ y 6= y′,

where dist(·)1 measures the distance between two queries and δ is the unit
distance adopted in the differential techniques when searching for boundary,
i.e., where two corresponding responses y 6= y′.

3 Problem Definition

3.1 Motivation and Threat Model

Xadv={x1, x2, x3 ...}

Yadv={y1, y2, y3 ...}

Upload

yadv
xadv   can be fine‐tuned by:
Line Search,  Active Learning, 

Jacobian Augmentation and etc.
xadv

Machine Learning Service

Model Inversion, 
Model Evasion, 

Resell$$$

Train

Proprietary Data Pool Model f(X) Prediction API

Replica Model  f’(X) Adversary

Private Data Owner

ExtractApply Collect

Deploy

Malicious Party

Fig. 1. Motivation and Threat Model

A machine learning service provides a binary prediction result using a pro-
prietary model as shown in Fig. 1. An adversary wants to produce a replica of
this model by continuously querying it through the provided prediction API. We
assume he can store all queries and their responses, i.e., labels, and the attack
is white-box, i.e., he can extract a replicated model using the same model type
(e.g., convolutional neural network) and hyperparameters as the original one.2

1 In general, this notation can be any distance metrics (e.g., Manhattan distance,
Euclidean distance). The implications of distance metrics to detailed algorithms will
be discussed in Section 4.1.

2 The white-box assumption is based on the fact that state-of-the-art models in spe-
cific application domains, such as image classification, are usually public knowledge.
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3.2 Boundary-Sensitive Zone

Non‐linear Model

Margin of Boundary‐
Sensitive Zone

Positive Label

Negative Label

Decision Boundary

Linear Model

Zone Parameter Δ 

Fig. 2. Illustration of Decision Boundary and Boundary-Sensitive Zone in 2D

Our problem is to protect against model extraction attacks by obfuscating
query responses. Before we formally define the security model, we first introduce
the notion of decision boundary and boundary-sensitive zone. For most supervised
models, a decision boundary is a critical borderline in the feature space where
labels are different on both sides. Fig. 2 illustrates the decision boundaries of a
linear and a non-linear model, respectively, in a 2D feature space. In a multi-
dimensional feature space, a line boundary becomes a hyperplane, and a curve
boundary becomes a hypersurface.

Our key idea is to protect the query responses near the decision boundary
against most model extraction attacks. To this end, we introduce the notion of
boundary-sensitive zone.

Definition 1. (Boundary-Sensitive Zone) Given feature space Z, a model f and
a parameter ∆ chosen by the model owner, all feature vectors adjacent to the
decision boundary of f constitute a subspace Z∆ of Z, where

Z∆ = {x ∈ Rd | dist(x, f) < ∆},

where dist(·) measures the distance between a feature vector x and the decision
boundary of f . All queries in this zone Z∆ are considered sensitive and have
high risk of revealing the decision boundary of this model.

3.3 Boundary Differential Privacy

All queries in the boundary-sensitive zone need obfuscation, whose objective is
to perturb the responses of any two sensitive queries so that they are indistin-
guishable for the adversary to determine the true decision boundary within this

Nonetheless, our solution can also work against black-box attacks where such knowl-
edge is proprietary.



6 H. Zheng et al.

zone. To this end, we adopt the notion of differential privacy and formally define
boundary differential privacy as follows.

Definition 2. (ε-Boundary Differential Privacy) A perturbation algorithm A(·)
achieves ε-boundary differential privacy, if and only if for any two queries x1,
x2 in the boundary-sensitive zone Z∆, the following inequality always holds for
the true responses y1 and y2 and the perturbed ones A(y1) and A(y2).

e−ε ≤
Pr
[
y1 = y2

∣∣A(y1), A(y2)
]

Pr
[
y1 6= y2

∣∣A(y1), A(y2)
] ≤ eε

The above inequality guarantees that an adversary cannot deduce whether
two perturbed responses A(y1) and A(y2) originate from the same (y1 = y2) or
different labels (y1 6= y2) with high confidence (controlled by ε). As such, the
adversary cannot use fine-tuned queries, no matter how many they are, to find
the decision boundary within the granule of boundary-sensitive zone.

4 Boundary Differentially Private Layer

In this section, we present our solution to protect against model extraction at-
tacks with respect to ε-boundary differential privacy (ε-BDP) by appending a
BDP layer to the model output. According to Definition 2, this layer consists of
two major steps — identifying sensitive queries, and perturbing the responses of
sensitive queries to satisfy BDP. In what follows, we first introduce a technique to
identify sensitive queries with the notion of corner points. Then we design a per-
turbation algorithm called boundary randomized response to guarantee ε-BDP.
Finally, we summarize the procedures of the boundary differentially private layer
in Algorithm 1.

4.1 Identifying Sensitive Queries

A query is identified as sensitive if it falls in the boundary-sensitive zone accord-
ing to Definition 1. However, in practice the decision boundary may not have
a closed form (especially for complex models such as neural networks). In this
subsection, we propose a method to determine if a query xq is sensitive without
deriving the boundary-sensitive zone. The idea is to test if a ball centered at xq
with radius ∆ intersects with the decision boundary3. In theory, this is equiva-
lent to finding if there exists a flipping point x′ in the ball that has a different
label from that of the query point xq. Formally,

Definition 3. (Query Sensitivity) A query xq is sensitive, if and only if:

∃x′ ∈ B(xq, ∆), s.t., f(x′) 6= f(xq),

where B(xq, ∆) = {x ∈ Rd |dist(x,xq) ≤ ∆} is the ball centered at xq with
radius ∆.
3 The case of tangency is rarely reached in real life given that the feature space is

usually continuous. For simplicity, we mainly consider intersection.
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The above definition needs to test infinite number of points in the ball, which
is infeasible. Nonetheless, we observe that if the ball is convex and small enough,4

a sufficient condition of query xq being sensitive is that at least one of the corner
points in each dimension of this ball B(xq, ∆) is a flipping point. As such, the
sensitivity of query xq can be approximated by testing the labels of 2d corner
points of xq without false negatives. Furthermore, if the distance metric is the
L1 distance (i.e., Manhattan distance), this is also a necessary condition, which
means that testing corner points leads to the exact sensivitity. The following
theorem proves this.

Theorem 1. (Flipping Corner Theorem) A sufficient condition of query xq be-
ing sensitive is that,

∃ ∆i ∈ ∆ · I, f(xq ±∆i) 6= f(xq),

where I is the identity matrix, ∆i is the projected interval on some dimension i,
and xq±∆i denotes the two corner points in dimension i. If the distance metric
is the L1 distance, this equation is also a necessary condition.

Proof. Let xi be one of the corner points in dimension i.

– (Sufficient Condition) For any xi, the decision boundary must exist between
xi and xq where f(xi) 6= f(xq). It intersects line xixq at point bi. As xi,
xq and bi are on the same straight line, we have

dist(xi, bi) + dist(xq, bi) = dist(xi,xq) = ∆.

Since dist(xq,f) is the minimum distance between xq and any point on the
decision boundary, we have

dist(xq, f) ≤ dist(xq, bi) = ∆− dist(xi, bi) < ∆.

According to Definition 1, query xq is sensitive and this proves the sufficient
condition.

– (Necessary Condition for L1 Distance) If xq is a sensitive query, an L1-ball
centered at xq with radius ∆ will be given by

B(xq, ∆) = {x ∈ Rd
∣∣ distL1(x,xq) ≤ ∆}. (1)

Let bm be the point which is the closest to xq on the decision boundary of
f . According to Definition 3, we have

distL1(xq, bm) = distL1(xq, f) < ∆.

Since xq is sensitive, bm must be inside this L1-ball:

bm ∈ B(xq, ∆).

4 If ∆ is small, the decision boundary near the ball can be treated as a hyperplane.
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This means that the decision boundary must intersect the ball at bm. As
such, at least one convex vertex of the ball is on a different side of the
decision boundary than point xq. Since the convex vertices of an L1-ball are
exactly those corner points, there exists at least one corner point xi such
that f(xi) 6= f(xq). And this proves the necessary condition.

�

4.2 Perturbation Algorithm: Boundary Randomized Response

Randomized response [22] is a privacy-preserving survey technique developed
for surveying sensitive questions. A randomized boolean value is given to the
answer and provides plausible deniability. As the perturbation algorithm defined
in boundary differential privacy has exactly two output choices, we design the
following BRR algorithm based on randomized response to satisfy ε-BDP.

Definition 4. (Boundary Randomized Response, BRR) Given query sample xq
and its true response yq ∈ {0, 1}, the boundary randomized response algorithm
A(yq) perturbs yq by the following:

A(yq) =

{
yq, w.p. 1

2 +
√
e2ε−1

2+2eε

1− yq, w.p. 1
2 −

√
e2ε−1

2+2eε

Theorem 2. The boundary randomized response algorithm A(yq) satisfies ε-
BDP.

Proof. To satisfy ε-BDP, the following inequality must hold according to Defi-
nition 2.

Pr[y1 = y2|A(y1), A(y2)]

Pr[y1 6= y2|A(y1), A(y2)]
≤ eε (2)

We assume p is the probability of retaining yq and 1 − p the probability of
flipping yq. According to algorithm A, for any two responses y1, y2 ∈ {0, 1}, the
four possible cases for the above inequality are:

Pr[y1 = y2|A(y1) = 0, A(y2) = 0]

Pr[y1 6= y2|A(y1) = 0, A(y2) = 0]
,
P r[y1 = y2|A(y1) = 1, A(y2) = 1]

Pr[y1 6= y2|A(y1) = 1, A(y2) = 1]
=
p2 + (1− p)2

2p · (1− p)
,

P r[y1 = y2|A(y1) = 0, A(y2) = 1]

Pr[y1 6= y2|A(y1) = 0, A(y2) = 1]
,
P r[y1 = y2|A(y1) = 1, A(y2) = 0]

Pr[y1 6= y2|A(y1) = 1, A(y2) = 0]
=

2p · (1− p)
p2 + (1− p)2

.

Given 0 ≤ p ≤ 1, it is easy to prove that the former two cases are always
larger than the latter. If we further use equality instead of ineqaulity in Eqn. 2,
we can derive the following equation of p:

p2 + (1− p)2

2p · (1− p)
= eε
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By solving the above equation, we can derive p as

p =
(2 + 2eε)±

√
(2 + 2eε)2 − 4(2 + 2eε)

2(2 + 2eε)

p1 =
1

2
+

√
e2ε − 1

2 + 2eε
, p2 =

1

2
−
√
e2ε − 1

2 + 2eε
(3)

Finally, we need to test the validity of both solutions. Let u = eε, the deriva-
tive of p1 in Eq. 3 with respect to u is:

∂p

∂u
=

( 2
u−1 )(

√
u2 − 1)

(2 + 2u)2
≥ 0

As such, p1 is monotonic with respect to u and ε. Since ε ∈ [0,+∞], the lower
and upper bounds of p1 are obtained when ε = 0 and ε = +∞:

lim
ε→0

[1

2
+

√
e2ε − 1

2 + 2eε

]
=

1

2
,

lim
ε→+∞

[1

2
+

√
e2ε − 1

2 + 2eε

]
= lim
ε→+∞

[1

2
+

√
1− 1

e2ε

2
eε + 2

]
= 1.

As such, the derived p1 in Eqn. 3 is in the range of [ 12 , 1) and is thus valid.
Similarly, we can prove p2 is in the range of (0, 12 ] and is thus invalid. �

4.3 Summary

Algorithm 1 summarizes the detailed procedures of BDP layer that can be tapped
to the output of any machine learning model f . When a new query xq arrives, if
it has already been queried before, the layer directly returns the cached response
y′q to prevent attacker from learning multiple perturbed responses of the same
query response, which can lead to a less private BDP. Otherwise, the layer first
obtains the real result yq from model f . Then it determines whether xq is in
the boundary-sensitive zone by checking all corner points. As long as one corner
point is as a flipping point, the query is identified as sensitive, and the boundary
randomized response algorithm BRR(·) with privacy budget ε will be invoked.
The layer will thus return the perturbed result y′q and cache it for future use.
Otherwise, if xq is not sensitive after checking all corner points, the real result
yq will be returned.

5 Experiments

In this section, we evaluate the effectiveness of boundary differentially private
layer (BDPL) against model extraction attacks. Specifically, we implement those
extraction attacks using fine-tuned queries as in [13, 19] and compare the success
rates of these attacks with and without BDPL. All experiments are implemented
with Python 3.6 on a desktop computer running Windows 10 with Intel Core
i7-7700 3.6GHz CPU and 32G DDR4 RAM.
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Algorithm 1 Boundary Differentially Private Layer

Input: Query xq ∈ Rd

Model f
Boundary-Sensitive Zone Parameter ∆
Boundary Privacy Budget ε

Output: Perturbed Response y
Procedure:

1: if xq is not cached then
2: yq = f(xq)
3: CornerPoints = getCornerPoints(∆,xq)
4: for xi in CornerPoints do
5: if xi is a flipping point then
6: y′q = BRR(yq, ε)
7: Cache(xq, y′q)
8: return y′q

9: return yq
10: else
11: y′q = getCached(xq)
12: return y′q

5.1 Setup

Datasets and Machine Learning Models. We evaluate two datasets and
two models used in the literature [19] — a Botany dataset Mushrooms (113
attributes, 8124 records) and a census dataset Adult (109 attributes, 48842
records), both of which are obtained from UCI machine learning repository [4].
All categorical items are processed by one-hot-encoding [8] and missing values
are replaced with the mean value of this attribute. We adopt min-max normal-
ization to unify all feature domains into [-1,1]. In the Mushrooms dataset, the
binary label shows whether a mushroom is poisonous or edible, and in the Adult
dataset, the binary label shows whether the annual income of an adult exceeds
50K.

We train both a linear model, namely, logistic regression, and a non-linear
model, namely, 3-layer neural network, to predict unknown labels on both datasets.
Logistic regression is implemented using cross-entropy loss with L2 regularizer.
Neural network is implemented using TensorFlow r1.12 [1]. The hidden layer
contains 20 neurons with tanh activation. The output layer is implemented with
a sigmoid function for binary prediction.

Evaluation Metrics. We implement the extraction attack defined in Section
2 using fine-tuned queries generated by the line-search technique. It is a full
white-box attack which produces an extracted model f ′ with the same hyper-
parameters and architectures as the original model f . To compare f and f ′, we
adopt extraction rate [19, 10] to measure the proportion of matching predictions
(i.e., both f and f ′ predict the same label) in an evaluation query set. Formally,
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– Extraction Rate. Given an evaluation query set Xe, the extraction rate

R =
1

|Xe|
∑

xi∈Xe

1(f(xi) = f ′(xi)),

where 1(·) is an indicator function that outputs 1 if the input condition holds
and 0 otherwise. The extraction rate essentially measures the similarity of
model outputs given the same inputs. In our experiments, the evaluation
query set could come from either the dataset or uniformly sampled points in
the feature space.

– Utility. This second metric measures the proportion of responses that are
perturbed (i.e., flipped) by BDPL. It indicates how useful these responses
are from a normal user’s perspective. Formally, given the entire set of queries
Xq issued by clients, and the set of (perturbed) responses Yq from the service
provider,

U =
1

|Xq|
∑

xi∈Xq,yi∈Yq

1(f(xi) = yi).

5.2 Overall Evaluation
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Fig. 3. Overall Protection Effect by BDPL: Extraction Rate and Utility
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To evaluate how well the decision boundary can be protected by BDPL,
we launch extraction attacks on 4 model/dataset combinations and plot the
extraction rate R of sensitive queries in Fig. 3 as the number of queries increases.
For BDPL, we set ∆ = 1/8, and ε = 0.01. In all combinations, except for the
initial extraction stage (query size less than 5K), BDPL exhibits a significant
protection effect (up to 12% drop on R) compared with no defense. Furthermore,
even though the two models are very diverse (the parameters of the neural
network are 20 times more than that of the logistic regression), BDPL shows
consistent protection effect by a similar drop of R.

The secondary axis of Fig. 3 also plots the utility of BDPL. We observe that
the utility saturates at over 80% after 20K queries in all combinations except for
Adult w/ Logistic Regression. This model has the fewest parameters and features,
so BDPL has to perturb more sensitive queries to retain the same BDP level as
the others. The impact on utility by ∆ and ε will be shown in Section 5.4.

5.3 BDPL vs. Uniform Perturbation
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Fig. 4. BDPL vs. Uniform Perturbation

In this experiment, we compare BDPL with a uniform perturbation mech-
anism that randomly flips the response label by a certain probability, whether
the query is sensitive or not. To have a fair comparison, we use trial-and-error5

to find this probability so that the overall extraction rates of both mechanisms
are almost the same. We then plot the extraction rates of both mechanisms for
sensitive queries in Figure 4. Due to space limitation, we only show the results
for Mushrooms with Logistic Regression with ∆ = 1/8 and ε = 0.01. We observe

5 To do this, we start with 1 random flip out of all responses and measure its overall
extraction rate. We then repeatedly increment this number by 1 until the overall
extraction rate is very close to that of BDPL.
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that BDPL outperforms uniform perturbation by 5%-7%, which is very signifi-
cant as this leads to an increase of misclassification rate by 30%-50%. As such,
we can conclude that BDPL is very effective in protecting the decision bound-
ary by differentiating sensitive queries from non-sensitive ones, and therefore it
retains high utility for query samples that are faraway from the boundary.

5.4 Impact of ε and ∆

In this subsection, we evaluate BDPL performance with respect to various values
of boundary-sensitive zone parameter ∆ and privacy budget ε. In each experi-
ment, we fix the value of ε (resp. ∆) and vary ∆ (resp. ε) for all 4 model/dataset
combinations. ∆ ranges between 1/64 and 1/8 while ε ranges between 0.01 and
0.64. Fig. 5 and Fig. 6 show the evaluation results on varying ∆ and ε respec-
tively.
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Fig. 5. Impact of Varying ∆

Impact on Extraction Rate. When ∆ increases from 1/64 to 1/8, the
extraction rate is significantly reduced in both logistic regression (up to 12%
drop) and neural network (up to 10% drop). Nonetheless, for neural networks,
the extract rate does not change much when ∆ increases from 1/64 to 1/32,
which indicates that if the boundary-sensitive zone is too small, BDPL may not
provide effective protection, especially when the decision boundary is non-linear.
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Fig. 6. Impact of Varying ε

As for privacy budget ε, its impact is not as significant as ∆. We only observe
up to 4% drop of extraction rate when ε decreases from 0.64 to 0.01 for all 4
model/dataset combinations.

Last but not the least, the extraction rates under all these settings saturate as
the query size increases. In most cases, they start to saturate before 5K queries,
and even in the worst case, they saturate at 15K or 20K. This indicates that
BDPL imposes a theoretical upper bound on the extraction rate no matter how
many queries are issued.

Impact on Utility. In Fig. 7, we plot the final utility after 20K queries for
all ∆ and ε combinations. Except for Adult w/ Logistic Regression, all utilities are
higher than 80% and most of them are above 90%, which means that BDPL does
not severely sacrifice the accuracy of a machine learning service. As expected,
the utility reaches peak when ∆ = 1/64 (smallest zone size) and ε = 0.64 (least
probability of perturbation). Furthermore, as is coincided with the extraction
rate, the utility is more sensitive to ∆ than to ε. For example, an increase of ∆
from 0.01 to 0.1 leads to a drop of utility by 10%, whereas a decrease of ε from
0.1 to 0.01 leads to only 5% drop.

To conclude, BDPL permanently protects decision boundary of both linear
and non-linear models with moderate utility loss. The changes of ∆ and ε (par-
ticularly the former) have some modest impact on the extraction rate and utility.
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Fig. 7. Utility vs. ∆ and ε

6 Related Works

There are three streams of related works, namely, machine learning model ex-
traction, defense, and differential privacy.

Model Extraction. Machine-learning-as-a-service(MLaaS) has furnished
model extraction attacks through the rich information available from predic-
tion API. Tramer et al. [19] proposed extraction methods that leveraged the
confidence information in the API and managed to extract the full set of model
parameters using equation-solving. Papernot [16] et al. introduced a Jacobian-
based data augmentation technique to create synthetic queries and to train a sub-
stitute DNN. Similarly, Juuti et al. [9] leveraged both optimal hyperparameters
and the Jacobian to extract models. Oh et al. [14] developed a model-of-model
to infer internal information of a neural network such as layer type and kernel
sizes. Orekondy et al. [15] proposed a knockoff model to steal the functionality
of an image classification model with black-box API access. Besides extracting
internal parameters, Wang et al. [21] also extracted the hyperparamters of a
fully trained model by utilizing the zero gradient technique.

Model extraction without confidence is similar to learning with membership
query [3, 20], which learns a concept through querying membership on an oracle.
This technique has been exploited by Lowd et al. to extract binary classifiers [13].
They used line search to produce optimized queries for linear model extraction.
This technique was extended by Tramer et al. [19] to non-linear models such as
a polynomial kernel support vector machine. They adopted adaptive techniques
such as active learning to synthesize fine-tuned queries and to approximate the
decision boundary of a model.
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Model Extraction Defense. Confidence rounding and ensemble model
were shown effective against equation-solving extractions in [19]. Lee et al. [12]
proposed perturbations using the mechanism of reverse sigmoid to inject decep-
tive noises to output confidence, which preserved the validity of top and bottom
rank labels. Kesarwani et al. [10] monitored user-server streams to evaluate the
threat level of model extraction with two strategies based on entropy and com-
pact model summaries. The former derived information gain with a decision
tree while the latter measured feature coverage of the input space partitioned by
source model, both of which were highly correlated to extraction level. Juuti et
al. [9] adopted a different approach to monitor consecutive queries based on the
uniqueness of extraction behavior. A warning would be generated when queries
deviated from a benign distribution due to malicious probing. Quiring et al. [17]
adopted the notion of closeness-to-the-boundary in digital watermarking and
applied it to protect against extraction attacks on decision trees. The defense
strategy was devised from protection of watermark detector and it monitored
the number of queries that fell into security margin.

Differential Privacy. Differential privacy (DP) was first proposed by Dwork
[6] to guarantee the privacy of a centralized dataset with standardized mathe-
matical notation. Duchi et al. [5] extended this notation to local differential
privacy (LDP) for distributed data sources. Randomized response proposed by
Warner et al. [22] is the baseline perturbation algorithm for LDP, which pro-
tects binary answers of individuals. Although differential privacy has not been
used in model extraction and defense, it has been applied in several adversarial
machine learning tasks. For example, Abadi et al. [2] introduced differentially
private stochastic gradient descent to deep learning, which can preserve private
information of the training set. Lee et al. [11] further improved its effectiveness
using an adaptive privacy budget. Their approaches are shown effective against
model inversion attack [7] or membership inference attack[18].

7 Conclusion and Future Work

In this paper, we propose boundary differentially private layer to defend binary
machine learning models against extraction attacks by obfuscating the query
responses near the decision boundary. This layer guarantees boundary differ-
ential privacy (ε-BDP) in a user-specified boundary-sensitive zone. To identify
sensitive queries that fall in this zone, we develop an efficient approach that use
corner points as indicators. We design boundary randomized response as the
perturbation algorithm to obfuscate query responses. This algorithm is proved
to satisfy ε-BDP. Through extensive experimental results, we demonstrate the
effectiveness and flexibility of our defense layer on protecting decision boundary
while retaining high utility of the machine learning service.

For future work, we plan to generalize our defense layer to a multi-class model
and adapt the perturbation algorithm to it. We also plan to extend our defense
layer to protect against other machine learning attacks such as model evasion
and inversion.
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