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Abstract: A novel micro/nanoscale rough structured superhydrophilic hybrid-coated mesh that shows
underwater superoleophobic behavior is fabricated by spray casting or dipping nanoparticle–polymer
suspensions on stainless steel mesh substrates. Water droplets can spread over the mesh
completely; meanwhile, oil droplets can roll off the mesh at low tilt angles without any penetration.
Besides overcoming the oil-fouling problem of many superhydrophilic coatings, this superhydrophilic
and underwater superoleophobic mesh can be used to separate oil and water. The simple method
used here to prepare the organic–inorganic hybrid coatings successfully produced controllable
micro-nano binary roughness and also achieved a rough topography of micro-nano binary structure
by controlling the content of inorganic particles. The mechanism of oil–water separation by
the superhydrophilic and superoleophobic membrane is rationalized by considering capillary
mechanics. Tetraethyl orathosilicate (TEOS) as a base was used to prepare the nano-SiO2 solution as a
nano-dopant through a sol-gel process, while polyvinyl alcohol (PVA) was used as the film binder
and glutaraldehyde as the cross-linking agent; the mixture was dip-coated on the surface of 300-mesh
stainless steel mesh to form superhydrophilic and underwater superoleophobic film. Properties of
nano-SiO2 represented by infrared spectroscopy and surface topography of the film observed under
scanning electron microscope (SEM) indicated that the film surface had a coarse micro–nano binary
structure; the effect of nano-SiO2 doping amount on the film’s surface topography and the effect of such
surface topography on hydrophilicity of the film were studied; contact angle of water on such surface
was tested as 0◦ by the surface contact angle tester and spread quickly; the underwater contact angle
to oil was 158◦, showing superhydrophilic and underwater superoleophobic properties. The effect of
the dosing amount of cross-linking agent to the waterproof swelling property and the permeate flux of
the film were studied; the oil–water separation effect of the film to oil–water suspension and oil–water
emulsion was studied too, and in both cases the separation efficiency reached 99%, which finally
reduced the oil content to be lower than 50 mg/L. The effect of filtration times to permeate flux was
studied, and it was found that the more hydrophilic the film was, the stronger the stain resistance
would be, and the permeate flux would gradually decrease along with the increase of filtration times.

Keywords: superhydrophilic; underwater superoleophobic; micro-nanoscale binary rough structure;
coated mesh; oil–water separation
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1. Introduction

Research on superhydrophobic [1,2], superoleophobic [3,4], superamphiphobic [4–7] and
superoleophilic [8–10] surfaces has developed rapidly in recent years [11–20]. Meanwhile, an increasing
number of applications for such surfaces, including self-cleaning [21], anti-fingerprint coatings [22],
anti-fog coatings [23], microdroplet transfer technology [24] and oil–water separation [25–30], have been
investigated. Superhydrophilic surfaces have been drawing extensive attention since Fujishima found
that nanoscale TiO2 possesses superhydrophilic properties when exposed to light and recovers its
hydrophobic nature in the dark with cyclic reversibility [31]. However, how to prepare stable
superhydrophilic surfaces under natural conditions has seldom been reported. The wettability of
a liquid on a solid surface is mainly driven by surface chemistry, which is determined by surface
geometry [32–35]. To fabricate superoleophobic or superhydrophobic surfaces, materials with a low
surface energy and micro–nano binary rough structures are required [36–38]. Thus, superoleophobic or
superhydrophobic surfaces are generally fabricated by constructing a rough structure on a low-energy
surface or grafting low-energy materials from a rough surface [39–41]. From the perspective of pure
surface chemistry, a superlyophilic surface requires the surface tension of the solid and liquid to
be close, while superoleophobic or superhydrophobic surfaces require the surface tension of the
solid to be less than a quarter that of the liquid material [42]. Because the surface tension of oils
(usually 20–40 mN/m) and solid materials is usually low, most solids are potentially oleophilic and
hydrophobic [43–46]. According to recently reported data, the surface tension of a fluoropolymer
of 10.4 mN/m is the lowest among solids, while that of water (72.8 mN/m) is the highest among
liquids [47]. Thus, if we prepare a superoleophilic surface, it is highly possible that it is simultaneously
hydrophobic or superhydrophobic [48]. Therefore, it is relatively easy to prepare superhydrophobic
and superoleophilic membranes, as they only need the corresponding rough structure to be included
once the requirements of surface tension are met.

Many superhydrophobic and superoleophilic membranes and their applications have been
reported [49–51]. However, because of their potential oleophilicity, these membranes possess a
high adhesion force to oil; that is, it is very easy for oil to adhere to the surface or pores of these
membranes [52–54]. This can make cleaning the surface difficult and cause irreversible blockage of
membrane pores, greatly limiting the lifetime and scope of application of such membrane materials.
On the basis of the original research, the opposite idea, that is, the so-called “water-removing” method,
has been used to prepare superhydrophilic and superoleophobic membranes [55–57]. The contact
angle of superhydrophilic and superoleophobic membranes against oil is greater than 150◦ in air and
water [58]. Meanwhile, these membranes possess an extremely low adhesion force, and the rolling
angle is only 2–3◦, which effectively prevents the adhesion of oil droplets [59]. Such materials can act as
efficient anti-pollution separation membranes. However, the surface tension of the membrane needs to
be lower than that of oil to generate a superoleophobic surface. As a result, the corresponding surface
tension of the film is far lower than that of water, so the surface is also a superhydrophobic interface.
This means that superhydrophilic and superoleophobic properties are a contradiction between two
opposites [60–62].

Hydrophilic polymer hydrogels possess good hydrophilicity and are water sensitive, as well as
demonstrating good adhesion and film-forming properties [63]. However, they readily dissolve in
water, so superhydrophilic membranes prepared from hydrophilic polymer hydrogels exhibit poor
water resistance, and it is very difficult to assemble an ideal micro-nanoscale binary rough structure
using a hydrogel-coated wire mesh. Hydrophilic polymer emulsions show good hydrophilicity, water
absorption and water retention, but are not fully soluble in water. Achieving a homogeneous dispersion
of such emulsions in water relies on the emulsification of the emulsifier [64]. Hydrophilic polymer
emulsions possess good adhesion and film-forming properties, and the resulting films have excellent
water resistance. In addition, nano-SiO2 particles possess excellent hydrophilicity because of the large
number of hydroxyl groups present on their surfaces [65–67]. Hydrophilic nano-SiO2 particles can be
dispersed in water in the form of nanoparticles, so it is easy to assemble micro–nano structures on
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the surface of organic polymer membranes. However, because of the poor film-forming properties of
inorganic nanoparticles, it is difficult to form a film of nano-SiO2 particles alone.

In this paper, a simple dipping and drying method and organic–inorganic hybrid were used
to prepare superhydrophilic oil–water separation membranes exhibiting excellent performance.
A hydrophilic polymer emulsion and nano-SiO2 particles were used as film-forming adhesives and
inorganic hybrid components, respectively. Polyvinyl alcohol (PVA) was added as a hydrophilic
polymer and polymeric emulsifier, and stainless steel wire mesh was used as a substrate.

2. Materials and Methods

2.1. Materials and Instruments

Tetraethyl orathosilicate (TEOS, chemical pure) was purchased from Dongguan Xinyu High
Polymer Materials Co., Ltd. (Dongguan, China). Polyvinyl alcohol (PVA) (PVA 1799, degree
of polymerization = 1700, degree of alcoholysis = 99%, industrial grade) was purchased from
China Petrochemical Corporation. Methyl methacrylate (MMA, chemically pure), butyl acrylate
(BA, chemically pure), styrene (St, chemically pure), methacrylic acid (MAA, chemically pure),
alcohol (chemically pure), ammonia hydroxide (chemically pure), acetone (chemically pure) and
sodium dodecyl benzene sulfonate (SDBS, chemically pure) were purchased from Tianjin Kemiou
Chemical Reagent Co., Ltd. (Tianjin, China). Glutaraldehyde (chemically pure) was purchased from
DOW Chemical Company. Dimethylbenzene (industrial grade) was purchased from Guangzhou
Baiyun Chemical Plant (Guangzhou, China). Stainless steel mesh (300-mesh) was purchased from
Guangzhou Pingxiang Screen Factory (Guangzhou, China). Distilled water used was from the
laboratory. All chemicals were used as received without further purification.

Electronic scales AY-120 were from SHIMADZU (Kyoto, Japan); an electro-thermostatic blast oven
DHG-9140A was from Shanghai Yiheng Technology Co., Ltd. (Shanghai, China); a digital thermostatic
water bath HH-4 was from Changzhou Guohua Electric Appliance Co., Ltd.(Guangzhou, China);
an infrared spectrometer Perkin-Elmer1730 was from Perkin Elmer (Waltham, US); a micro surface
contact meter Dataphysics OCA40 was from Dataphysics (Stuttgart, Germany); and a scanning electron
microscope S-3700N was from Hitachi (Tokyo, Japan).

2.2. Preparation of a Nano-Silica Sol Using the Sol–Gel Technique

Tetraethoxysilane (50 g), anhydrous ethanol (100 g) and deionized water (20 g) were added to a
500-mL four-necked flask and stirred in a water bath at a constant temperature of 35 ◦C (Scheme 1).
After uniform mixing, 25% ammonia (0.5 g) in deionized water (30 g) was added over around 30 min
with a current pump. The resulting solution was incubated for 4 h to give silica nanoparticles with a
size of about 20 nm.
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Scheme 1. Preparation of nano SiO2 by ethyl silicate via hydrolytic condensation.

2.3. Synthesis of Polymer Latex Microspheres

Methyl methacrylate (MMA), butyl acrylate (BA), styrene (St) and methacrylic acid (MAA) were
used as monomers, sodium dodecyl benzene sulfonate (SDBS) was used as an emulsifier, sodium
persulfate (SPS) was used as an initiator and NaHCO3 was used as a buffer. An acrylic emulsion
was synthesized using the radical emulsion polymerization method (Scheme 2). Deionized water
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(50 g) and anionic emulsifier SDBS (0.0126 g) were placed in a 250 mL four-necked flask equipped
with a stirring paddle, thermometer, condenser pipe and nitrogen gas inlet valve. The mixture was
stirred and heated gradually to 85 ◦C, and then MAA (0.225 g), St (2.2 g) and SPS (0.2 g) were added
sequentially. The mixture was reacted for 1 h, and then kept warm for subsequent use. Next, deionized
water (120 g) was placed in a 1000 mL round bottom four-necked flask equipped with a stirring paddle,
thermometer, condenser pipe and nitrogen gas inlet valve. Monomer mixture (prepared by mixing St
(60 g) and MAA (1.2 g)) and 1-dodecanethiol (3 g) were added sequentially. The stirred mixture was
heated to 85 ◦C. Then the above seed emulsion was added dropwise over 1 h to form a core emulsion
of encapsulated hydrocarbon. The separate phases served as the polymerization core in the next step.
Half of an aqueous initiator solution prepared by mixing deionized water (120 g) with SPS (1.056 g)
was added over 75 min to the above core polymer latex microsphere solution, and then the remainder
was added dropwise over 225 min simultaneously with a mixture of deionized water (50 g), anionic
surfactant DNS-458 (3 g), St (100 g), DVB (21.6 g) and MAA (2 g). The reaction mixture was stirred at
85 ◦C for 1 h.
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2.4. Preparation of PVA Aqueous Solution

A 1000 mL beaker was thoroughly cleaned, dried and weighed, and the mass was marked as m1;
then, 760 g deionized water was added into the beaker in a 97 ◦C thermostatic water bath, and the
mixture was stirred until the water temperature reached 97 ◦C; later, under stirring, 40 g PVA was
slowly added into the beaker until the PVA was thoroughly dissolved. The water solution was put
aside until it cooled down naturally and the bubbles disappeared completely; the flask was weighted
again, and the mass was then marked as m2; the deionized water was added again until the mass
reached m1 + 800 −m2; the mixture was then stirred for subsequent use.

2.5. Preparation of Superhydrophilic Membranes

The 300-mesh stainless steel mesh was sequentially cleaned ultrasonically with water, acetone
or ethanol, and water and then dried at room temperature. A stirred solution of the hydrophilic
polymer water-sensitive agent and crosslinking agent dissolved in water was mixed with the nano-sol
mixed ultrasonically to give a hybrid solution. The mesh was immersed in the hybrid solution for
5 min and then removed vertically (Figure 1). Alternatively, the hybrid solution was sprayed or spin
coated directly on the mesh. Then the coated mesh was dried in a vacuum oven at 100–200 ◦C to
give superhydrophilic and underwater superoleophobic membranes suitable for oil–water separation.
A second coating was applied by repeating the above steps.
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Figure 1. Schematic of preparation of superhydrophilic and underwater superoleophobic composite
membrane via a two-step coating method.

2.6. Characterization

Fourier transform infrared (FT-IR) spectra were obtained on an FT-IR spectrometer (MAGNA-IR750,
Nicolet, Madison, US) using KBr pellets. The SiO2 nanoparticles were dried at 120 ◦C before preparing
the KBr pellet. Scanning electron microscope (SEM) images were obtained on a SEM (S-3700N, Hitachi,
Tokyo, Japan) operating at 15.0 kV. Contact angles were measured on a contact-angle system (OCA40,
Dataphysics, Stuttgart, Germany) at ambient temperature. Water or diesel oil droplets (about 4.0 mL)
were carefully added onto the coating films. Contact angle values were obtained by measuring contact
angles at five different positions of the same sample.

3. Results and Discussion

3.1. Infrared Characterization

Figure 2 presents FT-IR spectra and particle size distribution of the prepared SiO2 nanoparticles
with a hydroxyl-rich surface. The FT-IR spectra had a strong absorption peak at 3452 cm−1 consistent
with the absorption peak of hydroxyl –OH, one at 957 cm−1 from the stretching vibration of Si–OH
silanol, a very strong, broad absorption at 1040–1221 cm−1 from Si–O stretching vibration and an Si–O–Si
(fourth ring body) stretching vibration. These data all indicated that tetraethoxysilane hydrolysis and
condensation generated SiO2 nanoparticles with hydroxyl-rich surfaces.
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3.2. SEM Characterization

Polymer nano-latex microspheres with uniform size and good monodispersity were prepared
by in situ polymerization through solvent-less encapsulation. As shown in Figure 3, the prepared
latex particles had a regular structure, with good monodispersity, a smooth, hard surface and particle
diameter of 275–480 nm.

Polymers 2020, 12, x FOR PEER REVIEW 6 of 16 

 

0 100 200 300 400 500 600

0

5

10

15

20

25
a: d=53.27nm,PDI=0.097
b: d=77.79nm,PDI=0.118
c: d=88.77nm,PDI=0.028
d: d=108.9nm,PDI=0.056
e: d=135.8nm,PDI=0.106

Pa
rti

cl
e 

siz
e 

di
str

ib
ut

io
n/

%

Particle size/nm

a

b

c
d

e

 
Figure 2. IR spectra (a) and particle size distribution (b) of the SiO2 nanoparticles. 

3.2. SEM Characterization 

Polymer nano-latex microspheres with uniform size and good monodispersity were prepared 
by in situ polymerization through solvent-less encapsulation. As shown in Figure 3, the prepared 
latex particles had a regular structure, with good monodispersity, a smooth, hard surface and 
particle diameter of 275–480 nm. 

   
Figure 3. SEM images of different sizes of acrylic polymer nano-latex particles. 

Membranes containing different contents of SiO2 nanoparticles in organic polymer were 
prepared. SEM was used to observe the surface morphology of the membranes, as shown in Figure 
4. Figure 3 shows that when the SiO2 content was less than 40 wt%, the coating on the membrane 
surface was very smooth with almost no projections. When the content of SiO2 nanoparticles was 
greater than 40 wt%, the coating surface was evenly distributed with a large number of micro- and 
nanosized projections. When the content of SiO2 nanoparticles was 40–75 wt%, the mesh was 
covered with microsized particles of 1–3 μm and nanoparticles of 100–300 nm. 

(b) 

Figure 3. SEM images of different sizes of acrylic polymer nano-latex particles.

Membranes containing different contents of SiO2 nanoparticles in organic polymer were prepared.
SEM was used to observe the surface morphology of the membranes, as shown in Figure 4. Figure 3
shows that when the SiO2 content was less than 40 wt %, the coating on the membrane surface was
very smooth with almost no projections. When the content of SiO2 nanoparticles was greater than
40 wt %, the coating surface was evenly distributed with a large number of micro- and nanosized
projections. When the content of SiO2 nanoparticles was 40–75 wt %, the mesh was covered with
microsized particles of 1–3 µm and nanoparticles of 100–300 nm.
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When the content of SiO2 nanoparticles was greater than 80 wt %, few microscale protrusions
were observed on the membrane surface. Instead, there was a more uniform distribution of nanoscale
projections, so the surface looked smooth. When the membranes were prepared using only nano-SiO2,
the membrane surface was smooth but broke into small pieces because of the poor film-forming
properties of nano-SiO2. Although the hydrophilicity of nano-SiO2 was excellent, its water resistance
was poor, so the nano-SiO2 could be easily washed off the stainless steel mesh.

The membranes formed in this study suggested that the nano-SiO2 hybridized with the hydrophilic
polymer emulsions. The hydrophilic polymer emulsion acted as an emulsifier, effectively preventing
the reunion of nano-SiO2. When the content of SiO2 was too low, the surface of the membrane was
smooth because of excess polymer covering the nanoparticles. However, when the SiO2 content was
40–75 wt %, nanoparticles were uniformly present in the emulsion in the form of nano-emulsion pellets
that formed a micro-nano projection structure. When the SiO2 content exceeded 80 wt %, because
of the relatively small content of the emulsion, there was better emulsification, resulting in uniform
dispersion of nano-SiO2. As a result, only nanoscale projections were formed. When the membranes
were prepared using just nano-SiO2, because of the absence of emulsifier, the nanoparticles aggregated
during film formation, thus resulting in a smooth flat surface. From the above analysis, we concluded
that when the SiO2 content was 60–75 wt %, a highly structured monolayer with micro-nano structure
was obtained on the substrate.

The hybrid-coated mesh film prepared with SiO2 contents of 33, 40, 50, 60, 66 and 75 wt % were
dipped again in the same casting solution to form a second coating. The surface morphology of these
double-coated membranes was observed by SEM, as shown in Figure 5.



Polymers 2020, 12, 1378 8 of 16

Polymers 2020, 12, x FOR PEER REVIEW 8 of 16 

 

 
Figure 5. SEM images of hybrid-coated mesh films after secondary coating. The SiO2 content is (a) 
33%, (b) 40%, (c) 50%, (d) 60%, (e) 66% and (f) 75%. 

Figure 5 reveals that when the SiO2 content was less than 40 wt%, the surface of the film was 
still relatively smooth after the secondary coating. When the SiO2 content was 40–75 wt%, 
micro-nanoscale structured craters were clearly observed on the surface of the films after secondary 
coating and the size of the particles was almost unchanged. However, when the content of SiO2 was 
greater than 60 wt%, micro-nanoscale structured craters with a multilevel distribution were clearly 
observed on the surface of the film after secondary coating. These films contained more pores in 
their surface after secondary coating, so the surface roughness of the film was increased, improving 
their hydrophilicity. When the SiO2 content was 66 wt%, the most structured, layered micro-nano 
structures could be obtained on a substrate after two coatings, resulting in the highest 
hydrophilicity and oleophobic behavior underwater, giving the highest oil–water separation 
efficiency of the investigated membranes. When the substrates were coated three or more times, the 
pores tended to be plugged, so although a multi-level micro–nano structure could be obtained, the 
rate of water infiltration was low. 

3.3. Contact Angle Characterization 

Contact angles (CAs) of the blank clean mesh and the superhydrophilic mesh, respectively, to 
the 3 μmL water in the air were 91.7° ± 0.3° and 0° as measured by the surface tension tester (OCA); 
and contact angle of the film surface to oil was 158.4 ± 0.3° underwater (Figures 6 and 7), indicating 
the superhydrophilic and underwater superoleophobic properties of the film. 

OW

WWAOA
OW γ

θγθγ
θ

coscos
cos O −

=  (1) 

Superhydrophilic and underwater superoleophobic films demonstrate the superhydrophilic 
and superoleophobic properties in the air, that is, their contact angles to water and oil are both 0°. 
Water has the highest surface tension (about 72.8 mN/m) among all liquids. The surface tension of 
dimethyl benzene is 28.7 mN/m and the interfacial tension of the same to water is 47.9 mN/m. The 
theoretical contact angle of dimethyl benzene underwater to the film surface is obtained (158.9°) by 
substituting the aforesaid values into the following formula, which is in coincidence with that 
measured by the experiment. This is because the hydrophilic polymer and doped inorganic 
hydrophilic nanoparticles on the hybrid mesh, as well as the micro-nano coarse structure formed by 
the same, enhanced the connection between water and film surfaces and thus produced a water 
film among the micro–nano structures on the film surface and consequently reduced the contact 

Figure 5. SEM images of hybrid-coated mesh films after secondary coating. The SiO2 content is (a)
33%, (b) 40%, (c) 50%, (d) 60%, (e) 66% and (f) 75%.

Figure 5 reveals that when the SiO2 content was less than 40 wt %, the surface of the film was still
relatively smooth after the secondary coating. When the SiO2 content was 40–75 wt %, micro-nanoscale
structured craters were clearly observed on the surface of the films after secondary coating and the
size of the particles was almost unchanged. However, when the content of SiO2 was greater than
60 wt%, micro-nanoscale structured craters with a multilevel distribution were clearly observed on the
surface of the film after secondary coating. These films contained more pores in their surface after
secondary coating, so the surface roughness of the film was increased, improving their hydrophilicity.
When the SiO2 content was 66 wt %, the most structured, layered micro-nano structures could be
obtained on a substrate after two coatings, resulting in the highest hydrophilicity and oleophobic
behavior underwater, giving the highest oil–water separation efficiency of the investigated membranes.
When the substrates were coated three or more times, the pores tended to be plugged, so although a
multi-level micro–nano structure could be obtained, the rate of water infiltration was low.

3.3. Contact Angle Characterization

Contact angles (CAs) of the blank clean mesh and the superhydrophilic mesh, respectively, to the
3 µmL water in the air were 91.7◦ ± 0.3◦ and 0◦ as measured by the surface tension tester (OCA); and
contact angle of the film surface to oil was 158.4 ± 0.3◦ underwater (Figures 6 and 7), indicating the
superhydrophilic and underwater superoleophobic properties of the film.

cosθOW =
γOA cosθO − γWA cosθW

γOW
(1)

Superhydrophilic and underwater superoleophobic films demonstrate the superhydrophilic and
superoleophobic properties in the air, that is, their contact angles to water and oil are both 0◦. Water has
the highest surface tension (about 72.8 mN/m) among all liquids. The surface tension of dimethyl
benzene is 28.7 mN/m and the interfacial tension of the same to water is 47.9 mN/m. The theoretical
contact angle of dimethyl benzene underwater to the film surface is obtained (158.9◦) by substituting
the aforesaid values into the following formula, which is in coincidence with that measured by the
experiment. This is because the hydrophilic polymer and doped inorganic hydrophilic nanoparticles
on the hybrid mesh, as well as the micro-nano coarse structure formed by the same, enhanced the
connection between water and film surfaces and thus produced a water film among the micro–nano
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structures on the film surface and consequently reduced the contact area between the dimethyl benzene
and the film and increased the contact angle, so that underwater, the superoleophobic property
was acquired.
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3.4. Application Results

The clean 300-mesh stainless steel mesh and prepared superhydrophilic mesh were observed by
SEM; the results are shown in Figure 8. The 300-mesh stainless steel screen had pores with a diameter
of about 50 µm, wire diameter of about 40 µm, and a smooth surface. In contrast, the surface of the
superhydrophilic membrane was very rough with micro- and nanostructure protrusions and micro-
and nanopores distributed in the grid. In addition, micro-nanoscale structured craters could be clearly
observed around the membrane pores. The membrane can be used to separate oil and water mixtures
because of its superhydrophilic properties. When a mixture of oil and water contacts the surface of
the membrane, gradually the water moves below the oil because it has a higher density than the oil.
The superhydrophilic properties of the membrane causes water to rapidly spread over the surface of
the film and occupy the surface, so a solid–liquid–liquid phase boundary is formed on the micro–nano
structured rough surface. Under the action of gravity and capillary forces, a steady stream of water
can penetrate the membrane and move through it. As the water occupies the roughened surface,
a hydration layer is formed on the surface of the film, and because of the incompatibility of oil and
water, the surface of the film becomes oleophobic at this point. According to the Wenzel equation, for a
lyophobic surface, the greater the degree of surface roughness, the larger the contact angle of the liquid
on the surface. The surface of the film at this time becomes underwater superoleophobic, and the
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oil receives upward capillary resistance. Because of this capillary force, the oil cannot penetrate the
surface of the film, provided the gravity generated by the oil is not greater than the capillary resistance.Polymers 2020, 12, x FOR PEER REVIEW 10 of 16 
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To examine the separation capability of the superhydrophilic oil–water separation membranes,
water was dyed with red ink and mixed with dodecane in a volume ratio of 1:1 and then stirred to
form a uniform mixture. The oil–water mixtures were poured into a device containing the membrane,
as shown in Figure 9. The hydrophilic polymers swelled after absorbing water, and a steady stream
of red water permeated into the lower beaker. Meanwhile, the dodecane was blocked above the
membrane. Ultimately, there was no red residue left on the membrane, so efficient separation of an
oil–water mixture was achieved.
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The water was dyed red with ink to prepare the dimethyl benzene–water solution with a mass
concentration of 3 g/L; the mixture was shaken with ultrasonic waves to set free and disperse the oil
for separation experiment so that the effect of the oil phase on separation could be studied (Figure 9).
See Figure 10 for final results and Figure 11 for effects of filtration times on film permeate flux. It can
be seen that the red water could quickly and thoroughly permeate through the film, with no red
substances left on the film, but the colorless dimethyl benzene was left on the film.
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Figure 11. Effect of the number of membrane filtration on flux.

The dimethyl benzene–water solution was prepared with mass concentration of 3 g/L, and the
emulsifier SDBS was added into the solution, and the mixture was magnetically stirred until the oil
reached the O/W emulsion state for further separation experiments to observe the effects of the oil phase
on separation performance of the film (Figure 10). It can be seen that the red water could quickly and
thoroughly permeate through the film and only the white dimethyl benzene emulsion was left on the
film, since the ink was aqueous and could fully dissolve in water and permeate, leaving only the nearly
white dimethyl benzene. Thus, this film showed a good separation effect on the oil–water emulsion.

Presence of oil phase in the solution hardly influenced the separation effects of the film. When the
oil phase was present as a semi-emulsion, the oil content in water decreased from the initial 3 g/L to
below 50 mg/L after 1h separation; when the oil phase existed as an emulsion, the oil content in water
also decreased from the initial 3 g/L to below 50 mg/L after 1 h separation.

It can be seen from Figure 11 that the permeate flux to separate the oil–water suspension was
greater than that to separate the oil–water emulsion. This because demulsification is required when
separating oil–water emulsions, and the size of O/W micelle particles in an oil–water emulsion is
bigger than that of free water in the oil–water suspension, and thus the O/W micelle particles can be
filtered quickly. The permeate flux of film will slowly decrease along with the increase of filtration
times regardless of what kind of oil–water mixture is being separated. The reason for this is that during
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the constant filtration process, oil drops will contact the film surface constantly to cause pollution.
However, through comparison of the two kinds of film with different doping amounts of nanoparticles,
it is noted that the bigger the doping amount, the slower the decrease of permeate flux and vice versa.
Because the best doping amount is within the range of 40–75%, the increase of doping amount of
nano particle will give the film better hydrophilicity. Thus, a conclusion can be drawn: the better
hydrophilicity the film has, the stronger the stain resistance the film has. With better hydrophilicity,
the stronger the adhesion strength between film and water and thus a water layer is attached firmly on
the film surface and thus effectively prevents the pollution of oil drops on the film surface.

3.5. Separation Mechanism

The separation mechanism of the membrane can be explained from the viewpoint of capillary
mechanics. In general, a thin tube with an inner diameter of less than 1 mm is referred to as a capillary.
The phenomenon where liquid rises along the edge of a pore and then penetrates or descends when in
contact with a thin pore is called capillarity. It is generally believed that the experimental intrusion
pressure is the pressure that is generated by the height of a liquid column of oil, while the theoretical
intrusion pressure is the capillary pressure. However, in fact, a third force is also believed to exist
during this process, namely a liquid bridge force. Capillary action occurs when the adhesion between
the liquid and solid (the wall) is greater than the cohesion of the liquid itself. When a certain amount
of liquid that can wet the solid surface with short distance is present, a system called a liquid bridge
can form, driven by the adhesion force between the two solid surfaces and liquid.

The liquid bridge has two main functional characteristics, namely transportation and connection.
The transportation characteristics manifest as heat convection and mass transfer of the liquid.
The connection characteristics manifest as the drag force of the liquid acting on the two solid
surfaces to form a continuous liquid membrane. Regardless of the liquid mass transfer or heat transfer
convection, or the drag force of the liquid acting on the two solid surfaces, the root of these properties
is the surface tension of the liquid. A minor reason why a liquid bridge force is generated is the
surface tension of the curved surface of the liquid, whereas major reasons are the adhesion between
the liquid and solid and the cohesion of liquid. When the liquid makes contact with a wettable solid,
adhesion attraction is generated between the liquid and surface of the solid, and cohesion attraction
exists in the liquid, which causes the liquid to have a surface drag effect on the solid in the liquid
bridge. Experiments have shown that when the liquid is water and the solid surface is hydrophilic,
adhesive strength is greater than cohesive strength. As the water adheres to the superhydrophilic
membrane, a liquid bridge is formed, which is equivalent to forming an oleophobic layer in a capillary,
and effectively prevents the penetration of oil droplets through the membrane.

4. Conclusions

In conclusion, superhydrophilic membranes were prepared by a simple dipping and drying
method using organic–inorganic hybrid materials. When the proportion of inorganic nanoparticles
was 40–70 wt %, rough micro–nano composite structures could be formed on the surface of the mesh,
endowing the mesh surface with superhydrophilic properties. Micro–nano multilevel structures
were constructed on the mesh surface after two coatings, which could further increase the surface
area and surface roughness of the film, resulting in better hydrophilic properties. The developed
superhydrophilic membranes were used for oil–water separation, giving a separation efficiency of
more than 99 wt %.
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