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ABSTRACT. We proposed the use of coordinate kernel polynomials in kernel
regression. This new approach, called coordinate kernel polynomial regression,
can simultaneously identify active variables and effective interactive compo-
nents. Reparametrization refinement is found critical to improve the modeling
accuracy and prediction power. The post-training component selection allows
one to identify effective interactive components. Generalization error bounds
are used to explain the effectiveness of the algorithm from a learning theory
perspective and simulation studies are used to show its empirical effectiveness.

1. Introduction. Building models and making inference from data are central
tasks in machine learning and data mining. They play essential roles in revealing
mechanisms of natural and social phenomena and forecasting the future. Because
most phenomena are the results of interactions of a group of relevant factors, two
problems are central to modern data analysis in this big data era. One is the
identification of important factors that are relevant to the phenomenon under in-
vestigation. The other is the modeling of interactions between relevant factors to
understand the underlying mechanism. These tasks are challenging because the
existence of a large amount of irrelevant information makes many techniques less
robust. While many methods have been developed for the identification of relevant
factors under the context of variable selection, research in the interactive compo-
nent modeling is very sparse. The main purpose of this paper is to develop a class
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of novel kernel models that are able to simultaneously identify relevant factors and
model their interactions.

Variable selection algorithms usually involve a variable ranking process, either ex-
plicitly or implicitly. In filters methods [8], the ranking metrics could be correlation
coefficients, statistical testing scores, mutual information, and the effective variable
subset is scored by an evaluation process. A common problem of these methods is
the redundant selection because highly correlated variables produce similar ranking
metrics. Some algorithms integrate variable selection into the model construction
or model selection process. Examples include LASSO [23], elastic net [34], and the
support vector machine recursive feature eliminations [7]. These linear model based
methods, however, may not be able to detect all relevant variables. For instance,
in LASSO and elastic net, those variables uncorrelated to the response variable will
not be selected even if they are relevant. This advocates the necessity of develop-
ing variable selection algorithms based on nonlinear models. In [17, 16] variable
ranking by gradient and kernel gradient learning were proposed for both regression
and binary classification problems. [12] proposed nonparametric Bayesian kernel
models for variable selection. Algorithms were also proposed for simultaneous vari-
able selection and dimension reduction, e.g. the sparse PCA, sparse ridge sliced
inverse regression [11, 33], and sparse MAVE [26, 30]. The primary purpose of
these methods is dimension reduction. Variable selection is used to improve the in-
terpretability of the effective dimensions. The accuracy of variable selection usually
shrinks quickly as the number of effective dimensions increases.

Compared with relevant feature selection, the interactive component modeling is
even more challenging because the number of interactive components is huge in the
high dimensional setting. For instance, if the dimension of the data is of thousands,
the number of two-way interactive components is already of millions. Things will
be even severer if multiway interactions have to be considered. The computational
complexity prevents direct and independent modeling of all interactive components.
In the literature we may see many measurements that are used to describe the
relationship between variables in some sense. For instance, traditionally people
use covariance and correlation to measure the dependence between variables. In
Gauss-Markov graphic models [22, 10], the precision matrix is used to measure
the conditional dependence. In [4] the sparse factor models are used to study
the interactions in genes expression data analysis. These measurements help to
understand the mechanisms of the underlying systems. However, without a method
that could incorporate the interaction information into predictive modeling, they
cannot be used to improve forecasting performance.

As far as we know, research works on building predictive models with interac-
tive components are very sparse. The classical polynomial models are examples
falling into this category where the high order terms are used to measure the effect
of interactions in the forecasting. The component selection and smoothing oper-
ator (COSSO, [32, 13]) is another method that was proposed to detect nonlinear
additive and interactive components in the smoothing spline ANOVA framework.
Both methods, however, face difficulty in high dimension data analysis due to high
computational complexity resulted by the geometrically increasing number of com-
ponents.

Kernel methods are standard tools in machine learning to extend liner models
to nonlinear models. The use of kernels dates back to kernel density estimators
and spline models in statistics [25] and radial basis functions in computational
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mathematics [3]. Its resurgence in machine learning is due to the success of support
vector machines [24] and kernel principal components analysis [20, 19]. Kernels have
been used in a lot of real world applications including microarray data analysis,
handwritten digits recognition, face recognition, and so on. The performance of
kernel methods highly depends on the choice of the kernel in practical applications.
It is not an easy task to find the appropriate kernel for a particular application.
This has driven the research in kernel construction, kernel selection, and multiple
kernel learning [18, 27, 1, 5, 28, 29, 9, 21]. A common criticism on kernel methods
is that a kernel machine quite looks like a black box and is hard to interpret. For
many commonly used kernels such as the Gaussian kernels, the relevance of the
variables and components are mixed and hidden in the kernel functions. Although
the information of the variables and their interactions are coded in the solution, it
is difficult, if not impossible, to extract such information for the purpose of feature
selection and interaction identification. Therefore, it would be interesting to design
interpretable kernels and integrate variable selection and interactive component
identification directly into kernel methods.

The purpose of this paper is to develop a new class of kernel models, which we
call coordinate kernel polynomial models, for interactive component identification.
The algorithm involves three stages, which are described in detail in Section 2. In
Section 3 we discuss the connections between this new algorithm with some existing
approaches in the literature. We provide the generalization error bounds in Section
4 and perform simulation studies in Section 5.

2. Coordinate Kernel Polynomial Models for Regression. In this section we
describe our kernel method for simultaneous variable selection and interactive com-
ponent identification. The algorithm includes three stages: the primary learning
based on the coordinate kernel polynomial models, the reparameterization refine-
ment, and the post-training component selection.

2.1. Coordinate kernel polynomial. In regression problem, a set of observations
are collected for p predictors and a scalar response variable which are linked by

yi=f(xi)+e,  i=1,2,...,m,

where x; = (zi1, T2, . - . ,xip)—r € RP, y; € R, and ¢; is the zero-mean noise. The
target is to recover the unknown true model f* as accurate as possible to understand
the impact of predictors and predict the response on unobserved data. The ordinary
least square (OLS) is the most traditional and well developed method. It assumes a
linear model and estimates the coefficients by minimizing the squared error between
the responses and the predictions. A variety of regularizations have been applied to
this linear method for different purposes. These regularized methods include ridge
regression, LASSO, elastic net and many others.

Kernel techniques have been used to extend OLS so that nonlinear relation-
ship between the predictors and response variable can be estimated. Let K(x,t)
be a Mercer kernel defined for x,t € RP, i.e. K is continuous, symmetric and
positive semi-definite. There is a reproducing kernel Hilbert space Hy associated
to K induced by the inner product (K(x,-),K(t,-))x = K(x,t) and satisfying
(f, K(x,-))x = f(x) for f € Hg. The regularized kernel regression estimates the
true regression function by a function f € Hx minimizing the penalized squared
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€rror:

feEHK | M
=1

m
f = arg min {1 S (i — fxi))? +A||f||%<} , (1)
where A > 0 is a tunable parameter trading off the fitting error and the model
complexity.

Designing kernels for particular domain applications or to have particular mathe-
matical properties is critical for the success of kernel methods. To model the interac-
tive components the kernel must be expandable so that each interactive components
could be represented explicitly. At the same time, the number of parameters cannot
blow up when multiway interactions enter the model.

The idea of coordinate kernel polynomial models (CKPM) is motivated by the
smoothing spline component decomposition [13, 32] and learning polynomial combi-
nation of kernels [5]. For x = (21, 22,...,2p), t = (t1,t2,...,t,) € RP, let Koz, ty)
be a kernel that depends only on the ¢th coordinate. We call such a kernel a coor-
dinate kernel. Let d > 1 be an integer. Define

p d
Ko(x,t) = (Z ngg(:z:g,tg)> . we>0. (2)

It is a polynomial of the coordinate kernels of degree d. Therefore we call it a
coordinate kernel polynomial (CKP). The choice of coordinate kernels can be flexible
and problem dependent. Note that when d = 1 the kernel K, is a linear combination
of the coordinate kernels and the associated model is an additive model. When d >
2, the kernel is a nonlinear combination of the coordinate kernels. The associated
model will include interactive components as explained below.

The main advantage of using coordinate kernel polynomial in kernel algorithm
is its ability to explicitly represent interactive components. To see this, let s C
{1,2,...,p} and |s| denote the number of elements in s. We use ov = (a1, az, ..., qp)
to represent non-negative integer valued p-dimensional vectors with > )_, ay = d
and supp(a) stands for the subset of {1,2,...,p} containing the indices of nonzero
elements in a. We can expand the coordinate kernel polynomial

d d P
(IUTES ) OLINURS v ol (N0 ol (4| (CTIERAR

Jj=1|s|=j Jj=1|s|=j \Supp(o)=s (=1

Together with the representer theorem, the solution to a kernel algorithm can be
written as
m

m d d
f(x) = ZCin(x,xi) =3 > aKs(xxi) =Y > fu(x). (3)

J=1|s|=j i=1 J=1|s|=j

When [s| = 1, fs represents an additive component. When Is| =7 > 2, fs is the
j-way interactive components between the variables indexed by s.

When CKPM are used for high dimensional data analysis, a sparse weight vec-
tor w = (w1, wa ..., wp) is preferred in order to facilitate variable selection. This
can be implemented by introducing an ¢; penalty on the weight vector w into the
learning process. By learning a sparse vector w, the variables with zero weights are
deactivated and only those variables with nonzero weights enter the kernel model
construction. As for the interactive components, firstly we see that all the inter-
active components involving deactivated variables are obviously inactive because
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Ks = 0if wy = 0 for some ¢ € s. So the problem is for those interactive components
involving active variables. Such a component is not necessarily active although
the associated variables are active. But it is not directly seen whether it is active
or inactive from the weight coefficients. For these components we will suggest a
post-training selection process in Section 2.4.

In this paper we focus on the use of coordinate kernel polynomial models in
regression setting. The algorithm is discussed in details in Sections 2.2, 2.3, and 2.4
below.

2.2. Coordinate kernel polynomial regression and its solution. When the
coordinate kernel polynomial K, is used in regression setting, the algorithm, called
coordinate kernel polynomial regression (CKPR), is given by

m p
fau=arg min {7711 D (i — Fx)? + Al flle, + uzwe} : (4)
w>0 i=1 =1

The penalty Al| f ||%(u is used to prevent overfitting and the penalty p > j_, wy is used
to control the sparsity of w. The restriction w > 0 means that all the coordinates
wy, W2, .. ., and w, are non-negative.

To solve the problem, let K, be the Gram matrix of the coordinate kernel K,
and K, stand for the Gram matrix of the kernel K. Then

P od
Ko = (Z sze> ;
=1

where (-)°? denotes the Hadamard power of matrices. The representer theorem tells
that the solution to the kernel machines takes the form

m m p d
fx)= Zcin(x, x;) = Zci ( ngg(Jie,Jjw)> ) (5)
i=1 =1

i=1
Thus (f(x1), f(%X2), ..., f(%m))" = Ky,c where ¢ = (¢1,¢2,...,¢,) . Denote y =

(Y1,Y2, - --,Ym) | and let || - || stand for the Euclidean norm. The target function we
minimize to solve CKPR (4) has the form
1 p
£ ) = —|ly — Kocl]? + A TK,, . 6
() = oy = Kool #0643 (6)

It is trivial to check that

Ee,w|A, p) = E(ce?, wEHAET, )
for any & > 0. As a result, if (c¢*,w*) minimizes &(c,w|A, p) and let & = >°7_, wy,
then
(€, = (¢!, wie) (7)
minimizes
P
E@ @\ 1) = E(cth wE T AT pl) s Y =1, (8)
(=1
which is equivalent to minimizing

s s ] L2 ST A L - -
Ee, |\ i) = E||y_KQC||2+)\CTKQC+M s.t. ng =1 (9)
=1
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We see that i does not affect the solution and can be dropped. Therefore this new
problem is advantageous in that \ is the only parameter to be tuned.

Theoretically speaking, the solution (€*,@*) to (9) can be used to recover the
solution (c*,w*) to (6) through their relationship (7). Though, this is impractical
since we do not know £ without solving (6). However, this is also unnecessary if we
notice that both (¢*,@*) and (¢*,w™*) generate the same function. To summarize,
we have the following theorem.

Theorem 2.1. If (¢*,@%) solves the minimization problem (9), then the solution
to the CKPR (4) is given as

f)\,p,( ZC K X XZ

provided that fk,u s not identically zero.

Next let us simply discuss the optimization of (9). Note that for fixed w the
optimal c is given by
& (w) = (Ky +mAL,) "ty (10)
where and in the sequel I,,, represents the identity matrix of size m x m. Plugging
it into the function £ we obtain

@, @\ ) = Ay T (Ky +mAL,) "ty + fi.
Therefore we can solve w* by

~ % ~ %

w :w)\—argminy (Ko +mAL,) ly,  s.t. ng—l (11)

After @™ is obtained, ¢* = ¢*(®") can be computed using (10).

2.3. Reparametrization refinement. From Theorem 2.1, we see that the solu-
tion of CKPR depends only on one parameter A. But its role is not as clear as the
two parameters A and p in (4). Note that A trades off the data fitting and model
complexity. It is usually chosen sufficiently small to avoid introducing too much
bias and at the same time not too small to result in over fitting. The parameter
for the ¢ penalty term on the weight vector w controls its sparsity. In case that
the true model depends on only a few variables, large u should be used to ensure
w shrinking and sparse.

Recall that A = A~ with € the £1 norm of w*. If a sparse w* is preferable, large
v should be used, which leads to small £&. Thus X should be large. At the same
time, to fit the data well, a small choice of A is usually preferred which requires
small X. Therefore, we see the sparsity and data fitting accuracy has contradictory
requirements on the size of A. When tuning the parameter \in practice, we observed
that it is neither large enough to produce sparse w* for variable selection nor small
enough to provide good learning performance. Instead, the parameter is usually
chosen at the middle. As a result, CKPR by tuning parameter \is suboptimal for
both variable selection and data fitting.

To overcome this problem, we refine the result by a reparameterized training
process. After learning the optimal &* using A, we introduce a new parameter -y
instead of using the original parameter X when we apply (10) to compute ¢*. That
is,

c= (A:;\W = (K@’i + mv]Im)_ly. (12)
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The prediction and model validation will use the function
. m
Fin () =65, Ko (x, %) (13)
i=1

Simulation studies have confirmed the ability of reparametrization refinement to
improve both variable selection accuracy and predictive performance.

2.4. Post-training component selection. While the interactive components as-
sociated to irrelevant variables are deactivated automatically, it is not as obvious
to tell whether an interactive component associated to relevant variables are effec-
tive or not. We need a post-training selection process to identify those effective
interactions. This is possible because the CKPM is able to explicitly represent each
interactive components.

To identity effective components, we first rank the components associated to
active variables according to their variances. Then we can select the number of
components. Several methods can be used for this purpose. For instance, one
can use simple threshold method, cross validation, the information criteria, or a
combination of them.

We remark that, if the number of relevant variables is much smaller (p, < p), the
computational complexity of post-training component selection is low because the
number of the components associated to relevant variables is only of order O(p?),
much less than the number of components before variable selection.

3. Connections with Existing Algorithms. The idea of parameterizing coordi-
nates in kernel method for modeling nonlinear data structure and selecting relevant
factors are not completely new. For instance, the parametrized polynomial and
Gaussian kernels are used in [12]. However, this idea is conceptually different from
CKPM. To see this, consider the parametrized Gaussian kernel

Kg(x,t) =exp (— ng(xg - tg)2> .
=1

Clearly, although sparse coding techniques allow to filter out the irrelevant variables,
the interactive relationship between the relevant variables is still mixed together.
Therefore it is impossible to explicitly represent each component as in CKPM, let
alone selecting those effective interactive components.

The CKPM is closely related to COSSO [13, 32]. Both methods are motivated
from the smoothing spline component decomposition model

P P
f(x)=b+ Z fe(ze) + Z fre(xk, z¢) + higher order interactive terms.
=1 kf=1

In COSSO each univariate function f; is assumed to be in a reproducing kernel
Hilbert spaces H, of variable x, and the interactive components are in correspond-
ing tensor product spaces Hs = &),cs He. COSSO searches for a function f by
minimizing the risk functional

m

feosso = argmin %Z(yz —FE)?+A D Pl ¢ »

i=1 |s|<d
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where Ps is the projection onto the tensor product space. It is equivalent to

m

; . 1 _
Jeosso = argmin ¢ — D i — FE))P A0 slF A1 D> s g

s|<d Is|<d

i=1
st. f=b0+) fo  0:s>0.

Let Rg stand for the kernel for Hgs and R = le‘gd 0s Rs. The kernel form of COSSO

1S

; : RS 2 2
feosso = argmin ¢ — Z(yi — ()" + Allfollz +Mllz<d9s : (14)
SIS

=1
st.  f=b+ fo, 0s > 0.

At the first glance, one may think (4) and (14) are quite similar. But this is
only an illusion. The essential difference between these two algorithms lies on their
different ideas for designing the kernels. In COSSO a linear combination of the
kernels for all components is used. As a result, the number of parameters is equal
to the number of components that is of order O(p?). It increases geometrically with
d and may cause computational difficulty even in a moderate dimensional problem if
modeling multiway interactions is necessary. In coordinate kernel models, however,
the number of weight parameters is always equal to the dimensionality p and does
not increase with d. This makes the model computationally feasible when it is
necessary to consider high order interactions.

Finally, we would like to mention that learning the optimal weight vector w in
CKPM is not only a variable selection process, but also a kernel learning process
because the impact of the active variables is usually different. We would particularly
mention the methods developed in [5], which, given a set of base kernels, learns an
optimal polynomial combination of the base kernels. Coordinate kernel polynomials
can be regarded as special cases where the coordinate kernels are selected as base
kernels. In this sense the first stage of our algorithm, (4), shares great similarity
with the methods in [5].

Differences exist though. The first difference is a conceptual one. Our algorithm
is motivated from the component decomposition model and the purpose is to model
and select the effective interactive components. In our approach the coordinate
kernel polynomial serves as a tool to expand the interactive components. This
is unlike the methods in [5] for which learning the nonlinear combination of base
kernels is the aim. This difference becomes clear by noticing that, when the base
kernels are not coordinate kernels, the resulted kernels can still apply to the methods
in [5] but become useless for our purpose. A more essential difference lies in the
reparametrization refinement stage, which makes our algorithm novel. Without this
stage, although the algorithm also helps improve the predictive performance, the
variable selection accuracy and learning performance is suboptimal.

4. Generalization Error Bounds. In this section we provide the generalization
error bound of order O(dloi\/gip)) for CKPR. This explains the effectiveness of CKPR

m
in high dimensional setting, even with dimensionality larger than the sample size.
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Let er(f) and er,,(f) be the mean squared error and the sample mean squared
error, respectively,

er(f) =Ely — f(x)?],  erm(f) =

|
S
INgE
5
|
=
%
e

Note that er(f) measures the predictive power of the function f.
Assume the coordinate kernels are uniformly bounded, i.e.

k= sup sup Ky(xg,xp) < 00.
(e{1,2,....p} x«¢

Then

d
P
sup Ko, (x,x) < k¢ <Z wg> )

=1
and for any f € Hg,,,

p d
1 £lloo < & (ZW) 1/l - (15)
=1

Assume |y;| < M almost surely. We have the following two theorems.

Theorem 4.1. Let fA,u be the solution to the CKPR (4). For any 0 < 6 < 1, there
holds

A R Kd r2d+1 2 clo -
er(fx,#)ﬁerm(fA#)+(M+\J/ij;) <4o\/ 1g(5j+1)+\/1 %(s))

with probability 1 — 6.

Theorem 4.2. Let f5w be the refined solution given by (13). For any 0 < § < 1,
there holds

er(f5,) < erm(fy ) + (M+ n%)z (40\/elog(pd+1) +\/1n(1/5)>'

m 2m

with probability 1 — 6.

5. Simulation Studies. The purpose of this section is to illustrate the effective-
ness of our algorithm by simulations on synthetic data sets and applications on real
data sets. Comparisons will be made with several state-of-the-art methods. Before
we describe our simulations in detail, we remark that the two synthetic models are
taken from [11] and [13] respectively, not specially designed to favor the use of our
algorithm. Though, our algorithm shows to be very successful.

In our simulations we focus on the use of linear coordinate kernels K/} (x,t) =

1 + 2t, and Gaussian coordinate kernels K¢ (x,t) = exp (—%) We refer to
our method as CKPR-L and CKPR-G respectively. We do not consider three-way
or higher order interactions in this paper, so the degree in the CKP will be fixed to
d = 2. Also, we fixed the bandwidth parameter when Gaussian coordinate kernels
are used. They are set to be g, = 2 if x; is normalized to have mean zero and
standard deviation 1, and o, = 0.3 if 2 lies in the interval [0, 1]. These parameters
were found to work well in many problems, although they may not be optimal. The

two regularization parameters A and - are selected by five-fold cross validation.
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5.1. A synthetic example with sample size less than dimension. This ex-
ample comes from [11]. The data sets are generated from the model

Y =T +T1x2 + €

where x € R2%°, all components of x are independent standard normal, and ¢ is zero
mean normal noise with the variance set such that the signal to noise ratio equal to
20, (i.e. Var(E(y|x))/Var(e) = 20.) The sample size is m = 100, making it a typical
“sample size less than dimension” problem.

Asin [11], we employ two measures, the true positive rate (TPR), which is defined
as the ratio of the number of correctly identified active predictors to the number of
truly active predictors, and the false positive rate (FPR), which is defined as the
ratio of the number of falsely identified active predictors to the total number of
inactive predictors, to measure the performance of variable selection. An effective
variable selection algorithm is expected to have TPR to be close to 1 and FPR to
be close to 0 at the same time. We also consider the predictive power of the our
algorithm, which is measured by the mean squared error (MSE) on 1000 testing
points.

We replicate the simulation 100 times. Table 1 reports the average of TPR, FPR,
and the mean and standard error of the MSEs. As a comparison, we also reported
the performance of LASSO [23], COSSO [13], and SR-SIR [11].

We see that CKPR-L and CKPR-G perform much better than the other three
methods in both variable selection accuracy and predictive power. Since the coordi-
nate kernel polynomial with linear coordinate kernels and degree d = 2 is exactly a
polynomial kernel of degree 2, it captures the true structure of the model and there-
fore performs the best. When Gaussian coordinate kernels are used, the polynomial
structure could not be exactly captured, but can be well approximated. Thus, the
performance of CKPR-G is also very good.

It has already been noticed in [11] that all OLS-based methods, including LASSO
and elastic net, are not able to identify the second predictor zo successfully. Due
to the loss of the active variable x5 the predictive power of LASSO is poor.

The results of COSSO are obtained by the R package “cosso”. It was not able
to identify the variable x5 and thus the predictive power is also poor.

The results for SR-SIR is taken from [11] directly. Theoretically SR-SIR can
identify x5 successfully. Empirically its performance varies depending on different
parameter selection strategies. As a dimension reduction method, SR-SIR does not
output a predictive model.

Algorithm TPR(z;) TPR(z2) FPR MSE
CKPR-L 1.00 1.00 0.000  0.008 (0.000)
CKPR-G 1.00 1.00 0.011  0.109 (0.015)
LASSO 1.00 0.18 0.040 1.129 (0.015)
COSSO 0.90 0.02 0.020 10.879 (8.345)
SR-SIR (AIC) 1.00 0.89 0.460 -
SR-SIR (BIC)  1.00 0.85  0.181 -
SR-SIR (RIC) 1.00 0.75 0.053 -

TABLE 1. Variable selection accuracy and average MSE for Exam-
ple 1.
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5.2. A synthetic example with several two way interactions. The second
synthetic example comes from [13] which was designed to favor the use of COSSO.

Let gi(t) = t, ga(t) = (2t — 1)%, g3(t) = 5°mds, and gu(t) = O.1sin(2nt) +
0.2 cos(2mt)+0.3 sin? (27t) +0.4 cos® (27t) +0.5 sin® (27t ) be four univariate functions.

Consider the 10-dimensional regression problem with several two-way interactions:

T1+x3

y = g1(x1) + g2(22) + g3(23) + ga(x4) + g1(x374) + g2(F572) + g3(v172) + €

where, as in [13], all components of x are independent uniform variables and the
noise is set to be normal with standard deviation 0.2546. The measure of the
predictive accuracy is the MSE on 1,000 testing points. Again, the simulations
are run 100 times and we reported the average MSE in Table 2 for sample size
m = 100, 200, 400. For comparison purposes, we included the results for COSSO
and MARS [6] which were copied from [13]. All three methods are able to take
two-way interactions into consideration while CKPR-~G performs the best. CKPR-
G also shows to be powerful in variable selection. It almost always captures the
active variables while the FPR drops quickly as sample size increases (FPR=0.56
for m = 100, 0.24 for m = 200, and 0.04 for m = 400).

m = 100 m = 200 m = 400
CKPR-G 0.119 (0.003) 0.054 (0.001) 0.025 (0.0004)
COSSO(GCV)  0.358 (0.009) 0.100 (0.003)  0.045 (0.001)
COSSO(5CV)  0.378 (0.005) 0.094 (0.004)  0.043 (0.001)
MARS 0.239 (0.008) 0.109 (0.003) 0.084 (0.001)

TABLE 2. Average and standard error of MSEs for Example 2

5.3. UCI data sets. We applied CKPR to the three real data sets, the Johns
Hopkins University Ionosphere data, the Sonar, Mines vs. Rocks data, and the
Wisconsin Breast Cancer data. They are available on the UCI Machine Learning
Repository website (http://archive.ics.uci.edu/ml/). For each dataset, fea-
tures were standardized. In the case of classification dataset, the labels were set
to +1. We randomly select 50% of the data for training and tuning, and test on
the remaining 50% of the data. The experiment are repeated 30 times and the
root mean squared error (RMSE) was reported in Table 3. As a comparison, we
also reported the best results obtained in [5]. The CKPR with reparametrization
refinement and component selection shows to be competitive.

Ionosphere Sonar MR Wisc. BC
n 351 208 683
P 33 60 9
CKPR-L 0.64(0.04) 0.75(0.06) 0.34(0.02)
CKPR-G 0.54(0.03) 0.77(0.06) 0.34(0.02)
Best in [5]  0.60(0.05) 0.80(0.04) 0.70(0.01)

TABLE 3. RMSE on three UCI data sets.
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6. Conclusion and Discussions. In this paper we have proposed the use of co-
ordinate kernel polynomials in kernel machines. By the aid of ¢; penalty, the co-
ordinate kernel polynomial regression can be used to simultaneously identify active
variables and components. Reparametrization refinement is introduced to improve
the modeling accuracy and learning performance. A post-training selection process
by AIC or BIC is suggested to select the effective components.

The CKPR could be cast into the multiple kernel learning framework, which
allows us to prove a generalization error bound of order O(%\/%p) using the idea of
Rademacher chaos complexity. This provides a theoretical justification for its pre-
dictive power, even in the “sample size less than dimensionality” setting. Simulation
studies are used to verify the efficiency of the algorithm empirically.

As generalization error bounds help to verify the learning performance from a pre-
dictive perspective, we are also concerned with the modeling consistency of CKPM,
including both the variable selection consistency and the interactive component
selection consistency. They may be interesting topics for future research.
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Appendix A. Proof of Theorem 4.1 and Theorem 4.2.

Proof of Theorem 4.1. Let f,\,u be the solution to the CKPR and the optimal weight
vector is w*. Recall the assumption that |y;| < M almost surely for 1 < i < m, one
has

1 «— " . P
- D i = Faux) F M Pl + Y wp < M2,

i=1 =1

SO
P M2

. M
Paw€Fru= 1 F et Ifllx, < VAR <—

Therefore

er(fk,u) - erm(fA,u) < sup er(f) —ery(f). (16)
fE€EFx L

Using (15) we obtain

ﬁdM2d+1

I flloo < 7\[\#” for all f € Fy .
Thus
o 2441

2
W ) for all f € Fy .

(v — f(x))? < (M+
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When an (x;, y;) pair changes, the random variable sup er(f)—er,,(f) can change
fE€EFxL
rod r2d+1

2
oV ) . Applying the McDiarmid’s bounded differ-
ence inequality [14], we have with probability 1 — ¢

by no more than % (M + £

dpr2a+1N?  In(1/9)

3 T —er <E]| s r —er M r .
leg),ue (f) —erm(f) < ng“e (f) —erm(f) +< + NV, ) 5

(17)

For i = 1,...,m, let g;’s be independent Bernoulli random variables such that

P(e; = 1) = P(e = —1) = 1/2, and that ¢;’s are independent of the sample

{(xi,yi)}12,. Using the standard symmetrization technique and the properties of
Rademacher complexity [15, 2], it is not difficult to show that

E

sup er(f) — erm(f)]

fE€EFxu

< sup ei(y; x;))?
=, S
kd pr2d+1 I 1o
© (o T gy LS
\/X,Ud _fe]-‘XM m ;
dM2d+1 1 m
= 8<M—|—l€\rd>]E sup sup <f’zsin('7Xi)>
Wt ) e ek S N
Li=1
KZdM2d+l> M 1 m
= 8 (M—!— E sup eiei Ko (i, %)
Vud £ NN\ m2 ”Z;l e j
=
HdMQdJrl M 2 d m
8<M+ ><>E sup 7255K(XX)
d P 2 =] 1y &g
ﬁ‘u \F/\ . ST we=1 i,j=1
=1
1/2
ﬁdMQdJrl > M2d+1
< 8(M+ e Ko (i x "
( VA Vud Z J ;) (18)

P
Zel 7,7=1
£=1

The last term in (18) is closely related to the Rademacher chaos complexity
which can be bounded using the idea in [31]. To this end, let n = (71,72,...,Mq) €
{1,2,...,p}? be a vector of indices,

d d
wﬂ = me? and Kn(xvt) = HKTh(xm?tTh)'

=1 =1
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Let K be the collection of all kernels K. Then K contain p? kernels and are uni-
formly bounded by <. By [31, Corrollary 1],

E sup — Z eie; K (xi,%;) < 25ex*Tlog(p? + 1).
Kek M ig=1

Note that if Y 7_, w, = 1, we have

p d
D wy = (ZW> =1 and K, =) wpK
n =1

n

Thus {K,, : > )_, we = 1} is the convex hull of K. By the discussion in [31, Section
2.1], we obtain

E | sup Z giejKo(xi,%;) | < 25er2log(p? + 1).
f; we=1  ©J=1
=1

Plugging this estimate into (18) we have

dpr2d+1 2d+1 2d p
E sup eI'(f) — el"m(f)‘| <8 (M + KM > M \/256,‘{, log(p + 1) .

fe€EFx L \A,u \ﬂp m
(19)
Combining the estimates in (16), (17), and (19) proves the desired error bound.
O

By the fact that the solution to the two-stage algorithm satisfies

A M p
fi, € Fy = {f € Hicer Il < = Zwe _ 1}

Theorem 4.2 can be proved by a very similar process. We omit the details.
It is not surprising that f>\ depends on the parameter X while the generalization

error bound is independent of A because the bound is obtained by placing f;\y , in
a very big function class F,. Refined error bounds may be possible if we can find a
smaller function class that contains f;\’ y by using the information on w*.
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