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The classical Kaczmarz algorithm

Consider a linear equation system Az = 3: € R?, y € R™, and A is a matrix
with dimension m x d.

The classical Kaczmarz algorithm: z; = 0 and for k£ > 1,

a.
Tppr = T + (Y — <%%>)Wa
K3

e i=1+4+((k—1) modm)

® ay,...,a,,: rows of A. So (a;,z) =vy,.

@ The algorithm and its convergence: (Kaczmarz 1937).
@ step size: 1

@ projection of error

a; a;
xy, —xz([— = ® ’>(a:k—x)
o la| " flal
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Randomized Kaczmarz algorithm

Pk
Tpp1 = T + (Y — (Pr> Th)) W

o {p}2, % (R4, p): random measures
° Yy = (¢p, )
@ A special example: p supported on the row vectors {ay, ..., a,,} of the matrix

A, with p(a;) o< |a;]?.

1

E [laens —af? < (1= ———
Uk = =1F] [AETA T

)],

Strohmer & Vershynin '09; for general p, Zouzias & Freris '13, Gower &
Richtarik '15.

e For general p, lim,_, . C*|z,, — z|?> = 0 almost surely for some C' > 1 (Chen
& Powell '12).
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@ Recall the definition:

2
Tpy1 = T+ (Y — (Pr, T)) W

, Y o : -~
Since Ty = <m,x>, it is convenient to assume || = 1.
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Relaxed randomized Kaczmarz algorithm

Tpyy = T+ M (Y — (Prs T) )P

o y,. = (¢, T) + €, € centered independent noise, || =1

0 < 1y, < 1: necessary to guarantee a convergence

Needell "10: With step size n;, = 1, E[|zp,; — ] = O(|A7 || Al ) as
T — oo.

(Bach & Moulines '13):

2
k+1 .
1 dimH
e[S e | o ()
j=2
e Lin & Zhou '15: lim;_,  E[|z,,; — z|*] = 0 if and only if lim;,_,. 7, =0
and Z:il 71, = 00. In this case, one further has

Y VElleg, —af?) = cc.
k=1

o Lin & Zhou '15: E[|x); — z[?] = O(k~?) for n, ~ k=% and 6 € (0,1).
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Randomized Kaczmarz algorithm in Hilbert space

Tpi1 = T + MY — (Prr T) ) P

o {p,}%2, & pon H, a general Hilbert space; ||| = 1.
® Y = <<pk:7x>

@ It is closely related to the online learning algorithms (online gradient descent
algorithm): let {(wy, y;)}, be a sample of input-output pairs. Let f; = 0 and

Srevr = fr+ ey — <fk7Kwk>K)Kwk — A Sy

K: a Mercer kernel; (# g, (-,+) ., | - | ) is the corresponding reproducing
kernel Hilbert space; K, : u — K (w,u), a function in H .
Some Reference: Cesa-Bianchi & Long & Warmuth '96, Vapnik '98,
Kivinen & Smola & Williamson '04, Pontil & Ying & Zhou '05, Smale & Yao
'06, Ying & Zhou '06, ...

@ It is understood that the regularization parameter X is not necessary (Ying &
Pontil 07).

o Usually the regularity assumption f, = L5 (H ), s >0, is made.
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Application to functional data analysis

e Functional linear models (3,: unknown slope function)

Y* = ag+ / X*() B, (t)dt + e.
T

J: a compact domain, e.g., an interval or a square. Y* € R.

X*(t): a square integrable stochastic process over T with covariance

C(s,t) = E[(X(s) — E[X(s))(X(2) — E[X(D)])]-

Data: {(X4,Y;)}s, iid copies of (X*,Y*).

a large literature [James 2002, Cardot& Ferraty&Sarda 2003,
Ramsay&Silverman 2005, Yao&Miiller&Wang 2005, Ferraty&Vieu 2006,
Cai&Hall 2006, Li&Hsing 2007, Hall&Horowitz 2007, ...]

@ Reproducing kernel approaches [Yuan&Cai 2010, Cai&Yuan 2012]

(070750)231"3 min {1Z(K_F(Xi))2+)\J(F)}7

a€R,BET g m =1

where FI(X) = a+ [ X(¢)8(t)dt, and J(F) = | B]%.
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We assume « = 0 for simplicity
Consider the noise-free case ¢ =0
Apply randomized Kaczmarz algorithm with RKHS

Ty = T TN (Yk* - / xk(t)X;;(t)dt)
T

aj, = [ Xj(s)Kds
Write ¢y, = ai/lagll k. yr = Yy /llai[ k. One has

Tpy1 = T+ 06U — (Tp, O1) ) P
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The assumption z € L*(H), s > 0

L :=E[p, ® ;] where for any u € H, (¢}, ® ¢p)u = (@, u) ¢y

L is symmetric, positive semi-definite, Hilbert-Schmidt, and of trace class.
For online learning algorithms, ¢ = Ky /| K x| x with X having some
unknown distribution, and

Ex®Ky _ Ky®Ky

1K x |2 K(X, X)
When K /|K x|k and |K x| are independent, for example when
K(xz,z) =1, L is the integral operator L that is widely used in literature,
and z € L5 (J( ) is a widely used assumption.

It is an interesting open problem that under which (all?) circumstance would
one get a better kernel simply by normalization.

L=LE

In functional linear regression problems,
[_pr®a _ f b X)X (r)(K, ® K, )dtdr
el LI X* X*( VE (t, r)dtdr

when |a*| x and a*/|a*|x are independent, L is the operator L1201/
studied in literature (Yuan-Cai 2010, Cai-Yuan 2012), where
C(t,r) = E[X7()X*(r)].
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Consider the noise-free model y;, = (¢, ) with {¢;}%2, iy pand |¢.| = 1. Let
L =E[p, ® @yl-

Theorem (rate of weak convergence, G-Lin-Zhou)

Let m,, =n € (0,1]. For any xz € L°*(H) and v € L*2(H) with some
1,89 € [0,1/4], we have

El(t, @41 — 2)°] < |22 | L=l (k) 21252,

If instead of a fixed u, x;; —  is measured by an independent random vector
a~ (H,p), one has

E[{a, 21, — 2)?] < Tr(L)|L-*12|2(nk) =213,

@ Remark: when H = H j; and a = Ky with X being random,

2
El{or, 21 — 2)7] = Eflzg 0 — 2[72]-

@ Example: suppose p is concentrated on only one point ¢*, then L = ¢p* ® ¢*,
and ¢, = +¢* for all k. So the randomized Kaczmarz algorithm converges if
and only if z = Cp* for some constant C'. Even if z L ¢*, (u,x,,; — ) still
converges if u = C’p*.
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Outline of the proof.

Tpyr = Tp + (Y — (P> Ti) )P

Ty — T =T — T+ (Pp, T — Ty) @y,
=1 — ¢ @ ) (1), — ).

Let P, =1 — ¢, ® ¢y, then P, ..., P, ... is a sequence of i.i.d. random
orthogonal projections, and

Ellzgsy — 2] =E[(z) — )" PE (), — )]
=E[(z)_4 — x)TPkAP/ngq(xkq — )]

:[E[(O - z)Tpl sz =P (0— l")]
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Strong convergence is not expected.

Example

Let {e;}5°, be an orthonormal basis of H. Let ¢; > ¢, > ... > 0 and ZZI q; = 1.
Let p be a discrete probability distribution such that p(e;) = g;. Assume
Var(e) = 02 > 0 the model y = (p,z) + € and set 1, = n € (0, 1] for Algorithm

Tpy1 = g + MUk — (Pr> Tie) ) Pr-

Then lim,_, . E[|2; 1 — z]?] = co. Note that if x € L*1(H) and u € L*>(H)
with some s, s, € [0, 1], we still have
El(u, zp41 — )] = O((nk) 251725 + o2 ~2%2),

Recall [Needell 2010]: In the finite dimensional case with step sizes n, = 1,
El|zy.q — z[] ~ A Al as k — oo.
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Regularization by relaxation

If we allow that 77, be small enough, we can obtain strong convergence in H.

Theorem (G-Lin-Zhou)

Let M be a positive integer or infinity. Suppose the step sizes satisfy
Zj]\il 77]2» = 19,0 < 1 and the slope vector satisfies x € L*1(H). Then for
1 <k < M, one has

22| L= 2|25
_ 2 k
IL-al?st* + ale?ss (S5, ;)

z||? + o?Tr(L k
Lol + A Tr(E) o

Bz — z|?] < 25,

= 772,M j=1
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Theorem (G & Lin & Zhou)

Suppose x, € L**(H) for some s; >0, and Tr(L*-) < oo for some 0 < s, < 1.
Let 2 <T < oo be the number of iterations with constant step size

o T—(28:+8,)/ (1428, +s,) S5 +s, > 1,
e =1= T—(1+81)/(24s1) s;+ s, <1

Then

T-201/0+2s1%s.) 5 45 >1,
[E[HxT—o—l - ‘rp”Q] <C { T—251/(2+s1) si +s. <1

where C| is independent of T'.

Note: the error estimate in this theorem is much better than the bound given in
Ying & Pontil '07, and is arbitrarily close to the minimax optimal convergence
rate given by G & Fan & Zhou '16.
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Summary, and Future Work

@ The classical randomized Kaczmarz algorithm is generalized to Hilbert space
inspired by the “regularity” assumption from learning theory.

@ Polynomial convergence is obtained regardless of the minimum eigenvalue of
the coefficient matrix, for classical Kaczmarz algorithm;

o Future works: minimax rates; a better connection and understanding of the
applications in functional data; mini-batch; averaging; Kaczmarz in Banach
space; ...
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