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ABSTRACT
Estimation of wave height is essential for several coastal engineering applications. This study
advances a nested grid numerical model and compare its efficiency with three machine learning
(ML)methods of artificial neural networks (ANN), extreme learningmachines (ELM) and support vec-
tor regression (SVR) for wave height modeling. The models are trained by surface wind data. The
results demonstrate that all the models generally provide sound predictions. Due to the high level
of variability in the bathymetry of the study area, implementation of the nested grid with different
Whitecapping coefficient is a suitable approach to improve the efficiency of the numerical mod-
els. Performance on the ML models do not differ remarkably even though the ELM model slightly
outperforms the other models.
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1. Introduction

Reliable estimation of wave height in coastal waters can
provide useful information for many different practical
applications in coastal engineering, environmental mon-
itoring, coastal protection, and marine transportation.
Significant wave height is considered as a vital parame-
ter in the design and construction of coastal protection
structures, sediment transport, and port locating and
development. Several parameters can affect wave height
in nearshore and offshore areas such as water depth,
swells, shoaling, refraction and diffraction, storms and
winds (Malekmohamadi et al., 2011). Generally speak-
ing, methods employed to simulate wave characteristics
can be recognized in two main categories of numeri-
cal wave models and regression/ empirical techniques.
Concerning wave simulation with numerical models, it
is not an easy task to measure all of these variables for
different points. Also, changing local conditions affecting
the physics of the phenomena should be considered in
the modeling procedure to minimize the errors. On the
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other hand, regression-based models are mainly devel-
oped to find a statistical relationship between the tar-
get variable here means wave characteristics and some
influencing variables such near-surface wind speed, wind
blowing direction, mean sea level pressure among the
others. Artificial intelligence techniques such as artificial
neural network (ANN), adaptive neuro-fuzzy inference
systems (ANFIS), support vector machine (SVM), and
k-nearest neighbor (KNN) can be considered as nonlin-
ear regression-basedmodels which are black-boxmodels
to find a relationship between input and target variables
without providing exact mathematical relationships and
physics of the phenomena (Mosavi et al., 2018). Both
numerical and regression-based models have their own
pros and cons. For example, numerical models inher-
ently have higher computational cost and complexity
than the statistical models. On the other hand, they are
consistent with the physics of the phenomena and con-
sider governing equations and boundary conditions for
modeling procedures. However, they usually require a
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lot of input variables to tune the numerical model and
also to meet special conditions. Thus, developing mod-
els with reliable estimation of wave characteristics using
only a limited number of input variables is of great
interest.

Numerical models due to their consistency with the
physics of the phenomena have been widely used for
wave simulations. Among different models developed for
this purpose such as MIKE, WAM, WAVEWATCHIII,
the Simulating Waves Nearshore (SWAN) developed at
Delft University of Technology as a third-generation
wave model has attracted great popularity and has been
widely used for wave simulation for different regions.
Results of the wave model with available measured wave
data for different study areas demonstrated that the pro-
posed model can be successfully employed to simulate
wave characteristics for coastal engineering applications
(Ris et al., 1999). However, dealing with any numeri-
cal simulation, calibration of the numerical model play
an important role in efficiency and performance of the
model. Therefore, prior to serious modelling, the numer-
ical model and the parameters within should be tunes
carefully to achieve accurate and reliable results. More-
over, comparing results of the numerical models with
those of traditionalmodel can provide overall assessment
of the model and conditions.

Machine learning (ML) based models extract math-
ematical expressions or find empirical relationships
between input and target variables from analysis of avail-
able time series (Solomatine & Ostfeld, 2008). They have
been widely used for real-life applications of different
fields such as discharge and river flow prediction (Cheng
et al., 2005; Yaseen et al., 2018), evaporation estima-
tion and flood management (Fotovatikhah et al., 2018;
Moazenzadeh et al., 2018) and for wind speed predic-
tion (Samadianfardet al., 2020). Artificial neural network
(ANN), as a common type model, was widely used for
different forecasting applications. Apart from the ANN,
other types of soft computing techniques including SVR
andANFISwere also employed for time series simulation
and prediction. Malekmohamadi et al. (2011) and James
et al. (2018) applied different ML models to predict wave
conditions in coastal waters indicating the efficiency of
the employed models. Moreover, recently, Anitescu et al.
(2019) presented a successful application of ANN to solve
the second-order boundary value problem and the results
showed that using ANN can lead to remarkable compu-
tational savings especially for the non-smooth solutions.
Due to inherent simplicity, easily implementation and
suitable performance, they are being increasingly in use
and attractingmore popularities than traditional concep-
tual models. Extreme learningmachines as a more recent
version of the ANN have been successfully applied and

examined for the forecasting time series in many differ-
ent applications in hydrology and environmental studies
among others. On the other hand, ML-based models can
be developed by employing only a limited number of
input variables, which are of great importance as the con-
ceptual models require to introduce a large number of
variables affecting the target parameter. In this regard,
different types of ML-based models based on their per-
formance, complexity, and computational cost have been
designed and developed to simulate and predict sev-
eral different atmospheric, oceanic, environmental and
hydrological processes (Alizadeh, Nourani, et al., 2017;
Taormina & Chau, 2015; Wang et al., 2009). Dealing
with such models there is no need to introduce exact
mathematical relationships between input and outputs.
The models recognize the relationship through a train-
ing procedure and assign appropriate weights indicating
the strength of the input variables. For wave modeling
purpose, there are two usual approaches which include
predicting the wave height using wave height in previous
time steps or estimating wave height using wind data as
the main driven force.

Similar to numerical models that require calibration
data sets to tune the model parameters, the ML-based
models also need some data called training data set to
set main elements in the structure of the models. For
example, the number of iteration, number of neurons
in the hidden layer for ANN models should be tuned
appropriately in order to obtain sound predictions of the
target variable during the testing period in which it is
equivalent to the verification period in numericalmodels.
In the Persian Gulf, Iran, Bushehr and Assulayeh Ports
are among the most important ports. The wave records
in these two ports obtained from the wave buoys are
applied for training and testing the ML-based models.
Finally, to overcome limitations of the available studies,
the development of a nested grid numerical model to
consider local conditions in the modeling procedure and
also to evaluate its performance against ML-based mod-
els can provide more insights into the manipulation of
wave characteristics.

In this study, two types of models including numer-
ical framework using SWAN and ML-based models
are applied to estimate wave height in two different
points in the Persian Gulf. To establish the numerical
model, bathymetry and wind components and for the
ML-based models, surface wind speed is considered as
input variable and wave height as target variable. To
enhance efficiency of the numerical model, a nested grid
approach for the selected points are developed subse-
quent to the primary coarse resolution numerical model
to better catch local conditions. Concerning the latter
approach, three different ML-based models including
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ANN, ELM and SVR are developed and their perfor-
mances for wave height estimation are compared. Finally,
efficiency of the ML-based models against the nested
numerical model is compared and their advantages and
disadvantages are discussed. Rest of the paper is orga-
nized as follows. Section 2 describes the study area and
datasets, ML-based models, SWAN model and nested
grid approach as well as modelling procedures. Results
of different models whether the numerical model or the
ML-based methods are argued and compared in section
3. Concluding remarks consists the last section of the
manuscript.

2. Materials andmethod

2.1. Study area and data

The study area (PersianGulf) covers a large area extended
from the northwest of the Indian Ocean. Actually, the
Gulf has a completely enclosed body except at its eastern
part, which in its narrowest part, so-called Hormoz
Strait is connected to high seas. Placing between Iranian
plateau to the north and Arabian Peninsula to the south
(Kamranzad, 2018), it has been surrounded by different
countries in which they are under rapid growth in dif-
ferent categories such as population, economic, industry,
and subsequently marine transport. Unlike its varying
bathymetry and from point by point, which confirms

Table 1. Statistical analysis for wave and wind data in Bushehr
and Assaluye ports.

Wind speed (m/s) Wave height (m)

Station Average Max Std Average Max Std

Bushehr 4.40 11.76 2.38 0.55 2.45 0.45
Assaluye 4.35 13.16 2.42 0.45 1.88 0.37

its high level of spatial depth variability, the area gener-
ally has a shallow depth with an average depth of 35m
(Emery, 1956) and reaching 90m in its deepest points.
Overall, the shallow waters are usually in the southern
stripe of the Gulf, mainly from the coastal areas in Ara-
bian countries, while the deeper waters are in the north-
ern stripe of the Gulf as well as its middle part. The wave
data recorded in Bushehr andAssaluye ports during 2008
are employed as target variables in ML-based models.
These two ports have been marked in the Persian Gulf
map in Figure 1.

In this study, the models were forced with surface
wind data in 10m to estimate wave height. Wind data
in the Gulf was obtained from ERA-Interim reanalysis
data provided by the EuropeanCenter forMedium-range
Weather Forecast (ECMWF). These wind fields with a
temporal resolution of 6 h and also with a spatial res-
olution of 0.5°×0.5° were obtained for the year 2008 as
the wave records were available for this period. Statistical
analysis of wind and wave data used for this research is
presented in Table 1.

Figure 1. Study area.
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From Table 1, it can be derived that average wave
height has higher values in Busher port compared with
the corresponding value in Assaluye port. However, the
average in wind speed in these two locations does not dif-
fer significantly. Therefore, these two places have roughly
the same average wind speed but with the different aver-
age in wave heights. Therefore, some other parameters
are affecting the wave height. The bottom is about 28
and 50m deep for Bushehr andAssaluye where the buoys
were installed. Thus, shoaling can be an effective param-
eter increasing wave height in Bushehr port. Wave data
in Bushehr are changing in a wider range with higher
extreme values.

Despite theML-basedmodels in which only wind data
at the forecasting point is fed as the model input, the
numerical model require to provide wind data for the
whole computational domain. In this study, the wind
data from the same source as the ML-based models but
covering the whole domain called the Persian Gulf are
employed to develop the numerical model.

2.2. ML-basedmodels

2.2.1. Artificial neural network
Artificial neural networks (ANN) at their most common
type have three layers as their constituents which each
layer is connected to the subsequent one by means of
neurons. Generally, they mimic the biologic and natural
behavior of human brains which are made of numer-
ous neurons connected together. The first layer called the
input layer receives raw data as input variables and trans-
forms them into the hidden layer through the connection
between these two layers. In the hidden layer, the main
computations are implemented and important relation-
ships and dependency of the variables are extracted, the
model is trained based on the available data. The con-
nections between two layers are varied in robustness and
weakness while the weight for each parameter or connec-
tion is assigned based on the power of the connection. In
other words, the most important variable has the high-
est weight and vice versa. Finally, the nodes in the hidden
layer are linked to the output layer determining the value
of the target variable. This procedure is a repetitive pro-
cess that continues for a specified number of iteration or
when the performance criteriamet. The usual ANNgains
a backpropagation algorithm to train the model based on
the available input and output records. Generally, a three-
layer ANN model in its simplest form can be expressed
as:

oj =
n∑
i=1

βig(wixj + bi) j = 1, . . . ,N (1)

where xj and oj are the input and output values at node j,
g is the activation function in the hidden layer, bi is the
bias of the hidden layer, and n is the number of neurons
in the hidden layer. The weights between the input nodes
and the ith hidden node and the weight between the ith
hidden node and the output nodes are specified with wi
and βi, respectively. It is noted that in this research the
log-sigmoid was used as the activation function in the
hidden layer.

2.2.2. Extreme learningmachine (ELM)
Compared with the ANN models, ELM based models
are faster. This technique originally developed by Huang
et al. (2004) has been successfully applied for different
fields in time series forecasting. Its main advantage over
the common ANN models is that it has lower compu-
tational cost while it is more efficient in terms of the
model generalization. The higher speed in the algorithm
implementation is mainly due to its randomly assigning
the weights and biases whereas in the ANN models it
is carried out through a repetitive process. Moreover, as
clear from the name of the algorithm which manipulates
extreme values efficiently, the models based on ELM do
not suffer from the overfitting problems and also stack-
ing in local minima, which are major concerns dealing
with the ANNmodel. Assuming that there exist wi,βi, bi
in which the target variable of N sample (Yj) can be esti-
mated with zero error (i.e. Yj = oj). Therefore Equation
(2) can be rewritten in compact form as:

Hβ = Y (2)

H =

⎡
⎢⎣
g(w1.x1 + b1) . . . g(wn.x1 + bn)

... . . .
...

g(w1.xN + b1) . . . g(wn.xN + bn)

⎤
⎥⎦
N∗n

(3)

β =

⎡
⎢⎣

βT
1
...

βT
n

⎤
⎥⎦
n∗m

, Y =

⎡
⎢⎣
yT1
...
yTN

⎤
⎥⎦
N∗m

(4)

where the outputmatrix in the hidden layer is denoted by
H.

The matrix H can remain fixed by assigning arbitrary
values to the parameters at the beginning of learning in
the ELM. Therefore, the ELM is trained by finding a least-
squares solution β̂ as:

||H(w1, ..,wn, b1, .., bn)β̂ − Y||
= min

β
||H(w1, ..,wn, b1, .., bn)β − Y|| (5)

Finally, the least square technique can be employed
to get the solution for the abovementioned generated
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matrix. This equation can be written in the general form
of:

β̂ = H†Y (6)

where H† is the Moore–Penrose generalized inverse of
matrix H.

2.2.3. Support vector regression (SVR)
Generally, support vectormachines have two usual forms
appropriate for classification and forecasting. The lat-
ter one uses a regression-based method is called sup-
port vector regression in which it has more applica-
tions in time series manipulation. To train an SVR in its
basic form assuming a dataset of {(xi, yi)}ni=1 in which
the input and output variables are denoted by x and
y and also n represents the sample size, the approach
is proceeded to project the input space into an n-
dimensional feature space using a nonlinear function
(ϕ(x)). The following equation can be applied to for-
mulate the SVR function in its general form (Liu et al.,
2014).

f (x) = (w.ϕ(x)) + b (7)

In which w is the weight vector w = {w1, . . . ,wn},
and b is standing for the bias. To properly determine the
weight and bias in the SVR, a cost function is defined
while the traditional models for regression approach
were mainly based on the solution of the least square
technique to minimize the errors. On the contrary, in
SVR, a new loss function known as the ε-insensitive
loss function is employed to find the optimum values of
bias and the weight vector discussed earlier as (Vapnik,
2013):

Lε(f (x), y) =
{|f (x) − y| − ε for |f (x) − y| ≥ ε

0 Otherwise
(8)

In which Lε denotes the loss function, y represents the
output, and ε is the region of ε insensitivity. Conse-
quently, the regularized risk function (Equation (9)) can
be employed to find the weights.

Rreg = C
1
n

n∑
i=1

Lε(f (xi), yi) + 1
2
w2. (9)

Inwhich the regularization term and constant are defined
as 1

2w
2 and C. However, this equation can be reformatted

to establish an optimization problem. As we know, opti-
mization problems are usually recognized by objective
cost function and constraints in which are employed to
find the best solution where the cost function has its opti-
mum value. In this regard, the following optimization
problem can be defined considering the abovementioned

equation in which the cost function and constraints are
represented as:

minimize
1
2
w2 + C

n∑
i=1

(ξi, ξ∗
i ). (10)

subject to

⎧⎪⎨
⎪⎩
yi − (w.ϕ(xi) + b) ≤ ε + ξi

(w.ϕ(xi) + b) − yi ≤ ε + ξ∗
i

ξi ≥ 0, ξ∗
i ≥ 0, i = 1, . . . , n

. (11)

In which ξi and ξ∗
i are defined as the positive slack

variables measuring the train samples’ deviation outside
the ε-insensitivity zone. To sum up, with reshuffling the
abovementioned equations and functions and computa-
tions, the SVRmodel can bemathematically expressed as
(Vapnik, 2013):

f (x) =
n∑

i=1
(ai − a∗

i )K(x, xi) + b. (12)

where ai, a∗
i ≥ 0 are the Lagrangian multipliers that sat-

isfy the equality aia∗
i = 0; and K(x, xi)is the kernel func-

tion.

2.3. SWANwavemode

The SWAN (Simulating Wes Nearshore) is a third-
generation wave model that is a suitable proxy to model
short-crested waves overcoming the drawbacks of the
first and second-generation wave models including lack
of properly addressingwave generation, wave-wave inter-
actions, and dissipation (Booij et al., 1999). The wave
action density spectrum and a Eulerian approach are
used to formulate themodel.Moreover, wind and bound-
ary conditions are main forcing inputs imposed on
the model to simulate wave propagation over arbitrary
bathymetry and current fields. Comparing with the other
third-generation models, in SWAN model an implicit
numerical scheme while the others are based on explicit
scheme requiring stability check through Courant num-
ber criterion. The process of wind energy transferred
to the waves is carried out by mechanisms described
by Phillips (1957) and Miles (1957). In brief, consid-
ering the spectral action balance equation, the model
can be basically formulated in Cartesian coordinates as
(Hasselmann et al., 1973):

∂

∂t
N + ∂

∂x
cxN + ∂

∂y
cyN + ∂

∂σ
cσN + ∂

∂θ
cθN = S

σ
.

(13)
in which the wave action density N is defined as a func-
tion of relative frequency σ and the wave direction θ , cx,
cy, cσ , cθ are the propagation velocities in x, y, σ , θ direc-
tions. The term S in the right-hand side of the equation is
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the source terms associated with the generation, dissipa-
tion, and nonlinear wave-wave interaction impacts. The
source term can be formulated as:

S = Sin + Snl + Sds,w + Sds,bot + Sds,br (14)

where the first term is related to input wind which rep-
resents the wind energy transfer to the waves, Snl is
the corresponding source term for nonlinear wave-wave
interactions, and the three last terms in the right-hand
side of equation 14 denote for energy dissipation due to
whitecapped, bottom friction, and breaking phenomena,
respectively. This study is not aimed to delve into details
of the different source terms and further information can
be found in Booij et al. (1999), Pallares et al. (2014) and
Komen et al. (1984). However, for the model calibration
and in order to appropriately tune the parameters, differ-
ent source terms affecting the model efficiency should be
determined carefully. These terms are mainly dependent
on the conditionals governing the study area, bathymetry,
bedmaterials and characteristics, and the local climate of
winds and waves. For example, for deepwater conditions,
white capping is a more influencing parameter while for
shallow water conditions, depth induced breaking and
friction have more importance on the wave characteris-
tics and energy dissipation.

Dealing with the SWAN model, the nested grid
approach is a suitable capability of the model to focus on
areas with higher importance or to put a finer mesh-grid
over there. Moreover, due to changing bathymetry, tun-
ing a large study area with a unique calibration parameter
such as white capping may increase errors to the model
simulations. Therefore, through a nested framework, it
is possible to define separate areas with different tun-
ing parameters to achieve reliable outputs. To do that,
some modifications should be inserted in the subsec-
tion of boundary and initial conditions in the model
development. Generally, a nested SWAN run is derived
from a coarse grid SWAN run. Therefore, the coarse
grid SWANmodel is firstly run over the whole area with
lower spatial resolution and the area of importance is
derived from the model. Subsequently, a nested SWAN
run will be implemented with the same geographical
coordinates as the coarse model but with a much higher
number of meshes. Similarly, the parameter of interest
such as white capping can be modified in the nested
SWAN run.

2.4. Modeling procedure

This study was organized to simulate wave character-
istics in two stations in the Persian Gulf by means of
artificial intelligence-based methods and also numerical
modeling. Dealing with ML-based models, ANN, SVR

and ELM models have been taken under consideration.
The models were trained using near-surface wind speed
as an input variable, and significant wave height was con-
sidered as the target variable. ERA-Interim wind data
from ECMWF were obtained as input variable and Buoy
records at Assaluyeh and Bushehr stations were used as
the target variable for themodel training and testing pur-
poses. In the three-layer ANNmodel, the main elements
of the network including a number of neurons in the
hidden layer, activation function, and training algorithm
were set as 2, sigmoid, and Levenberg-Marquardt back-
propagation algorithm, respectively. The sigmoid activa-
tion function is the most common type function in use
for the hidden layer while the hidden layer data are trans-
formed to the output layer by means of a linear function.
A number of neurons in the hidden layer were obtained
through a trial and error procedure prior to any seri-
ous modeling. It is noticed that the ANN model can
be trained using different algorithms such as optimiza-
tion techniques including swarm-based algorithms (e.g.
bee algorithm, cuckoo, and imperialist competitive algo-
rithms).However, the Levenberg-Marquardt algorithm is
among themost common types and fastest techniques for
training ANN models (Alizadeh, Shabani, et al., 2017).
The SVRmodel was developed according to its library in
MATLAB and the default values were set for the model.
However, other kernel functions such as Gaussian func-
tion can be tried as the default kernel function is linear.
Similar to the ANN model, the ELM model components
of a number of hidden neurons and activation func-
tions were set as 10 and sigmoid, respectively. On the
other hand, SWAN was used for numerical modeling
feeding with bathymetry and wind data as input. Due
to deep water conditions at the location of wave Buoys,
the model calibration was carried out using white cap-
ping coefficient. Other parameters were initiated with the
default values. In this regard, a two dimensional model
at the non-stationary state and spherical coordinate were
developed. The coarse model was initiated with a spatial
resolution of 0.1 times 0.1 degrees and a computational
time step of 30 minutes. For the nested SWAN run, spec-
ifications of the spatial and temporal resolution were
higher to achieve higher accurate simulations. To do that,
the building blocks have been calibrated gaining local
conditions but still, whitecapping was considered as the
main factor because of governing deepwater conditions
(Pallares et al., 2014). However, the temporal resolution
of themodel in the nested gridwas assumed about 10min
and also the spatial grids were constructed with half of
the coarse resolution grid as 0.05. Finally, outputs of the
different models are evaluated at the two stations. The
modeling procedure can be summarized as a flowchart
presented in Figure 2.
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Figure 2. Flowchart of the study.

Table 2. Wave results for Bushehr and Assaluye ports.

Bushehr Port Assaluye Port

RMSE MAE R2 RMSE MAE R2

ANN 0.3 0.22 0.75 0.34 0.25 0.2
ELM 0.29 0.21 0.75 0.34 0.25 0.21
SVR 0.34 0.24 0.71 0.35 0.25 0.24

3. Results and discussion

3.1. ML-basedmodels

Severalmodels using theML approachwere developed to
estimate wave height in two stations in the Persian Gulf.
In this regard, 6-hourlywind datawere employed as input
variables for the models’ development. Three different
types of ML have been constructed and trained with the
available wave measurements. 70% of the data set were
applied to train the models, and 30% remained as test-
ing data. The performance of different models during the
testing period is given in Table 2.

According to Table 2, the ELMmodel is superior over
the ANN and SVR models for both stations. Moreover,
the models provide more accurate predictions for wave
height in Bushehr Port compared with Assaluye Port. On
the other hand, results of statistical analysis during 2008
indicate that wind waves in Bushehr Port have higher
average and extreme values. Generally, the performance
of all the models (ANN, ELM, and SVR) is near to each
other. It means, trying with different ML-based models

with similar input variables or similar methodology does
change the efficiency of the proposedmodels remarkably.
The results of different models versus measured values of
wave height in Bushehr Port are depicted in Figure 3.

Regarding Figure 3, a relatively high correlation
among the observed and estimated values of wave height
can be observed. For all the three models, the high values
of the determination coefficient (R2 >0.7) demonstrate
the efficiency of the developed models for wave height
estimation. However, it is clear from the figure that these
models underestimate the wave height in the station. For
example, the ELM estimation of the wave with a height
of 2.5 does not reach 2m. A similar comparison for the
other models can be derived. The outputs of the models
for Assaluye Port are illustrated in Figure 4.

The results in Figure 4 show a relatively low corre-
lation between observed and estimated values of wave
height. Moreover, the models underestimate wave height
in the range from average to high values. A comparison
between the performances of the models in two stations,
it can be found that the models are frequently superior in
Busher Port than Assaluye Port in terms of mean abso-
lute error (MAE) and root mean square error (RMSE),
and R2 as well. These results have been obtained while
for both stations, the models’ input variable and specifi-
cations were the same. Thus, for wave height estimation
in Assaluye Port, more actions should be taken under
consideration to improve the models’ predictions. The
ML-based models in Assaluye Port have deficiency espe-
cially in predicting extreme values while they predict
the extreme value of 2m about 1m. According to Fig-
ures 3 and 4, it is obvious that the ANN and ELM have
a roughly similar performance and also a range of sim-
ulations as their vertical axis indicating predicted wave
height are the same. On the other hand, the SVR model
has a frequently lower value of predicted wave heights
which implies it generally underestimates wave height for
both locations. All in all, it can be derived that the ELM
model slightly outperforms the other ML-based mod-
els explored in this study. Considering the ELM model
as the model with the best performance, the time series
of wave height for measured and predicted values are
illustrated for Busher Port in Figure 5 to provide more
comparisons. It is noticed that the time series forecasts
are depicted only for ELM model simulations as it out-
performs the SVR model. Moreover, its predictions are
almost the same as the predictions obtained from the
ANNmodel.

In Figure 5, it is observed that the ELM model gen-
erally provides a reliable estimation of wave height from
low to average and average to high values of the target
variable. Moreover, it has the same distribution and vari-
ation of the original data. In other words, the highest
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Figure 3. Predictions of ML-based model for wave height in Bushehr Port.

Figure 4. ML based models’ predictions for wave height in Assaluye Port.
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values of wave height for measured and predicted mod-
els are related to the same time. It is of great interest in
wave simulation. Thus, the ELM model provides sound
predictions forwave height in Bushehr Port. However, for
extreme values, slightly underestimation can be found for
the ELMmodel. A similar illustration is given for Figure 6
in Assaluye Port.

The results of Figure 6 reveal that the ELM model
in Assaluye Port generally overestimate low and aver-
age values of wave height while it underestimates the
high values. Also, the predictions in some points show
some inconsistency with the measured values. Therefore,
it is recommended to include more input variables to
improve the model efficiency. Moreover, applying data

pre-processing or post-processing of the model outputs
can be helpful to achieve better predictions of the wave
height in the region.

3.2. Numerical model

The second approach to simulate significant wave height
is the SWAN model using based on finite difference
numerical method to discrete wave action balance
equation. The model was first to run on the whole
domain in a coarse resolution, and the nested model
obtained from that was used to finer resolution model-
ing. Moreover, due to wide variation in the bathymetry
of the study area, the calibration for each station may

Figure 5. ELM outputs for wave height in Bushehr Port.

Figure 6. ELM outputs for wave height in Assaluye Port.
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differ as the source term can be varied, or due to vari-
able conditions, different Whitecapping coefficient is
required to apply for each station. The nested SWAN
was run for two stations during 2008. Half of the data
were used for the model calibration, and the 50% rest
of the data were used in the verification period. Aside
from Whitecapping coefficient which employed as the
main variable for the model calibration, the other dis-
sipation coefficient explained in source terms such as
depth induced breaking and bottom friction were sup-
posed as the model defaults. The results related to signif-
icant wave height simulated by the model against mea-
sured data and for verification period are illustrated as
Figure 7.

As observed in figure 7, good agreement and con-
sistency can be found among measured and simulated
wave heights at both stations. However, the results for
the Bushehr station showed a higher correlation than
the results in Assaluyeh. The scatter plot depicting the
results for Bushehr station has a coefficient of determi-
nation higher than 0.8 in which it represents a high cor-
relation between measured and simulated wave height.
For the other station, the coefficient is less than 0.5 that

shows the model falls to estimate wave height accurately.
Generally, it can be found that the model for Assaluyeh
station underestimates wave height, especially for peak
waves. For example, the wave with a height about 2.5m
is estimated at less than 2m. A similar conclusion for
Bushehr station can be derived but the difference between
measured and simulated peak waves in this station is fre-
quently lower than the other station. To provide more
insights on the computed values for the numerical mod-
els, Figure 8 gives simulated wave height for the verifica-
tion period against measured wave height based on their
temporal order.

According to Figure 8, simulated waves at Bushehr
station have good agree of similarities with those of
the corresponding measured wave heights. However, the
general trend indicates that the simulated waves slightly
overestimate recorded waves by the Buoy. On the other
hand, wave height at Assaluyeh station are higher than
those of the simulated values. The model underestima-
tion for this station is more highlight for peak waves than
themean values. Overall, SWANmodel provides suitable
estimations for both stations even though some improve-
ment on themodel should be carried out to achievemore

Figure 7. Simulated wave height versus measured wave in Bushehr and Assaluyeh.

Figure 8. Illustration of simulated and measured wave heights based on their temporal order.
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Table 3. Performance of the numerical wave model for the two
stations.

Station RMSE MAE R2

Bushehr 0.273 0.205 0.815
Assaluyeh 0.289 0.217 0.485

reliable results. Moreover, comparing the results for dif-
ferent stations shows high spatial variability in the model
performance where for some points the model underes-
timates and for the other points it overestimates wave
height. To provide a quantitative analysis of the model
performance and compare it with the ML-based mod-
els, Table 3 gives the results of error measures for the
numerical model at both stations.

Regarding Table 3, the model has roughly similar
performance for both stations in terms of RMSE and
MAE while the values of coefficient of determination
differ from each other significantly. Thus, considering
R2 as the only criterion for evaluating the performance
of the model is not reliable, and some other measures
should account for it. However, model deficiency for
extreme values may change the coefficient of determina-
tion remarkably while the model provides suitable esti-
mations for other values. Comparing the performance
of the numerical model with those of ML-based mod-
els reveal that the numerical model outperforms the
ML-based models in terms of coefficient of determi-
nation. However, the difference is not remarkable in
terms of RMSE and MAE but the numerical model
slightly has lower RMSE and MAE than the ML-based
models. Therefore, the results of ML-based models and
the numerical model are comparable and they can be
employed alternatively based on the purpose of the study
and available datasets.

4. Conclusions

Sound prediction of significant wave height is consid-
ered as a key element for the design and construction
of coastal protection structures, marine transportation,
and offshore industry. In this study, three different mod-
els including ANN, ELM, and SVR as well as the
SWAN model as a numerical approach are developed.
In this regard, ML-based models were trained using
ERA-Interim wind data near the station and wave data
recorded by the Buoys. To establish the numerical model,
bathymetry and near-surface wind components from the
same source as the ML-based models were employed
for the model calibration. For the ML-based model
and numerical model, 70% and 50% of the datasets for
two stations of Bushehr and Assaluyeh in the Persian

Gulf were used for the model training and calibration,
respectively.

Comparing the results of the differentML-basedmod-
els indicated that ANN, ELM and SVR models generally
provide similar predictions for both stations. However,
the ELM slightly outperforms the others. The ML-based
models in Bushehr Port provide reliable predictions for
wave height and good consistency with the observed val-
ues. However, for the Assaluye Port, the models are not
as accurate as desirable andmore actions should be taken
under consideration in order to improve the model effi-
ciency. The models for Busher Port predict low to high
values of the wave height with acceptable efficiency but
still, they underestimate extreme values. For the other
station, the models overestimate low to average values
and underestimate extreme values. Therefore, themodels
for both stations have a deficiency in predicting extreme
values. In this regard,more effective input values and also
linking thesemodels with data pre-processing techniques
can be considered as efficient.

Simulations obtained from the numerical model
demonstrated that the model has a suitable capability to
provide sound estimations of the wave height for both
stations. For the Bushehr, the model during the verifica-
tion period has relatively low values of root mean square
error and mean absolute error and also high correlation
all indicating the efficiency of the model. Moreover, the
model properly simulated extreme values even though
for some cases there was small inconsistency. However,
for the Assaluyeh station, the model has a relatively low
value of root mean square error and also mean abso-
lute error roughly the same as those of computed for
the Bushehr station whereas it has a low value of the
coefficient of determination. Therefore, for the Assaluyeh
station, it can be derived that even though the model
gives appropriate estimations of wave height for the wave
ranging from low to middle, whoever, the model falls to
simulate peak wave properly with a tendency to underes-
timate extreme values. Generally, this drawback can not
be referred to as the numerical model since it may initiate
from the underestimation of high winds in ERA-Interim
reanalysis data.

Considering both numerical and artificial basedmod-
els to simulate wave height over the study area, it can be
concluded that both methods provide acceptable results
for low to medium waves. However, for peak waves,
both approaches generally tend to underestimate the
wave height and subsequently, both types of models
require improvement to catch the extreme wave condi-
tions appropriately. Moreover, the performance of both
types of models showed a wide range of variability spa-
tially. In other words, the model performance changes
from point to point alongside the study area implying



816 S. SHAMSHIRBAND ET AL.

that the models are strongly dependent on the local
conditions. Comparing the results of ML-based tech-
niques with the SWAN model revealed that their per-
formances are comparable while each model has its
advantages and disadvantages and a suitable model can
be developed following the available dataset, the pur-
pose of the study, local characteristics, and boundary
and bathymetry conditions. Generally speaking, theML-
based models require less computational efforts, fewer
input variables, and easier implementation. Therefore,
they can be realized time and cost-effective alternatives
for wave simulation in different points of sea and oceans.
On the other hand, the numerical models are more con-
sistent with the physics of the phenomena and they can
be efficiently employed to describe local characteristics,
boundary conditions and yield more insight of the target
variable relationship with other parameters. Also, with a
single run of the numerical model over the study area,
outputs can be derived for any points or regions while
in AI-based models, for each point or station, a separate
model should be run.

The findings of this study demonstrated that both
SWAN andML-basedmodels could be efficiently applied
for simulation of wave height in the coastal areas. Suit-
able estimations of wave height were achieved when
the proposed models were employed. However, due to
lack of both model in representing peak wave con-
ditions, improvements on the existing methodologies
are required to make them applicable for simulation of
wave characteristics in extreme conditions which play an
important role for many practical applications in coastal
engineering such as coastal erosion, sediment transport,
and marine transportation. Linking the ML-based mod-
els with pre-processing data techniques such as wavelet
and also post-processing of the results of the existing
numerical models with those of ML models are future
directions of this study that can be examined to enhance
reliability and accuracy of the model outputs.
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