
1Yang L, et al. BMJ Open 2020;10:e035308. doi:10.1136/bmjopen-2019-035308

Open access�

Individualised risk prediction model for 
new-onset, progression and regression 
of chronic kidney disease in a 
retrospective cohort of patients with 
type 2 diabetes under primary care in 
Hong Kong

Lin Yang  ‍ ‍ ,1 Tsun Kit Chu,2 Jinxiao Lian,3 Cheuk Wai Lo,2 Shi Zhao,1,4,5 
Daihai He  ‍ ‍ ,6 Jing Qin,1 Jun Liang2

To cite: Yang L, Chu TK, 
Lian J, et al.  Individualised 
risk prediction model for 
new-onset, progression and 
regression of chronic kidney 
disease in a retrospective 
cohort of patients with type 2 
diabetes under primary care 
in Hong Kong. BMJ Open 
2020;10:e035308. doi:10.1136/
bmjopen-2019-035308

►► Prepublication history and 
additional material for this 
paper are available online. To 
view these files, please visit 
the journal online (http://​dx.​doi.​
org/​10.​1136/​bmjopen-​2019-​
035308).

Received 29 October 2019
Revised 01 March 2020
Accepted 16 April 2020

For numbered affiliations see 
end of article.

Correspondence to
Dr Lin Yang;  
​l.​yang@​polyu.​edu.​hk

Original research

© Author(s) (or their 
employer(s)) 2020. Re-use 
permitted under CC BY-NC. No 
commercial re-use. See rights 
and permissions. Published by 
BMJ.

Abstract
Objectives  This study is aimed to develop and validate a 
prediction model for multistate transitions across different 
stages of chronic kidney disease (CKD) in patients with 
type 2 diabetes mellitus under primary care.
Setting  We retrieved the anonymised electronic health 
records of a population-based retrospective cohort in Hong 
Kong.
Participants  A total of 26 197 patients were included in 
the analysis.
Primary and secondary outcome measures  The new-
onset, progression and regression of CKD were defined 
by the transitions of four stages that were classified by 
combining glomerular filtration rate and urine albumin-
to-creatinine ratio. We applied a multiscale multistate 
Poisson regression model to estimate the rates of the 
stage transitions by integrating the baseline demographic 
characteristics, routine laboratory test results and clinical 
data from electronic health records.
Results  During the mean follow-up time of 1.8 years, 
there were 2632 patients newly diagnosed with CKD, 
1746 progressed to the next stage and 1971 regressed 
into an earlier stage. The models achieved the best 
performance in predicting the new-onset and progression 
with the predictors of sex, age, body mass index, 
systolic blood pressure, diastolic blood pressure, serum 
creatinine, haemoglobin A1c, total cholesterol, low-density 
lipoprotein, high-density lipoprotein, triglycerides and drug 
prescriptions.
Conclusions  This study demonstrated that individual 
risks of new-onset and progression of CKD can be 
predicted from the routine physical and laboratory test 
results. The individualised prediction curves developed 
from this study could potentially be applied to routine 
clinical practices, to facilitate clinical decision making, risk 
communications with patients and early interventions.

Introduction
Globally, in 2017, there were 425 million 
adults with diabetes according to the 

International Diabetes Federation.1 In Hong 
Kong, it was estimated that 10.9% of adults 
aged 20–79 years had diabetes.1 Diabetes is 
associated with a heavy disease burden and 
tremendous economic costs.2 A local study 
reported that the annual direct medical 
costs of patients with diabetes with newly 
diagnosed complications were much higher 
than the cost of US$1984 of uncomplicated 
cases.3 Chronic kidney disease (CKD) is 
one of the most common complications of 
type 2 diabetes. Globally, it was estimated 
that diabetes attributed to 12%–55% of 
end-stage renal disease (ESRD).1 In Hong 
Kong, a prospective cohort of the Hong 
Kong Diabetes Registry reported that 10% 
of patients with type 2 diabetes developed 
into CKD, which was defined as an estimated 

Strengths and limitations of this study

►► Early predictions for chronic kidney disease (CKD) 
progression and timely intervention are critical for 
clinical management of patients with diabetes.

►► We successfully developed a multiscale multistate 
Poisson regression model that achieved satisfactory 
performance in predicting the new-onset and pro-
gression of CKDs.

►► The model incorporates the predictors of demo-
graphic characteristics, routine laboratory test re-
sults and clinical data from electronic health records.

►► The individualised prediction curves could potential-
ly be applied to facilitate clinical decision making, 
risk communications with patients and early inter-
ventions of CKD progression.

►► The cohort has a relatively short follow-up period 
and the retrospective study design might suffer from 
report bias and selection bias.
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glomerular filtration rate (eGFR) <60 mL/min/1.73 m2, 
after 7 years of follow-up.4

Early diagnosis and treatment of CKD in patients 
with type 2 diabetes are critical for reducing its asso-
ciated heavy disease burden. Therefore, developing 
an effective and efficient prediction model for CKD 
progression is important in terms of prioritising health-
care resources to high-risk populations. The Kidney 
Disease Improving Global Outcomes (KDIGO) 2012 
Guideline lists several predictors for CKD progression 
based on previous epidemiological studies, including 
age, sex, ethnicity, obesity, CKD aetiology, GFR, albu-
minuria, blood pressure, glycaemic control, dyslipi-
daemia and complications of cardiovascular diseases 
(CVDs).5 Specifically for people with type 2 diabetes, 
several prediction models have been reported in the 
literature, but most were Cox proportional hazards 
regression models on all-cause mortality and incidence 
of CVD.6–9 Previous studies have investigated the risk 
factors that significantly predicted ESRD in Chinese 
populations10 11, but none focused on CKD progression 
at earlier stages nor on CKD regression.

The Cox proportional hazards model is one of the 
most widely adopted classical modelling approaches to 
predict diabetes complications. However, it only allows 
two states (no event and event) and linear predictors, 
hence, it is unable to assess the progression probability 
across different disease stages. Some studies adopted 
more complex Cox models to address these limitations, 
such as the multistate Markov model and the Cox model 
with time-dependent covariates.12 13 But these models 
include only a single time scale, which usually does not 
allow for the simultaneous estimation on the forward 
and backward transitions of multiple disease stages (ie, 
progression and regression).

A multiscale multistate Poisson regression (MSMS) 
model has recently been applied to estimate the risks of 
transition between different stages of disease progression 
or the incidences of multiple intermediate states and 
endpoints such as different hospitalisation episodes.14 
This model has the advantage of allowing multiple 
events in the follow-up period and thereby is capable of 
investigating dynamic transition across different stages 
of disease progression and regression. In other words, 
forward time scales (eg, time since enrolment into the 
cohort) and backward time scales (time since entry to 
the intermediate state) are simultaneously entered into 
the model as covariates. Another advantage of the MSMS 
model lies in its flexibility of allowing non-linear dynamic 
transitions by incorporating spline smooth functions in 
each time scale with full parametric estimation. Here we 
conducted a population-based retrospective cohort study, 
with the aim to develop and validate a prediction model 
for the new-onset, progression and regression of CKD in 
patients with type 2 diabetes under primary care in Hong 
Kong.

Methods
Data sources
We obtained individual data of adults who were aged 
over 18 years at enrolment into the Risk Assessment 
and Management Programme for Patients with Diabetes 
Mellitus (RAMP-DM) from July 2014 to June 2017, in the 
general and specialty outpatient clinics managed by the 
New Territory West Cluster of the Hospital Authority in 
Hong Kong Special Administrative Region, China. This 
cluster served a population of 1.1 million in 2017, and 
more details about the data source can be found in Yang 
et al.15 The RAMP-DM Programme aims to structurally 
screen for diabetic complications among patients diag-
nosed with diabetes type 1 or type 2 under primary care. 
All patients are eligible to join this programme without 
extra costs and on a voluntary basis. Doctors and nurses 
from different hospitals and clinics were regularly trained 
and followed the same protocol of RAMP-DM. In Hong 
Kong, more than 90% of people with diabetes have been 
enrolled in the RAMP-DM since 2014.16 A local study also 
demonstrated that the patients who were not enrolled in 
the RAMP-DM were not significantly different from those 
who enrolled, in terms of sociodemographic and clinical 
characteristics.16

We also retrieved the longitudinal data of physical exam-
inations and laboratory test results during scheduled clin-
ical visits, including incidence of diabetic complications, 
blood pressure, eGFR (calculated from urine creatinine), 
urine albumin-to-creatinine ratio (UACR), total choles-
terol, serum levels of creatinine, high-density lipoprotein 
(HDL), low-density lipoprotein (LDL), triglycerides and 
serum haemoglobin A1c (HbA1c), together with annual 
prescriptions of angiotensin-converting-enzyme inhibi-
tors (ACEI) and angiotensin II receptor blockers (ARB), 
from the Clinical Data Analysis and Reporting System 
from 1 January 2014 to 31 December 2017, by matching 
their unique patient reference numbers. All adults aged 
above 18 years with clinical diagnosed type 2 diabetes with 
or without complications, according to the International 
Classification of Disease Ninth Revision codes (250.00, 
250.02, 250.10, 250.12, 250.20, 250.22, 250.30, 250.32, 
250.40, 250.42, 250.50, 250.52, 250.60, 250.62, 250.70, 
250.72, 250.80, 250.82, 250.90, 250.92), were included 
in the analysis. The participants who already had ESRD 
at enrolment, without HbA1c tests taken during the 
follow-up, and/or having incomplete baseline data were 
excluded from data analysis.

Patient and public involvement statement
Patients were not involved in the recruitment to and 
conduct of the study, since all data were retrospectively 
retrieved from electronic medical records.

Definition of CKD new-onset, progression and regression
According to the KDIGO 2012 Clinical Practice Guide-
line for Evaluation and Management of Chronic Kidney 
Diseases,5 CKD can be classified into four risk stages for 
CKD outcomes based on eGFR and UACR levels: stage 0, 
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low risk; stage 1, moderately increased risk; stage 2, high 
risk; and stage 3, very high risk. Here we defined three 
categories of stage transitions as the event: (1) new-onset of 
CKD, a transition from stage 0 to 1; (2) CKD progression, a 
forward transition to the next advanced stage (ie, stage 1 
to 2 and 2 to 3); and (3) CKD regression, a backward tran-
sition to the next stage (ie, stage 1 to 0, 2 to 1 and 3 to 2). 
Cases with the transition over two stages with the inter-
mediate stage recorded were counted as two separate 
events, and those without were excluded from the study. 
For example, two events were included in the model if 
the subject was classified into stage 0 at the beginning and 
progressed into stage 1 and then stage 2 in the follow-up 
period. If a subject jumped from stage 0 to 2 without a 
record of stage 1, then his/her data were not included in 
the model.

Data matching
The eGFR and UACR test results taken on the same date of 
CKD outcome events (new-onset, progression and regres-
sion) were matched by the unique patient numbers. If 
these tests were conducted on different dates, then those 
taken closest to the event dates and within 180 days were 
matched to the CKD event dates with the unique patient 
numbers. Baseline sociodemographic data were collected 
at the initial visits to the clinics, including age, sex, educa-
tion level, body mass index (BMI) and the presence of 
diabetic complications. Longitudinal data of blood pres-
sure, lipid profile, serum creatinine, eGFR, UACR and 
HbA1c levels tested during the clinical visits, together 
with any ACEI/ARB prescriptions within the year (yes or 
no), were also matched for each participant by the dates 
of follow-up period between recruitment dates and event 
dates, or between recruitment dates and censoring dates 
if no events occurred by the end of the follow-up period.

MSMS model
The technical details of MSMS models can be found in 
Iacobelli and Carstensen,14 Carstensen and Plummer.17 
We used calendar time as the basic time scale, and the risk 
of transition was calculated for the period from the enrol-
ment time to the laboratory test dates with stage change. 
The incidence rate of the new-onset of CKD (or progres-
sion and regression) was estimated from the following 
formula:

	
‍E[µ(t) | α] = µ0(t − τ)h0(α)exp

∑
i βixi + β0 (1)‍

�

where t is the time since enrolment, E[μ(t)|α] is the 
expected crude incidence rate of CKD new-onset (or 
progression and regression) from the diagnosis of the 
previous stage to time t, which is assumed to follow a 
Poisson distribution; τ is the time when last laboratory 
tests are conducted for CKD (t > τ≥0); α is the most recent 
HbA1c levels prior to the progression events; xis are the 
covariates of age, sex, BMI, systolic blood pressure (SBP), 
diastolic blood pressure (DBP), serum creatinine, total 

cholesterol, HDL, LDL, triglycerides that were tested at 
enrolment, and annual drug prescriptions of ACEI and 
ARB; μ0(‍t − τ ‍) is the natural splines function of the period 
(‍t − τ ‍) during which the transition occurs; h0 (α) denotes 
the natural splines of HbA1c levels (α). Here we assume 
non-linear effects of time and HbA1c level, because the 
incidence rate of CKD new-onset (or progression and 
regression) could probably increase over time in a non-
linear pattern. Unlike the model proposed by Iacobelli 
and Carstensen,14 we only included one time scale ‍t − τ ‍ in 
this model to simplify the model structures because there 
were very limited numbers of participants who experi-
enced both the regression and progression events in the 
follow-up period.

We first randomly extracted 90% of the cohort data as a 
training dataset to fit the MSMS model by ninefold cross-
validation.18 The remaining 10% of data were used as 
the test dataset to evaluate the prediction accuracy of the 
best-fit model for internal validation. For each outcome, 
we built four different models: model 1 included sex, age, 
BMI and HbA1c as predictors; model 2, blood pressure 
and total cholesterol were added to model 1; model 3, 
serum creatinine, HDL, LDL and triglycerides were added 
to model 2; model 4, annual prescription of ACEI and 
ARB were added to model 3. These models with different 
combinations of predictors were compared using the area 
under the receiver operating characteristic curve (AUC) 
and mean absolute error.19 20 The Nagelkerke’s scaled R2 
was adopted to measure the goodness-of-fit of model.21

Individual incidence rates of CKD new-onset, progres-
sion and regression over time since enrolment could be 
predicted from the final MSMS model by inputting the 
observed data of each subject. It is of note that the time 
between laboratory tests and clinical visits was not consis-
tent, as they were determined by clinical indications and 
hospital manpower. Hence, to adjust for irregularly sched-
uled clinical visits and tests, we calculated an adjusted 
incidence rate by adding weights of the probability 
density function of clinical visits and test frequency, with 

the following equation 
‍
ν
(
t
)

=
µ
(
t
)

g
(
t|κ

)
‍
, where ν(t) is the 

adjusted CKD incidence rate; g(t|κ) denotes the Gaussian 
kernel density function of clinical visits and tests. An 
example of this adjustment is shown in the online supple-
mentary appendix 1.

All the data analyses were conducted in R (V.3.4.1) and 
the codes can be found online (https://​github.​com/​
yanglinpolyu/​DMforecastmodel).

Results
Summary statistics
A flowchart for data collection and analysis is shown in 
figure 1. There were 40 781 people with diabetes who were 
enrolled in the RAMP-DM from July 2014 to June 2017. 
Of them, 39 652 people with type 2 diabetes were consid-
ered eligible for this study. We excluded 8078 patients 
with incomplete eGFR and UACR data, 5002 with only 
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Table 1  Summary of CKD progression and regression during the follow-up period

CKD stage at the end of follow-up
New-onset/progression 
episodes*

Regression 
episodes

Person-years 
followed

Patients 
(n)

0 1 2 3

CKD stage 
at baseline

0 15 623 2632 253 50 2935 0 35 140 18 558

1 1462 2981 859 167 1026 1462 9327 5469

2 58 344 724 417 417 402 2518 1543

3 5 14 88 520 0 107 1052 627

Subtotal 17 148 5971 1924 1154 4378 1971 48 038 26 197

*Any change of the status during the follow-up was counted as one episode.
CKD, chronic kidney disease.

Figure 1  Flowchart of data clean and analysis procedure for CKD progression. CKD, chronic kidney disease; DM, diabetes 
mellitus; eGFR, estimated glomerular filtration rate; HbA1c, haemoglobin A1c; MRAM, Metabolic Risk Assessment Module; 
RAMP-DM, Risk Assessment and Management Programme for Patients with Diabetes Mellitus; T2DM, type 2 diabetes mellitus; 
UACR, urine albumin-to-creatinine ratio.

one record of eGFR and UACR and 375 with incomplete 
HbA1c record. In the final sample of 26 197 patients, 
48.8% were men, the mean age at enrolment was 61.5 
years and 70.8% did not have CKD (stage 0). At the end of 
the follow-up period, there were 2632 cases of CKD new-
onset, 1746 progression and 1971 regression (table  1). 
Compared with the patients without change, those with 
the new-onset or progression or regression of CKD were 
older, more likely to be female individuals, with lower 
education level, higher BMI and having more complica-
tions (table 2). The mean (range) of the follow-up period 
was 1.83 (0.07–4.04), 1.77 (0.13–3.84), 1.43 (0.08–3.72) 

and 1.89 (0.07–4.04) years, for all patients, patients with 
CKD new-onset/progression, with regression and without 
change, respectively.

Model performance and predictors
The MSMS model achieved better performance in 
predicting progression than in predicting the regression 
of chronic kidney disease (AUC 0.72–0.84 vs 0.50–0.71) 
(online supplementary appendix 2). The significant 
predictors for CKD new-onset included female individ-
uals, older age, having ACEI and ARB prescriptions, high 
levels of BMI, SBP, total cholesterol and serum creatinine, 
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Table 2  Descriptive statistics of cohort participants

Total No change Regression New-onset/progression

n 26 197 19 848 1971 4378

Person-years 48 038 37 478 2817 7743

Sociodemographic factors

Sex, n (%)

 � Female 12 965 (49.5) 9458 (47.7) 1138 (57.7) 2369 (54.1)

 � Male 13 232 (50.5) 10 390 (52.3) 833 (42.3) 2009 (45.9)

Age (years), mean±SD 62.4±10.4 61.5±10.1 64.0±11.0 65.7±10.8

Education levels, n (%)

 � No formal education 3150 (12.0) 2094 (10.6) 322 (16.3) 734 (16.8)

 � Primary 9861 (37.6) 7320 (36.9) 779 (39.5) 1762 (40.2)

 � Secondary 11 734 (44.8) 9272 (46.7) 771 (39.1) 1691 (38.6)

 � Tertiary 1368 (5.2) 1095 (5.5) 92 (4.7) 181 (4.1)

 � Other 84 (0.3) 67 (0.3) 7 (0.4) 10 (0.2)

BMI, mean±SD 26.2±4.2 26.1±4.1 26.8±4.2 26.4±4.6

BMI category, n (%)

 � Underweight 286 (1.1) 207 (1.0) 25 (1.3) 54 (1.2)

 � Normal 5180 (19.8) 4013 (20.2) 309 (15.7) 858 (19.6)

 � Overweight 5565 (21.3) 4333 (21.8) 379 (19.3) 853 (19.5)

 � Obese 15 140 (57.9) 11 280 (56.9) 1254 (63.8) 2606 (59.6)

Clinical characteristics

 � Duration of diabetes (years), mean±SD 7.8±6.3 7.5±6.1 7.9±6.2 9.2±6.8

 � Coronary heart disease, n (%) 561 (2.1) 386 (2.1) 66 (3.3) 109 (2.5)

 � Stroke, n (%) 993 (3.8) 669 (3.4) 81 (4.1) 243 (5.6)

Peripheral arterial disease, n (%)

 � Yes 252 (1.0) 173 (0.9) 27 (1.4) 52 (1.2)

 � Suspected 117 (0.4) 87 (0.4) 5 (0.3) 25 (0.6)

Diabetic retinopathy, n (%)

 � No retinopathy 17 388 (66.4) 13 530 (68.2) 1259 (63.9) 2599 (59.4)

 � Non-sight threatening 5341 (20.4) 4014 (20.2) 409 (20.8) 918 (21.0)

 � Sight threatening 2651 (10.1) 1760 (8.9) 215 (10.9) 676 (15.4)

 � Ungradable 176 (0.7) 117 (0.6) 21 (1.1) 38 (0.9)

SBP (mm Hg), mean±SD 131.6±16.3 131.1±16.1 132.9±17.1 133.5±17.0

DBP (mm Hg), mean±SD 75.0±10.3 75.2±10.1 74.6±10.9 74.1±10.8

Laboratory tests, mean±SD

 � UACR (mg/mmol) 5.6±21.4 5.5±21.6 10.9±21.0 6.0±20.0

 � eGFR (mL/min/1.73 m2) 84.3±19.5 86.5±18.7 78.8±21.7 77.1±19.8

 � Creatinine (mmol/L) 79.2±21.3 77.7±20.5 83.5±25.4 84.1±21.7

 � HbA1c (%) 7.2±1.3 7.1±1.3 7.3±1.3 7.2±1.3

 � HbA1c (mmol/mol) 55.2±11.9 54.1±11.9 56.3±11.9 55.2±11.9

 � Triglycerides (mmol/L) 1.5±1.1 1.5±1.1 1.6±1.2 1.6±1.0

 � LDL (mmol/L) 2.3±0.7 2.3±0.7 2.4±0.7 2.3±0.7

 � HDL (mmol/L) 1.3±0.3 1.3±0.3 1.3±0.3 1.2±0.3

Drug prescriptions, n (%)

 � ACEI 11 259 (43.0) 7992 (40.3) 991 (50.3) 2276 (52.0)

 � ARB 6964 (26.6) 4694 (23.6) 690 (35.0) 1580 (36.1)

ACEI, angiotensin-converting-enzyme inhibitors; ARB, angiotensin II receptor blockers; BMI, body mass index; DBP, diastolic blood pressure; eGFR, 
estimated glomerular filtration rate; HbA1c, haemoglobin A1c; HDL, high-density lipoprotein; LDL, low-density lipoprotein; SBP, systolic blood 
pressure; UACR, urine albumin-to-creatinine ratio.
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Figure 2  Adjusted incidence rates per 1000 person-years (PY) of CKD new-onset or progression over time since the diagnosis 
of previous stages in female patients, at the HbA1c levels ranging from 6% to 9%, for new-onset (red solid line), progression 
from stage 1 to 2 (green solid line) and from stage 2 to 3 (blue solid line). Upper panel (A–D) shows adjusted incidence rates 
in patients aged below 65 years. Lower panel (E–H) shows adjusted incidence rates in patients aged 65 years or above. The 
broken line and shadow area indicate the 95% CI. CKD, chronic kidney disease; HbA1c, haemoglobin A1c.

low levels of DBP, HDL and LDL (online supplementary 
appendix 3). Fewer significant predictors were found for 
those who progressed from stage 1 to 2 and from 2 to 
3, and the effect estimates of significant predictors were 
similar to those of new-onset. The only exception is that 
lower BMI was associated with a higher risk of progression 
from stage 2 to 3.

Rates of new-onset and progression
To facilitate the comparison between groups, we plotted 
the prediction curves of adjusted rates per 1000 person-
year by assuming the mean values of each predictor 
in the MSMS model: BMI=25.7, SBP=130 mm Hg, 
DBP=75 mm Hg, total cholesterol=4.0 mmol/L, creati-
nine=75 mmol/L, HDL=1.20 mmol/L, LDL=2.10 mmol/L 
and triglycerides=1.21 mmol/L. The mean age was 56.4 
years for female individuals aged <65 years, 73.7 years for 
female individuals aged 65+ years, 56.1 years for male 
individuals aged <65 years and 72.4 years for male individ-
uals aged 65+ years.

The temporal trend of adjusted rates of CKD new-onset 
and progression from the MSMS model across different 
levels of HbA1c are shown in figures 2 and 3, for women 
and men, respectively. The CKD progression rate dramat-
ically increased in women 2 years after diagnosis, but this 
change was less evident in men. An exponential increasing 
trend of incidence rates over time was observed for all three 
types of CKD progression and gradually elevated when the 

HbA1c level increased from 6% to 9%. The new-onset rate 
was high within the first year of enrolment (diagnosed as 
stage 0), particularly among older adults aged 65 years or 
over. The progression rate from stage 2 to 3 dramatically 
increased 2 years after the diagnosis of stage 2.

Rates of regression
The significant predictors for regression from stage 1 to 
0 include male individuals, younger age, lower levels of 
SBP and creatinine, without ACEI or ARB prescriptions 
(online supplementary appendix 3). The stage 2–1 and 
3–2 regression has similar predictors, including male 
individuals, older age, lower levels of SBP and creatinine. 
Higher levels of DBP and without ACEI are only signifi-
cant for the stage 3–2 regression.

The regression from earlier stages shows a less evident 
temporal pattern in women and men (online supplemen-
tary appendix 4 and 5). The adjusted incidence rates were 
high during the first half year and then quickly declined 
to very low levels after 1 year. The regression rates were 
higher in the group from stage 2 to 1, followed by 1 to 
0 and stage 3 to 2 in both sex groups. The regression 
rates of older people tend to be slightly higher than the 
younger group.

Discussion
Early predictions of complication incidence and 
disease progression are of great concern in the clinical 
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Figure 3  Adjusted incidence rates per 1000 person-years (PY) of CKD new-onset or progression over time since the diagnosis 
of previous stages in male patients, at the HbA1c levels ranging from 6% to 9%, for new-onset (red solid line), progression 
from stage 1 to 2 (green solid line) and from stage 2 to 3 (blue solid line). Upper panel (A–D) shows adjusted incidence rates 
in patients aged below 65 years. Lower panel (E–H) shows adjusted incidence rates in patients aged 65 years or above. The 
broken line and shadow area indicate the 95% CI. CKD, chronic kidney disease; HbA1c, haemoglobin A1c.

management of patients with type 2 diabetes. The MSMS 
model has recently been introduced to evaluate the risk 
of chronic diseases.22–24 Its advantages over the classical 
proportional hazards (PH) model have been discussed 
in the literature.14 17 25 This novel modelling approach 
allows the simultaneous prediction of multistate tran-
sitions, either progression or regression and thereby is 
capable of assessing both linear and non-linear effects 
of predictors. Previous studies have demonstrated that 
the MSMS model outperformed the PH model in both 
model structure and fitting performance.14 26–28 Our 
study is among the first to apply this model to predict 
the risks of CKD progression and regression in a large 
sample of the Chinese population with type 2 diabetes 
under primary care. The advantage of the MSMS model 
also lies in its ability to incorporate non-linear effects. We 
observed rapidly increasing progression rates between 
different stages among female patients, but to a lesser 
extent among male patients (figures  2 and 3). Particu-
larly, a turning point of the progression rates was found 
at 1 year postdiagnosis of the previous stage, whereas the 
regression rates peaked at half a year. This suggests that 
1 year is a critical control window to reverse the deteri-
oration of nephropathy among patients with type 2 
diabetes. Another critical time point is 2 years postdiag-
nosis, beyond which the regression rates for both genders 
dramatically decreased, suggesting an irreversible trend 
of kidney function deterioration.

Based on the data availability and association with 
disease progression, we considered a series of predictors 
including demographic characteristics, clinical presenta-
tions, drug prescriptions and laboratory tests routinely 
conducted in these patients. Interestingly, a larger 
number of significant predictors were successfully identi-
fied by the MSMS model for new-onset than for progres-
sion. Nearly all these predictors significantly predicted 
the CKD new-onset, whereas for progression, only age, 
gender, BMI, SBP and serum creatinine remained signifi-
cant predictors. These findings highlight the importance 
of early interventions for patients with type 2 diabetes 
when their renal functions maintain within the normal 
range and many risk factors are modifiable.

A few prediction models for progression of CKD have 
been developed in the literature13 29 30 and some were 
specifically for patients with diabetes.31–33 This study is 
among the first to define CKD progression (or regres-
sion) as a forward (or backward) transition between 
stages of proteinuria and deterioration of eGFR. In this 
study, we found that female individuals, older age, ACEI 
and ARB prescriptions, higher BMI, SBP, total cholesterol 
and creatinine, lower DBP, HDL and LDL were associ-
ated with a higher risk of CKD new-onset and progres-
sion. However, Tangri et al reported that younger age and 
male individuals had a faster progression to renal failure 
in their PH model for patients with CKD of various aeti-
ologies.34 This discrepancy might be due to the different 
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outcome variables and study populations, since our 
cohort included only patients with type 2 diabetes and 
the outcomes were a progression from earlier stages. The 
predictors of our model are similar to an early prediction 
model that was developed using the PH model for CVDs 
of patients with type 2 diabetes in Hong Kong.35 This 
CVD model found that older age, longer duration of type 
2 diabetes and higher HbA1c predicted a higher risk of 
CVD incidence.

This study is among the first to investigate the predic-
tors of CKD regression in patients with type 2 diabetes 
under primary care, to our best knowledge. We found 
that younger age had a faster regression from stage 1 to 0, 
but slower from stage 2 to 1 or 3 to 2. This suggests that, 
once younger adults enter the advanced stages, it is less 
likely to reverse the progression.

There is ample evidence in the literature to demon-
strate that both ARB and ACEI could slow down the 
progression of CKD. However, we found that patients 
with type 2 diabetes who were prescribed with ARB and 
ACEI had a dramatically faster progression rate of CKD 
and a lower regression rate. In our data, these drugs were 
significant only in the transition of stages 0 to 2 and only 
ACEI prescription predicts a lower rate of regression from 
3 to 2. We speculate that patients who are prescribed with 
ACEI and ARB more likely had a high-risk profile than 
did those without these prescriptions. Future research 
would be useful to investigate whether the association 
found in our study was truly due to the drugs themselves 
or confounding.

Previous studies including a few from Hong Kong have 
reported that men with type 2 diabetes had a higher risk 
of CKD incidence than women.4 On the contrary, we 
found that women had a faster rate of CKD progression 
and men had a higher rate of regression in our cohort. 
Interestingly, we also found that female patients with 
different drug usage showed distinct temporal patterns 
of CKD progression, whereas fewer discrepancies were 
observed in the male groups. This gender heteroge-
neity has been well recognised in the development of 
diabetic complications, but not in drug efficacy. Further 
studies are warranted to explore this important gender 
heterogeneity.

The results of this study have important clinical impli-
cations. Few previous studies have considered the predic-
tion model for progression of early stages, however, a 
timely intervention on these early stages in the primary 
care level could have a significant impact to prevent 
or slow down the further progression to the end-stage 
renal failure. This would potentially reduce the disease 
burden and economic burden on the individual levels as 
well as on the secondary care of the healthcare system. 
Our prediction models were developed from the routine 
clinical data of electronic health records and thereby it 
could be automatically integrated into the existing clin-
ical information system and easily adopted by clinicians 
to visualise the CKD progression risks in primary care 
settings. The graphic presentation of individualised 

CKD risk prediction could be a useful tool to facilitate 
risk communication and health education for disease 
management of diabetes.

Interestingly, we found a small peak of CKD progression 
risks within half to 1 year since enrolment, even after we 
adjusted for check-up frequency (figures 2 and 3). It is of 
note that these participants had different lengths of years 
with type 2 diabetes and some already had developed 
complications when first enrolled into the RAMP-DM 
Programme. We speculate that these patients progressed 
faster than others, but it was actually due to their delayed 
laboratory tests and clinical visits. Furthermore, although 
we adjusted the intervals of follow-up checks in the model 
by calculating adjusted incidence rates, it is difficult to 
completely eliminate the impact of inconsistent intervals 
of clinical visits and laboratory tests. Therefore, the peaks 
within 1 year need cautious interpretations. Ideally, the 
prediction risk curve should be plotted over the time since 
diagnosis. However, this could be very difficult to achieve, 
as many patients did not have timely laboratory tests for 
diagnosis. In fact, many prediction models also used the 
year since enrolment as a time indicator, including a few 
local studies.8 35

There are a few limitations to this study. First, although 
we had a large sample size, the follow-up period was rela-
tively short. CKD stages were defined by one test result 
due to the relatively short study period. Therefore, the 
predicted rates beyond 2 years tend to have wide confi-
dence intervals. Second, a large number of patients in 
RAMP-DM were excluded due to incomplete eGFR, 
UACR and HbA1c data. It is unclear to us whether some 
were not scheduled to take tests due to mild conditions or 
others skipped clinical visits for some reason. Therefore, 
some of our model estimates might slightly overestimate 
or underestimate the true risks. Future studies with longer 
follow-up periods are warranted to obtain more accurate 
predictions. Last but not least, the study population were 
Chinese patients under primary care in a highly devel-
oped economic region. Future studies are warranted to 
apply our model to other populations as external valida-
tion and calibration, so that the models can eventually 
become a useful tool in clinical practice.

Conclusions
The MSMS model achieved satisfactory performance in 
predicting the progression of CKD in patients with type 
2 diabetes under primary care. The prediction model 
developed from this study could be applied to build an 
online calculator for individual risks of CKD progression. 
This will greatly facilitate clinical decision making of 
individualised intervention plan and treatment target to 
slow the progression of CKD in Chinese adults with type 
2 diabetes, based on biomarkers of glycaemic control, 
cardiovascular and renal function. The online calculator 
will also improve the risk communications of doctors and 
nurses with patients.
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