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ABSTRACT
This research aims to model soil temperature (ST) using machine learning models of multilayer
perceptron (MLP) algorithm and support vector machine (SVM) in hybrid form with the Firefly opti-
mization algorithm, i.e.MLP-FFAandSVM-FFA. In the current study,measured ST andmeteorological
parameters of Tabriz and Ahar weather stations in a period of 2013–2015 are used for training and
testing of the studied models with one and two days as a delay. To ascertain conclusive results for
validation of the proposed hybrid models, the error metrics are benchmarked in an independent
testing period. Moreover, Taylor diagrams utilized for that purpose. Obtained results showed that,
in a case of one day delay, except in predicting ST at 5 cm below the soil surface (ST5cm) at Tabriz
station, MLP-FFA produced superior results compared with MLP, SVM, and SVM-FFA models. How-
ever, for two days delay, MLP-FFA indicated increased accuracy in predicting ST5cm and ST 20cm of
Tabriz station and ST10cm of Ahar station in comparisonwith SVM-FFA. Additionally, for all of the pre-
scribed models, the performance of the MLP-FFA and SVM-FFA hybrid models in the testing phase
was found to be meaningfully superior to the classical MLP and SVMmodels.
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Introduction

Soil temperature (ST) and its spatial and temporal
changes directly or indirectly affect the extent and direc-
tion of many processes occurring in soil (Mehdizadeh
et al., 2018) such as seed germination, root elongation,
evaporation, storage and movement of water and micro-
bial activities, nutrient cycle, and many other dynamic
processes of the soil (Beltrami, 2001; Citakoglu, 2017;
Qian et al., 2011). Soil temperature is affected by sev-
eral factors, including topography, solar radiation, air
temperature, precipitation, soil moisture content and soil
thermal conductivity, and heat transfer coefficients (Bil-
gili, 2010, 2011; Hillel, 1998). ST at various depthsmay be
either directly measured or estimated by air temperature
modeling. Therefore, methods that can provide accept-
able resultsmay be a suitable solution for estimating ST at
the needed locations as well as predicting for subsequent

CONTACT Davoud Zarehaghi davoudhaghi@tabrizu.ac.ir

months. The use of artificial neural network models has
been widely considered in recent years (Chau & Mut-
til, 2007; Cheng et al., 2005; Fotovatikhah et al., 2018;
Kazemi et al., 2018; Kim & Singh, 2014; Kisi et al., 2015;
Mazou et al., 2013; Moazenzadeh et al., 2018; Qasem
et al., 2019; Samadianfard et al., 2019; Samadianfard,
Ghorbani, et al., 2018;Wu et al., 2013; Yaseen et al., 2019).
So far, many studies have been carried out on soil tem-
perature estimation. Using the numerical method, Hanks
et al. (1971) estimated ST as a function of time and depth.
In this study, the calculated temperature difference was
1.5° C with the actual temperature. Zheng et al. (1993)
using air temperature and applying linear regression, esti-
mated ST at a depth of 10 cm under six climate types
in the United States. For ST estimation, Plauborg (2002)
offered experimental and straightforward relationships.
The outcomes revealed that the experimental model with
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a correlation coefficient of 0.98 could predict ST precisely.
Gill et al. (2006) applied SVM for ST estimation and com-
pared its results with the estimations of ANN models.
They stated that SVMmodels achieved better ST estima-
tions than ANNmodels. Sabziparvar, Tabari, et al. (2010)
used multivariate regressions for ST estimation at eight
selected meteorological stations of Iran using climatic
variables. The results indicated that RMSE varied from
2.06 to 2.75 (°C). Moreover, Sabziparvar, Zare Abyaneh,
et al. (2010) conducted a study on ST soil temperature
estimation at Zahedan and Ramsar stations using multi-
variate regression. In the best and worst cases, the cor-
relation coefficient was 0.94 and 0.64, respectively. Bilgili
(2010) compared regression and artificial neural network
models in predicting ST. A neural network with a pre-
cision of 0.998 (°C) has more exceptional performance
than regression methods. Using the artificial neural net-
work and monthly meteorological data, Bilgili (2011)
predicted ST in the next month. His results exhibited
that the neural network is a trustworthy model for pre-
dicting soil temperature. Tabari et al. (2011) investigated
the performances of ANN for estimating ST values and
stated that the estimates by ANN were in better agree-
ment with observations than those by regression meth-
ods. Tabari et al. (2015) used the neural network (ANN)
and multivariate regression (MLR) using a large num-
ber of meteorological variables and estimated soil tem-
perature of up to 100 cm depths at five stations located
at a dry desert area of Iran. The results of this study
revealed that among the atmospheric variables, average
temperature and relative humidity had the most signif-
icant effects on soil temperature. Samadianfard, Asadi,
et al. (2018) investigated the effectiveness of wavelet neu-
ral networks (WNN) for estimating ST at various depths.
Obtained results exposed that the WNN produced more
precise predictions. Additionally, they concluded that
with increasing soil depth, the estimation accuracy for
all methods reduced drastically. Sanikhani et al. (2018)
implemented monthly ST estimation utilizing extreme
learning machine (ELM), ANN and M5 Model Tree.
Obtained results revealed that the ELM model was pro-
duced as the most precise estimations of ST compared
to the other considered models. In another study, Sihag
et al. (2019) examined the precision of MLP, Gaussian
Process (GP), Random Forest (RF) and the M5P mod-
els in estimating ST5cm at Tabriz and Ahar stations. They
only evaluated the accurateness of the considered mod-
els in estimating ST5cm and stated that MLP had more
accurate predictions than others.

Although ST is recognized as an effective variable
in environmental and agricultural practices, only a few
research works have developed data-driven forecasting
models for its prediction. By this basic recognition and

a need to perform such research in semi-arid condi-
tions, the contemporary explorations in this area have
intended to study the association among ST and other
meteorological parameters using novel and innovative
hybrid learning models such as SVM-FFA model. The
utility of such research is expected to have significant
implications in maintaining the ecological sustainability
of the environment and empowering agricultural pro-
ductivity, including a pivotal role in formulating more
strategic soil management policies by decision-makers in
the agricultural sector.

Considering those mentioned above, the purpose of
this study is to: (1) construct and evaluate MLP-FFA
and SVM-FFA models in predicting the ST at different
depths, (2) apply thementionedmodels trainedwith data
fromTabriz and Ahar synoptic stations withmeteorolog-
ical parameters, (3) evaluate differentmodeling scenarios
that represent the different combinations of meteorolog-
ical parameters established to study their contributory
roles in modeling ST at different depths in the study
region.

Materials &methods

Multilayer perceptron neural network

The artificial neural network was first presented in 1943
byMcculloch and Pitts (McClelland & Rumelhart, 1988).
Generally, the layered perceptron neural network struc-
ture consists of input, output, and hidden layers, each
with a different number of neurons. The number of the
mentioned layers is related to the nature of the considered
problem, and the number of hidden layers is selected by
trial and error procedure for minimizing the prediction
error (Firat & Gungor, 2009; Ustaoglu et al., 2008). Addi-
tionally, the effect of each variable is determined by giving
a weight to every neuron of the input layer (Ghorbani
et al., 2016) and hyperbolic-tangent sigmoid function,
Logarithmic sigmoid function, and Linear function were
utilized as the activation function for input, hidden and
output layers, as presented in equations 1–3, respectively.

f(x) = 2
1 + e−2x − 1 (1)

f(x) = 1
1 + e−x (2)

f(x) = x (3)

Support vectormachines

Support vector machine (SVM), as one of the learn-
ing methods, is resulted from statistical learning theory
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(Vapnik, 1995). The mentioned method utilizes a deci-
sion surface for splitting target classes by maximizing
theirmargins (Burges, 1998). This decision surface is typ-
ically called an optimum hyperplane and the nearest data
point to this plane are named support vectors. Notably,
these support vectors are vital elements of the training
process. The form of the SVM model is described as
following:

f(x) = wTx + b (4)

where w and b represent the coefficients of the weight
vector.

Firefly algorithm

Yang (2008) presented an optimization technique based
on the movement of fireflies and named it as ‘firefly
algorithm’ (Ghorbani et al., 2017; Yang, 2008). Fireflies
live in nature as in colonies and always a firefly with less
light travels toward the light and brilliant firefly (Gazi
& Passino, 2004). The brightness is proportional to the
distance from the source and attractiveness changes with
absorption (Fister et al., 2013).

I(r) = Is
r2

(5)

In the above relation r is the distance, Is is the intensity
of the light source, for an environment with a constant
light gain coefficient γ the intensity of light I change with
r (Fister et al., 2013).

I = I0e−γ r (6)

That I0 is the intensity of the original light.

Because the attraction of a firefly is relative to the
observed light intensity by the nearby fireflies, we can
define the charm of β as follows (Fister et al., 2013):

β = β0e−γ r2 (7)

That β0 is the charm in r = 0.
In a real implementation, the charm function β(r) can

be any descending uniform function, as in the following
general form (Fister et al., 2013):

B(r) = β0e−γ rm (8)

It should be noted that for improving the performance of
ST estimations, FFA was utilized for selecting optimized
values of the SVMparameters. So, Figure 1 shows the FFA
algorithm based on the ANNmodel.

Study area

This study was performed using data from Tabriz and
Ahar stations (Figure 2), located in East Azerbaijan
province, Iran. The mentioned province is positioned in
the range of 45◦07′ to 48◦20′ east longitude and 36◦45′ to
39◦26′ north latitude and is ranked first in the northwest
of Iran regarding agriculture production.

The meteorological variables studied in this research
are listed in Table 1. Moreover, typical earth thermome-
ters were utilized for measuring ST values at different
depths.

Table 2 depicts the statistical parameters of all data. It
comprehended from this table that T, ST and RH show
normal distributions with low skewness values. Also, the

Figure 1. Hybridization of the firefly algorithm based on artificial neural network.
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Figure 2. Location of the studied stations (URL1).

Table 1. Meteorological variables used in the proposed models.

Variables Notation

Air temperature (°C) T
Wind speed (m/s) W
Relative Humidity (%) RH
Sunshine hours (hr) SUN
ST at 5 cm below the surface (°C) ST5cm
ST at 10 cm below the surface (°C) ST10cm
ST at 20 cm below the surface (°C) ST20cm

correlation coefficients between meteorological param-
eters and ST values presented in Table 3. The air tem-
perature and relative humidity have the most significant
direct and inverse correlations with ST values, respec-
tively. Figure 3 demonstrates the ST variations at all
depths.

Table 3. Correlation coefficients between ST and meteorological
variables.

ST T W RH SUN

Tabriz ST5cm 0.957 0.506 −0.782 0.658
ST10cm 0.964 0.499 −0.783 0.656
ST20cm 0.970 0.484 −0.779 0.650

Ahar ST5cm 0.806 −0.139 −0.384 0.439
ST10cm 0.821 −0.142 −0.387 0.443
ST20cm 0.843 −0.152 −0.392 0.447

Evaluation criteria

For evaluating the prediction accuracy of the studied
models, root mean squared error (RMSE), mean absolute
error (MAE), and correlation coefficient (R) were utilized
as presented in equations 9–11. Additionally, the Taylor
diagram, which is a graphical evaluation design, was used

Table 2. Statistical characteristics of used data.

Variables* skewness Stretch index Mean Min Max Standard deviation

Tabriz T −0.21 −0.9 13.58 −13 32.2 10.26
SUN −0.78 −0.45 8.01 0 13.5 3.74
RH 0.23 −1.03 51.18 14.12 94.37 18.21
W 0.73 0.012 3.7 0 10.62 1.71

ST5cm 0.005 −1.31 17.42 −8.13 39 12.43
ST10cm −0.04 −1.32 16.51 −8.57 34.93 11.7
ST20cm −0.06 −1.33 16.19 −6.73 32.67 10.38

Ahar T −0.29 −0.82 11.67 −13.5 28.2 8.62
SUN −0.59 −0.77 7.42 0 13/6 3.91
RH 0.28 −0.48 58.21 22.62 97 15.28
W 1.21 1.24 3.25 0 15.75 1.71

ST5cm 0.095 −1.36 14.88 −5.27 35.93 11.22
ST10cm 0.48 −1.39 14.63 −5.53 32.8 10.59
ST20cm 0.004 −1.42 14.27 −4.6 30.13 9.82

*For the units see Table 1.
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Figure 3. variations of measured ST at different depths.

to confirm the accurateness of considered models. In the
Taylor diagram, several aspects can be reviewed instantly
(Gleckler et al., 2008; Taylor, 2001).

RMSE =
√∑n

i=1 (pi − oi)2

n
(9)

MAE =
∑n

i=1 |pi − oi|
n

(10)

R =
∑n

i (oi − ō)(pi − p̄)√∑n
i=1 (oi − ō)2

∑n
i=1 (pi − p̄)2

(11)

Where pi is the ith predicted value by models, oi is the
ith observed value and n is the total number of sample
data.

Results and discussion

In the current research, five input arrangements based on
meteorological parameterswere assembled and evaluated

Table 4. Defined input arrangements for ST estimation.

Structure Input parameters Output parameters

1 T(t-a) ST5cm, ST10cm, ST20cm
2 T(t-a), RH(t-a) ST5cm, ST10cm, ST20cm
3 T(t-a), RH(t-a), SUN(t-a) ST5cm, ST10cm, ST20cm
4 T(t-a), RH(t-a), SUN(t-a), W(t-a) ST5cm, ST10cm, ST20cm
5 T(t-a), RH(t-a), W(t-a) ST5cm, ST10cm, ST20cm

to determine whether the proposedMLP-FFA and SVM-
FFA hybrid models were capable of data-driven tools for
modeling the soil temperature at different depths with
one and two days delay (Table 4). It should be noted
that in the case of one day as delay, the current values
and in the case of two days as delay, the current and
previous correspondent values were implemented. Also,
note that the input combination (1) has employed the
most highly correlated variable but as a single input only,
whereas input combination (2) has incorporated the two
most highly direct and inverse correlated variables and
input combination (3) has utilized the threemost relevant
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variables. Likewise, input combination (4) has used all
variables to model the ST data. The ideal combination
of these model inputs aimed to produce accurate mod-
els that represented themost substantial variables, as well

as a carefully selected combination of these variables to
check their influence on the testing performances.

In all models, we followed the notion that there is no
rule of thumb for that the universal way the training and

Table 5. The results ofmodelingwithMLP, SVM,MLP-FFA and SVM-FFA for Tabriz and Ahar stationswith
a delay of one day at different depths.

Train Test

Station Output parameter Best model R2 MAE (˚C) RMSE (˚C) R2 MAE (˚C) RMSE (˚C)

Tabriz ST5cm MLP5 0.92 2.58 3.34 0.95 2.38 3.07
MLP-FFA5 0.97 1.55 1.93 0.97 1.66 2.18
SVM1 0.92 2.61 3.33 0.95 2.55 3.15
SVM-FFA1 0.97 1.68 2.18 0.97 1.59 2.15

ST10cm MLP1 0.93 2.25 2.91 0.96 1.90 2.45
MLP-FFA1 0.99 0.97 1.28 0.98 1.23 1.58
SVM1 0.93 2.25 2.92 0.96 1.91 2.48
SVM-FFA1 0.96 1.71 2.21 0.98 1.43 1.85

ST20cm MLP5 0.95 1.71 2.25 0.96 1.54 2.01
MLP-FFA5 0.99 0.90 1.11 0.99 0.92 1.17
SVM1 0.95 1.79 2.34 0.97 1.61 2.03
SVM-FFA1 0.97 1.35 1.73 0.98 1.10 1.33

Ahar ST5cm MLP3 0.71 4.63 5.75 0.77 4.94 6.05
MLP-FFA3 0.91 2.39 3.16 0.85 3.81 4.64
SVM4 0.76 4.26 5.32 0.73 5.17 6.45
SVM-FFA4 0.91 2.11 2.80 0.84 3.29 4.83

ST10cm MLP4 0.88 2.89 4.12 0.78 4.38 5.49
MLP-FFA4 0.91 2.39 3.08 0.84 3.68 4.51
SVM4 0.78 3.80 4.80 0.76 4.59 5.75
SVM-FFA4 0.91 2.00 2.67 0.75 3.43 5.11

ST20cm MLP3 0.78 3.68 4.67 0.82 3.45 4.36
MLP-FFA3 0.84 2.96 3.75 0.87 3.24 3.95
SVM4 0.81 3.23 4.12 0.79 4.00 5.08
SVM-FFA4 0.92 1.79 2.41 0.75 0.72 4.88

Table 6. The results ofmodelingwithMLP, SVM,MLP-FFA and SVM-FFA for Tabriz and Ahar stationswith
a delay of two days at different depths

Train Test

Station Output parameter Best model R2 MAE (˚C) RMSE (˚C) R2 MAE (˚C) RMSE (˚C)

Tabriz ST5cm MLP4 0.93 2.37 3.08 0.94 2.55 3.26
MLP-FFA4 0.98 1.31 1.66 0.98 1.29 1.71
SVM4 0.94 2.27 2.95 0.94 1.61 3.33
SVM-FFA4 0.96 1.73 2.26 0.97 1.74 2.36

ST10cm MLP1 0.92 2.40 3.11 0.96 2.10 2.63
MLP-FFA1 0.98 1.30 1.70 0.98 1.41 1.89
SVM4 0.95 1.99 2.60 0.95 2.15 2.64
SVM-FFA4 0.98 1.25 1.63 0.98 1.16 1.63

ST20cm MLP3 0.95 1.68 2.22 0.96 1.58 2.12
MLP-FFA3 0.99 0.89 1.11 0.99 0.90 1.15
SVM4 0.95 1.64 2.17 0.96 1.72 2.21
SVM-FFA4 0.98 1.01 1.31 0.98 0.88 1.31

Ahar ST5cm MLP3 0.73 4.59 5.66 0.74 5.20 6.34
MLP-FFA3 0.92 2.37 3.06 0.82 4.09 5.03
SVM4 0.75 4.39 5.46 0.72 6.25 6.59
SVM-FFA4 0.84 3.32 4.00 0.81 3.84 4.60

ST10cm MLP1 0.68 4.72 5.82 0.77 4.64 5.63
MLP-FFA1 0.82 3.52 4.37 0.86 3.42 4.47
SVM4 0.77 3.92 4.93 0.75 4.66 5.89
SVM-FFA4 0.80 3.37 4.20 0.79 3.77 4.73

ST20cm MLP3 0.78 3.62 4.47 0.82 3.84 4.71
MLP-FFA3 0.85 2.92 3.62 0.87 2.85 3.80
SVM4 0.80 3.34 4.23 0.78 4.09 5.18
SVM-FFA4 0.88 2.53 3.10 0.86 3.00 3.69
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testing data partitioned. For example, the study of Kurup
and Dudani (2002) used a total of their 63% of data for
model development while Pal (2006) applied 69%, Sama-
dianfard et al. (2013) and Samadianfard et al. (2014) used
67% of total data to develop their models. So, the cur-
rent utilized data parted into training (70%) and testing
(30%). In other words, meteorological data of 2013 and
2014 (total of 730) implemented for training the consid-
ered models, while the correspondent data of 2015 (total
of 365) utilized for testing them. It is imperative to note

that trial and error procedures implemented for find-
ing the optimal structures of the models. This followed
the fact that there is not any definite verified process
for indicating the ideal number of hidden neurons and
parameters, and these are typically selected in an iterative
manner (Deo & Sahin, 2015, 2017).

Additionally, after examining the different train-
ing algorithms and transfer functions, the Levenberg-
Marquardt algorithm and the sigmoid transfer function
were selected for the current research. Various kernel

Figure 4. Scatterplots of the estimated-observed ST values by best models with a delay of one day at different depths.
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functions have been analyzed and the optimumkernel for
each input combinationwith optimized hyperparameters
was selected based on the error functions. The obtained
error meters are presented in Tables 5 and 6.

As can be seen from Tables 5 and 6, a comprehensive
evaluation has been carried out for revealing the capa-
bilities of the mentioned hybrid models using several
statistical meters such as R2, MAE and RMSE indices. So,
in the case of predicting ST5cm at Tabriz station, SVM-
FFA1 and MLP-FFA4 with RMSE values of 2.15°C and

1.71°C produced better results in the case of one and two
days delay, respectively. Also, they improved the accura-
cies of standalone SVM and MLP models with 31.75%
and 47.55%, respectively. However, somehow the reverse
trend has been seen in predicting ST5cm at Ahar sta-
tion. In this case, MLP-FFA3 and SVM-FFA4 with RMSE
values of 4.64°C and 4.60°C, respectively, predicted ST
values more precisely than standalone MLP and SVM
models with one and two days delay. Also, the improve-
ment percentage of MLP and SVM models were 23.31%

Figure 5. Scatterplots of the estimated-observed ST values by best models with a delay of two days at different depths.
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and 30.20%, respectively. Thus, it can be comprehended
that MLP-FFA4 and SVM-FFA4 with the same meteo-
rological parameters of T, RH, SUN and W provided
superior predictions of ST5cm at Tabriz andAhar stations.
Comparing these obtained results with findings of Sihag
et al. (2019) shows that the RMSE values of MLP-FFA4
and SVM-FFA4 (1.71°C and 4.60°C) are lower than the
best accurate models of Sihag et al. (2019) (MLP with
RMSE of 3.26°C and 6.33°C). So, MLP, GP, RF and the
M5P models in estimating ST5cm are not recommended.
Additionally, in the case of predicting ST10cm, it can be
revealed fromTables 5 and 6 thatMLP-FFA1, SVM-FFA4
(Tabriz station) and MLP-FFA4, MLP-FFA1 (Ahar sta-
tion) in the case of one and two days delay and with
RMSE values of 1.58°C, 1.63°C, 4.51°C, and 4.47°C pre-
dicted ST values more accurately than standalone MLP
and SVM models with different input combinations. In
other words, they improved the prediction accuracy of
standalone MLP and SVM models by 35.51%, 38.26%,
17.85%, and 20.60%, respectively. Conclusively, MLP-
FFA1 which only uses the input parameter of T has been
selected as the precisemodel in predicting ST10cm at both

studied stations. Finally, in predicting ST20cm at Tabriz
station, it can be found from Tables 5 and 6 that MLP-
FFA5 and MLP-FFA3 with one and two days delay and
having the RMSE values of 1.17°C and 1.15°C, respec-
tively, predicted ST values with lower error values than
standaloneMLP and SVM and other hybrid models with
different input combinations. ThementionedMLP-FFA5
and MLP-FFA3 in the prediction of ST20cm at Tabriz
station reduced the RMSE values of correspondent stan-
dalone MLP models by 41.79% and 45.75%, respectively.

Moreover, at Ahar station,MLP-FFA3 and SVM-FFA4
with one and two days delay, respectively, predicted
ST20cm values more precisely than standalone MLP and
SVM models. In other words, the improvement rates of
standalone MLP and SVM models, in this case, were
9.40% and 28.76%, respectively. MLP-FFA3 with input
parameters of T, RH, SUN and SVM-FFA4 with input
parameters of T, RH, SUN, and W in the case of two
days delay presentedmore accurate predictions of ST20cm
values than other hybrid models of MLP and SVM with
different input combinations. As a remarkable point, it is
clear that forth input combination with parameters of T,

Figure 6. RMSE bar graph for ST prediction with one day delay.

Figure 7. RMSE bar graph for ST prediction with two days delay.
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RH, SUN, and W is in the majority for selecting as the
best input combination for ST predicting at both studied
stations. The importance of these factors in estimating
soil temperature as the inputs of the model considered.
The following graphs (Figures 4 and 5) show the disper-
sion scattering points at a depth of 5, 10 and 20 cm than

modeling with best MLP, SVM andMLP-FFA, SVM-FFA
models.

Moreover, the comprehensive comparison between
the results of all studied models with one and two days
as delay revealed that the accuracy of the best models
in the case of two days as delay were higher than the

Figure 8. Taylor diagrams (with a delay of one day).
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correspondent models with one day as delay except for
ST10cm at Tabriz station. This may be related to the fact
that using previous values of meteorological parameters
can be useful in increasing the accuracies of the studied
models.

Comparing the obtained results with findings of
Samadianfard, Asadi, et al. (2018) showed that MLP-
FFA1 with one day delay and MLP-FFA3 with tow days
delay had better performances in comparison with the

best model WNN models in estimating ST10cm and
ST20cm, respectively. But in the case of ST5cm, the accu-
racy of WNN in the study of Samadianfard, Asadi, et al.
(2018) was higher than the best FFA integrated model in
the current study.

For additional assessing the accuracy of the estab-
lished models, Figures 4 and 5 present a scatter plot of
observed and predicted ST values. Obviously, the R2-
value for all panels exposes the higher accuracy of the

Figure 9. Taylor diagrams (with a delay of two days).
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hybrid models, which agrees with previous results in
Tables 5 and 6. Also, Figures 6 and 7 display three-
dimensional bar graphs of the RMSE produced by
studied hybridmodels analyzed using different combina-
tions of meteorological parameters. Agreeing with earlier
results interpretations, the predicted ST values at dif-
ferent depths discovered a superior effectiveness of the
hybrid models. Additionally, errors produced by hybrid
models were expressively lower than those of the classical
models (by 9.40% to almost 45.75%).

Besides, Taylor diagrams were implemented for
exploring the accurateness of hybrid models (Figures 8
and 9). In Taylor’s diagrams, the distance from the ref-
erence green point is an amount of the centered RMSE
(Taylor, 2001). Therefore, an accurate model is selected
based on the distance of the correspondent point to the
green one. It is clear from Taylor’s diagrams that MLP-
FFA and SVM-FFA models provided the most precise
predictions than standalone MLP and SVMmodels.

As it is clear by an overabundance of statistical param-
eters and graphical evaluation, it is convincing that the
accuracy of the MLP-FFA and SVM-FFA models far sur-
passes the non-optimized models. Therefore, FFA cer-
tifies that the hybrid model can avoid any premature
convergence of process, which is likely to maximize the
ability of the hybrid MLP-FFA and SVM-FFA models.
According to statistical and graphical evaluations, MLP-
FFA and SVM-FFA were found to be a sufficient tool
for predicting soil temperature values using meteorolog-
ical parameters as the inputs and can be used as prac-
tical models with a high degree of applicability for ST
estimation.

Sensitivity analysis

For investigating the influence of input parameters on the
ST prediction, the RMSE and R2 evaluation criteria uti-
lized for different groupings of input variables. For this
purpose, the SVM model in predicting ST10cm with a
delay of one and two days selected for sensitivity anal-
ysis (Tables 7 and 8). Each model confirmed the extents
to which the eliminated variable would affect the model
accuracy. As it is clear from Tables 7 and 8, the pre-
cision of the SVM model decreased if each of T, RH,
SUN, and W input parameters removed in the model-
ing. Furthermore, it comprehended that T has the most
significant effect in increasing the prediction accuracy.
In other words, eliminating T caused a sharp increase in
RMSE value in all studied conditions.

Additionally, as the limitations of the current study, it
should be noted that the used dataset was related to two
Tabriz and Ahar stations, Iran. Therefore, the mentioned
stations have approximately similar climates. Thus, it

Table 7. Effect of removing input variables on the SVM model
accuracy for predicting ST10cm for Tabriz and Ahar stations with
a delay of one day

Tabriz Ahar

Model Input parameters R2 RMSE (˚C) R2 RMSE (˚C)

1 All 0.94 2.56 0.76 5.75
2 Remove T 0.71 6.15 0.43 8.65
3 Remove SUN 0.94 2.57 0.73 6.16
4 Remove RH 0.94 2.59 0.76 5.83
5 Remove W 0.93 2.58 0.76 5.83

Table 8. Effect of removing input variables on the SVM model
accuracy for predicting ST10cm for Tabriz and Ahar stations with
a delay of two days.

Tabriz Ahar

Model Input parameters R2 RMSE (˚C) R2 RMSE (˚C)

1 All 0.95 2.64 0.75 5.89
2 Remove T 0.71 6.17 0.42 8.70
3 Remove SUN 0.94 2.72 0.72 6.33
4 Remove RH 0.94 2.70 0.74 5.95
5 Remove W 0.94 2.65 0.74 5.94

would have been better if extra stations with different
environments were tested for examining the accuracy of
implemented methods.

Conclusions

Soil temperature as one of the main characteristics of the
soil affects many aspects of life, especially the distribu-
tion of plants, animals, biological activities, and water
movement in the soil. Furthermore, soil temperatures are
useful in cases such as the length of growth, the spread
of plant diseases, the readability of the soil water, the
growth and development of roots. The determination of
models that can accurately estimate the temperature of
different soil levels is essential for agricultural research.
In the present research, we tried to estimate ST values
at various depths of 5, 10, and 20 cm using the MLP,
SVM, and their hybrid version with a firefly optimization
algorithm (MLP-FFA and SVM-FFA). The meteorologi-
cal parameters of Tabriz station have been gathered, and
five diverse groups were prepared with one and two days
delay. The results attained exposed that in the case of
using one day delay for the depths of 5, 10 and 20 cm,
the most precise models were SVVM-FFA1, MLP-FFA1,
MLP-FFA5 (with RMSE values of 2.15˚C, 1.58˚C, and
1.17˚C) at Tabriz station and MLP-FFA3, MLP-FFA4,
MLP-FFA3 (with RMSE values of 4.64˚C, 4.51˚C and
3.95˚C) at Ahar station, respectively. Additionally, in the
case of using two days delay for the depths of 5, 10
and 20 cm, the most precise models were MLP-FFA4,
SVM-FFA4, MLP-FFA3 (with RMSE values of 1.71˚C,
1.63˚C and 1.15˚C) at Tabriz station and SVM-FFA4,
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MLP-FFA1, SVM-FFA4 (with RMSE values of 4.60˚C,
4.47˚C, and 3.69˚C) at Ahar station, respectively. More-
over, it can be comprehended from obtained results that
the hybrid models of FFA (i.e. MLP-FFA and SVM-FFA)
produced a substantial decrease in error metrics com-
pared to the standalone MLP and SVM models. In con-
clusion, the acquired results endorsed the adequacy of
the hybrid MLP-FFA and SVM-FFA models and pointed
out the efficiency of the FFA algorithm for soil tempera-
ture estimations. Future work can be done for examining
the effects of different optimization algorithms on the
accuracy of MLP and SVM models for ST estimation at
different climates.
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