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,e buckling instability of long slender piles in soft soils is a key consideration in geoengineering design. By considering both the
linear shaft friction and linear lateral stiffness of the soft soil, the buckling behaviors of a tapered friction pile embedded in
heterogeneous soil are extensively studied. ,is study establishes and validates an analytical model to formulate the equilibrium
equations and boundary conditions and then numerically solves the boundary value problem to obtain the critical buckling load
and buckling shape by using softwareMatlab.,e effects of boundary conditions, tapered ratio, stiffness ratio, friction ratio, lateral
stiffness, and shaft friction on the buckling behavior of the friction pile are extensively explored. ,is study demonstrates that the
buckling load decreases with the increase of friction ratio of the linear shaft friction. ,ere exists an optimal tapered ratio
corresponding to themaximum dimensionless buckling load in the tapered friction pile with linear shaft friction.,e result means
that the linear shaft friction should be considered in designing the tapered friction piles in heterogeneous soils. ,e results also
have potential applications in the fields of growing of tree roots in soils, moving of slender rods in viscous fluids, penetrating of
fine rods in soft elastomers, etc.

1. Introduction

Tapered friction piles have the advantages of small settle-
ment, fast construction speed, and high economic benefits
and have been widely used in road and bridge engineering at
present. Piles are often subjected to large axial compressive
loads from the road and bridge and can buckle, even when
embedded inside an soft elastomeric matrix [1–4]. In recent
years, buckling behaviors have drawn considerable attention
in microtubules [5], fiber-reinforced composites [6], pipe-
lines on seabeds [7], plant roots growing in soil [8], packaged
DNA in viruses [9], silicon nanowire attached to a soil
substrate [10], and coil tubing in oil-field operations [11].
Because slender piles are prone to buckling and instability, it
is a key problem in geotechnical engineering design. Es-
pecially when the foundation soil is very soft and the pile is

slender, the compressed pile is prone to destabilization
under the action of axial force, and it is necessary to analyze
the destabilization [12]. In addition, in the engineering
design of piles, it is generally assumed that the buckling
instability of piles is not considered when they are fully
embedded, but this general design principles are no longer
valid when the cross-section of piles has a high bearing
capacity or stress.

In the field of buckling behaviors of piles, a lot of research
work has been carried out in-depth [13–21]. Modeling the
interaction between embedded piles and soils is very crucial in
the analysis of pile stability and dynamic behaviors [22, 23].
,e classical method is to assume that the effect of elastic
foundation on the pile embedded in it is simplified to a series
of springs along the pile length [24]. Winkler foundation
model byHetenyi has been widely used in buckling analysis of
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pile subjected to lateral loads from the soil foundation [24].
Based on the Winkler foundation model, Davison et al. ex-
plored the stability in the pile-soil system under various
constraints [25, 26]. Reddy and Valsangkar used the energy
method to analyze the buckling of piles and obtained the
bearing capacity of piles [27]. An elastic Winkler foundation
with spring stiffness varying linearly with depth was estab-
lished to explore the stability of a pile and the bearing capacity
of the pile and buckling modes were presented [28]. Chen
et al. used the cusp catastrophe theory, investigated the sta-
bility of a pile under various boundary conditions, and ob-
tained the critical load for the pile buckling [29]. A buckling
analysis method for fully embedded single pile in elastic
foundation under axial load based on modified Vlasov
foundation model is proposed, and the numerical results
illustrate that the medium stiffness has significant influence
on the buckling behaviors [30]. In order to study the stability
of the pile partially embedded in elastic foundation, the soil
modulus was assumed to have power distribution along the
length of piles [31]. In order to study buckling behaviors of
piles in liquefied foundation for the seismic design, a non-
linear Winkler foundation model was established and solved
numerically [32].

In the previous studies, the transfer of the axial load
along the direction of the pile is not considered, and it is
considered that the compressive load is unchanged
throughout the body of pile. However, this assumption is
only applicable to short end-bearing pile. In fact, the tan-
gential resistance has some influence on the buckling of
friction piles. So far, little work has considered the axial
friction in pile-soil system. ,e effect of the friction force on
the buckling load of the embedded pile was analyzed based
on the Winkler foundation model [33]. Buckling analysis of
piles with constant shaft friction has also been investigated in
detail by other different methods [34]. Recently, buckling
behaviors of tapered piles attracts much attention [35–37].
Lee studied and analyzed the buckling behavior of end-
bearing piles and gave the influence of tapered ratio and
section shape on the buckling behavior of piles [36]. Lee also
explored the behaviors of buckling of tapered piles with
constant shaft friction in heterogeneous soils by assuming
linear lateral stiffness and found that there exists an optimal
tapered ratio for a maximum buckling load factor [37].

Previous studies have assumed that the shaft friction
resistance is constant, which is obviously not suitable for
piles in heterogeneous soils. In current research studies, the
statistical theory and random field are usually considered to
describe the complex heterogeneous property of soil [38]. To
simplify the theoretical formulation, both linear lateral
stiffness and linear lateral friction resistance are assumed,
and the stability of a tapered friction pile in heterogeneous
soils is studied by establishing a theoretical model in this
paper. ,is study will focus on exploring the effect of the
friction ratio of the linear friction on buckling behaviors in
the tapered friction piles in heterogeneous soils. Firstly, the
theoretical model is established, and the equilibrium
equation and boundary conditions of the fully embedded
tapered friction pile are derived. ,en, the boundary value
problem is solved numerically by using software Matlab.,e

results show that this method is very effective in analyzing
the buckling behavior in the pile-soil system. In this paper,
the influence of various geometric parameters and material
properties, including boundary conditions, tapered ratio,
stiffness ratio, friction ratio, lateral stiffness, and shaft
friction, on the buckling behavior of fully embedded tapered
friction piles is fully discussed.

2. Theoretical Model and Formulation

Figure 1(a) schematics the fully embedded vertical tapered
pile with length L and square cross-section in an inhomo-
geneous soil. ,e pile is assumed to be homogeneous and
elastic, and the side length of the cross-section in the pile
varies longitudinally.

A linear function for the geometry of the pile is con-
sidered as

T(x) � 1 + (m − 1)
x

L
􏼔 􏼕, (1)

in which the tapered ratio m is defined as the ratio of the
bottom side length wb to the top side length wt of the pile.
,rough simple geometric analysis, the side length at any
position of the pile can be described as

w(x) �
2we

m1
1 + m2

x

L
􏼒 􏼓, (2)

where we is the side length at the middle of the pile,
m1 � m + 1, and m2 � m − 1.

Similarly, the perimeter u and moment of inertia I at any
position of the pile are, respectively, expressed as

u(x) �
2ue

m1
1 +

m2

L
x􏼒 􏼓,

I(x) �
16Ie

m4
1

1 +
m2

L
x􏼒 􏼓

4
,

(3)

where ue � 4we and Ie � (w4
e/12) are the perimeter and

moment of inertia of the cross-section at the middle of the
pile, respectively.

For fully buried piles, the lateral stiffness of the soil
can be expressed by elastic Winkler foundation. In this
paper, it is assumed that the horizontal coefficient of
subgrade reaction of the soil increases linearly with
depth. A linear function for the lateral stiffness of the soil
is considered as

H(x) � 1 +(n − 1)
x

L
􏼔 􏼕, (4)

in which the stiffness ratio n � (kb/kt) in the formula is
defined as the ratio of the horizontal coefficient of subgrade
reaction kb at the bottom to the horizontal coefficient of
subgrade reaction kt at the top of the pile.

,e horizontal coefficient of subgrade reaction of the soil
at any depth is estimated as

k(x) �
2ke

n1
1 +

n2

L
x􏼒 􏼓, (5)
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where ke is the horizontal coefficient of subgrade reaction of
the soil at midpoint of the pile length, n1 � n + 1, and
n2 � n − 1.

,e tangential interaction between pile and surrounding
soil is described by unit shaft friction, which is defined as the
tangential frictional force acting on the side surface of the
pile per length. A linear function for the unit shaft friction is
also defined as

G(x) � 1 +(s − 1)
x

L
􏼔 􏼕, (6)

where s � (fb/ft) is the friction ratio, in whichfb andft are
the unit shaft frictions at the bottom and top of the pile,
respectively.

,e coefficient of unit shaft friction at any depth can be
easily estimated as

f(x) �
2fe

s1
1 +

s2

L
x􏼒 􏼓, (7)

where fe is the coefficient of unit shaft friction at midpoint
of the pile length, s1 � s + 1, and s2 � s − 1.

As shown in Figure 1(b) of the free-body diagram of the
pile, the ordinary differential equations for equilibrium of
the element can be obtained:

dN

dx
+ fu � 0,

dV

dx
+ kwy � 0,

dM

dx
− V + N

dy

dx
� 0,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(8)

in which N is the axial force, V is the shear force, and M is
bending moment on the cross-section of the pile. ,e
bendingmoment can be expressed by deflection of the pile as

M � EI
d2y
dx2,

(9)

in which E is Young’s modulus of the pile which is assumed to
be constant. By substituting equation (9) into equation (8), the
equilibrium governing equation of the pile can be obtained as

EI
d4y
dx4 + 2E

dI

dx

d3y
dx3 + E

d2I
dx2 + N􏼠 􏼡

d2y
dx2 − fu

dy

dx
+ kwy � 0.

(10)

According to equation (8), the axial force of the pile can
be calculated as

N � P − 􏽚
x

0
fu dx. (11)

Inserting the shaft friction in equation (7) and perimeter
in equation (3) into equation (11) leads to

N � P −
4feue

s1m1
x +

s2 + m2

2L
x
2

+
s2m2

3L2 x
3

􏼒 􏼓. (12)

To facilitate discussion, the following dimensionless
variables and parameters are introduced:

x �
x

L
,

y �
y

L
,

κ �
we

L
,

α �
L

λ
,

β �
uefeλ

3

πEIe

,

b �
BL2

π2EIe

,

(13)

where x represents the dimensionless vertical position of the
pile, y represents the dimensionless horizontal position of
the pile, κ represents dimensionless side length of the pile, α
represents the dimensionless characteristic length, b rep-
resents the dimensionless buckling load of the pile, β rep-
resents the dimensionless friction resistance of the soil, and λ
represents the dimensionless stiffness between the pile and
the soil, defined as λ �

������
EIe/ke

5
􏽰

.
,en, the equilibrium equation (10) can be rewritten as

12m2
2

1 + m2x( 􏼁
2 +

π2m4
1b

16 1 + m2x( 􏼁
4 −

πm3
1α

3β
4s1 1 + m2x( 􏼁

4
⎡⎣

· x +
s2 + m2

2
x
2

+
m2s2

3 x
3􏼒 􏼓􏼕

d2y
dx2

+
d4y
dx4 +

8m2

1 + m2x

d3y
dx3 −

πm3
1 1 + s2x( 􏼁α3β

4s1 1 + m2x( 􏼁
3

dy

dx

+
m3

1 1 + n2x( 􏼁α5κ
4n1 1 + m2x( 􏼁

3 y � 0.

(14)

Combining with boundary conditions, buckling loads
can be obtained by solving the equilibrium equations above.
In practice, the constraint at the pile top is generally weak,
and the moment and shear force are assumed to be zero.
,erefore, the constraint at the pile top can be treated as free
end. For the pile end, there are three typical cases in projects.
When the soft soil is underlain by rock and the piles have
large rock-socketed depth, the displacement and rotation
angle at the pile end are generally constrained. In this
condition, the constrain at the pile end is often treated as
fixed end. For piles with small rock-socketed depth, only the
displacement is generally constrained, and the constrain at
the pile end should be treated as the hinged end. For the pile
end embedded in the soft soil, the constraints of the pile end
are generally weak and could be treated as free ends. In this
paper, the three kinds of boundary conditions mentioned
above are considered: free end, pinned end, and fixed end. At
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the free end of the pile, both bending moment and shear
force are zero. At the top of the pile, the boundary condition
is described as

d2y
dx2 � 0,

d3y
dx3 +

π2m4
1b

16
dy

dx
� 0, at x � 0.

(15)

At the bottom of the pile, the boundary condition is
derived as

d2y
dx2 � 0,

d3y
dx3 +

π2m4
1b

16 1 + m2( 􏼁
4 −

πm3
1α3β

4s1 1 + m2( 􏼁
4

⎡⎣

· 1 +
s2 + m2

2
+

m2s2

3
􏼒 􏼓􏼕

dy

dx
� 0, at x � 1.

(16)

For the pinned end of the piles, the boundary condition is

y � 0,

d2y
dx2 � 0.

(17)

For the fixed end of the piles, the boundary condition is

y � 0,

dy

dx
� 0.

(18)

,e critical axial stress of friction piles varies with dif-
ferent positions. ,e dimensionless buckling stress ζb can be
defined as

ζb �
π2N

AE
, (19)

in which A � (4AeT
2
x/m

2
1) and Ae � w2

e . Using equation (8),
buckling stress can be derived as

ζb �
π4m1

4s2r 1 + m2x( 􏼁
2 πm1b −

4
s1
α3β x +

s2 + m2

2
x
2

􏼒􏼢

+
s2m2

3 x
3􏼓􏼕,

(20)

in which sr represents the slenderness ratio, defined as
sr � (L/

�����
Ie/Ae

􏽰
).

3. Results

3.1. SolutionMethod. ,e equilibrium equation (14) and the
associated boundary conditions (15)–(18) present the
boundary value problem for buckling of taped friction piles
in inhomogeneous soils. To obtain the buckling load and
buckling shape of the pile, the bvp4c solver module inMatlab
is used to solve the eigenvalue problem. To validate the
mathematical formulation and numerical method, the taper
ratio m is set to be 1 to degenerate the solution in this study
to the solution for the buckling of the uniform pile of Gabr
[12]. Figure 2 shows the buckling load factors for three
different end conditions obtained by using the model of
Gabr et al. and this study, for m � 1, n � 1, s � 1, we � 1m,
E � 28.5GPa, ke � 7MN/m3, and fe � 35 kPa. ,e results

P

Pb

Wb

Wt

L Sq
ua

re
 p

ile

In
ho

m
og

en
eo

us
 so

il

y

x

f (x)

k (x)

(a)

y

N

M
Vx

dx fu kwy

V + dV M + dM

N + dN

(b)

Figure 1: Schematics: (a) tapered friction piles in inhomogeneous soils with linear shaft friction and linear lateral stiffness; (b) free-body
element.
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show that the solution agrees well with Gabr’s solution,
which validates that the proposed model and solution
method are suitable for investigating the buckling behaviors
of the friction piles in soft soils.

3.2. BucklingBehaviors. In this section, the buckling load and
buckling shape in the pile-soil system under various geo-
metric andmaterial conditions will be explored. In parametric
study, typical geometric and material values commonly used
in engineering are chosen. In the calculation, the parameters
are set as we � 1m, λ � 2.5m, E � 10GPa, ke � 10MN/m3,
and fe � 100 kPa [12]. ,erefore, the approximate range of
related dimensionless quantities are estimated as follows:
m � 0−1, n � 0−5, s � 0−5, α � 0−10, and β � 0−0.05. It is
noted that κ depends on α.

Figure 3 illustrates the dependence of buckling load on
the friction ratio s of the pile under different end restraints. It
is noted that s< 1 represents the softening of foundation
with depth, and s> 1 represents the hardening of foundation
with depth. ,e results show that the buckling load b de-
creases with increasing friction ratios regardless of end
restraint, and the dependence of the buckling load on the
friction ratio is most significant when s is small. ,e results
also show that the end conditions have a great influence on
the buckling behaviors of the pile. For the stronger con-
strained pile, the buckling load is larger.

Figure 4 illustrates the influence of tapered ratio m on
dimensionless buckling load b under several friction ratios s.
,e results show that no matter what the friction ratio is, the
value of the dimensionless buckling load increases significantly
at first and then decreases with the increase of the friction ratio.
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Figure 2: ,e buckling load factors of the uniform friction piles obtained by using the model of Gabr [14] and this study, for three different
boundary conditions: free-free, free-pinned, and free-fixed.
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,ismeans that there exists an optimal tapered ratiomopt when
other variables remain unchanged. When the tapered ratio is
the optimal value, the buckling load of the pile reaches the
maximum.,erefore, when other variables remain unchanged,
this model can be used to obtain an optimal tapered ratio,
which canmaximize the flexural and buckling bearing capacity
of piles. ,e optimal tapered ratio depicted by the green point
decreases with the increase of the friction ratio.

,e dependence of buckling load s on the stiffness ratio
of the frictional pile is shown in Figure 5. It is noted that n> 1
corresponds to soil softening with depth and n< 1 corre-
sponds to soil hardening with depth. Similar to the effect of
friction ratio, the dependence of the dimensionless buckling
load on stiffness ratio n is dominant in the cases with a
relatively small n. ,e study also shows that the dimen-
sionless buckling load b increases significantly with the
decrease of friction ratio s regardless of stiffness.

,e influence of dimensionless characteristic length α on
dimensionless buckling load of tapered friction pile is shown in
Figure 6. With the increase of characteristic length α, the value
of dimensionless buckling load shows an increasing trend as a
whole, and this general trend is observed under different
friction ratios. When the characteristic length α is small, the
results show that the influence can be neglected, indicating that
the pile body is rigid. When the characteristic length α is large,
this effect is very important, which means that the flexural
stiffness of piles is lower than that of soil cushion. Some groups
reported similar buckling behavior [35].

Figure 7 presents the influence of axial friction ratio on
the dimensionless buckling load of tapered friction piles.
Since the typical values of surface friction between soil and
pile in engineering are between 0 kPa and 100 kPa, β can be
estimated to be approximately 0∼0.05 [12]. ,e results
show that the relationship between dimensionless buckling
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b
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s

Figure 3: Dependence of the dimensionless buckling load b on the
friction ratio s of the linear shaft friction, for three different
boundary conditions: free-free, free-pinned, and free-fixed.
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s = 5

1

0.1

m = 0.5, α = 5, β = 0.05,
κ = 0.08 with λ = 2.5m

1.8

2.1

2.4

2.7

3.0

3.3

b

1 2 3 4 50
n

Figure 5: Dependence of the dimensionless buckling load b on the
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ratios s.
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6 Advances in Civil Engineering



load b and friction is nearly linear.When β � 0, whichmeans
that the axial load of the pile remains unchanged along the
pile body, the pile can be considered to be end-bearing.
When β increases, which means that the load transferred
along the pile body increases, and then will lead to the
increase of the buckling load. It is also shown that the
friction ratio has large impact on the dimensionless buckling
load, where the slope the dimensionless buckling load sig-
nificantly increases with the increase of the friction ratio.

Figure 8 illustrates the first buckling shapes of the ta-
pered friction pile for free-fixed boundary and three dif-
ferent friction ratios s. It is shown that the buckling shapes
for different friction ratios are approximately the same,
although their dimensionless buckling loads are really dif-
ferent. ,is result implies that the buckling shape may be
insensitive to the friction ratio for the piles with the same
end constrains.

Figure 9 illustrates the dimensionless buckling stress
distribution on the cross-section of tapered friction piles
along the direction of depth, for four different friction ratios.

It is shown that the location of maximum buckling stress
varies with the friction ratio. For s � 0.1, 0.5, and 1, the
maximum buckling stress occurs at the top of tapered piles,
although there is the largest cross-sectional area. While for
s � 5, the maximum dimensionless buckling stress occurs at
the cross-section in the middle section of tapered piles.
According to the results of buckling stress, a criterion can be
established to judge whether buckling is the main consid-
eration in the pile design. Generally speaking, in pile en-
gineering design, it is necessary to ensure that the buckling
load is larger than the compressive load corresponding to the
material yield stress in order to avoid buckling failure.

4. Conclusion

In this paper, the buckling behaviors of a pile in the het-
erogeneous soil with linear shaft friction and linear lateral
stiffness are theoretically investigated. A theoretical model
for investigating the stability of the tapered friction piles in
soft soils is established and validated. ,e eigenvalue
problem associated with fourth-order differential equilib-
rium equation and three different boundary conditions is
formulated, and the solution module bvp4c in software
Matlab is utilized to numerically solve the boundary value
problem and obtain the critical buckling load and buckling
shape. By comparing with the classic Gabr’s solution, the
model proposed in this paper is proved to be applicable to
predicting the buckling behaviors of tapered friction piles.

Based on the proposed model and solution method, the
effects of boundary conditions, tapered ratio, stiffness ratio,
friction ratio, lateral stiffness, and shaft friction on the
buckling behaviors of the friction piles with linear shaft
friction are extensively explored. ,e results show that the
friction ratio greatly affects the buckling load, and the
buckling load increases with the decrease of the friction
ratio. Furthermore, there exists an optimal tapered ratio
corresponding to maximum dimensionless buckling load in
the tapered friction pile with linear shaft friction, which is
crucial in geoengineering design. ,is study demonstrates
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that the linear shaft friction should be considered in de-
signing the tapered friction piles in inhomogeneous soils.
,e results also have potential applications in the fields of
growing of tree roots in soils, moving of slender rods in
viscous fluids, penetrating of fine rods in soft elastomers, etc.
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