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ABSTRACT Passive reconstruction methods such as traditional multi-view stereo are capable to accurate
reconstruction results. However, the depth calculation of multi-view stereo encounters significant difficulties,
especially when the corresponding points have some degree of inaccuracy or unreliability. In this paper,
we make use of geometric and shading cues information in the multi-view stereo approach to construct a
robust energy function, which is also effective to optimize the depth information provided by multi-view
stereo. This work improves the accuracy of point cloud depth. we evaluated our algorithm in the famous
DTU datasets, and established our own dinosaur datasets. All the data is collected by mobile devices under
natural light condition, while the reconstruction results are completed and accurate.

INDEX TERMS Depth optimize, MVS, shading cues.

I. INTRODUCTION

The main goal of computer vision is to automatically per-
ceive the world from different dimensions and scales (e.g.
2D images and 3D objects). With the advancement of com-
munication technology, researchers have proposed a large
number of valid and efficient 3D reconstruction approaches
in recent years. They have been applied in many fields such
as autonomous driving, virtual reality, augment reality etc.

As a popular reconstruction method, multi-view
stereo [1]—[5] reconstruction recovers 3D information on the
basis of the parallax principle which estimates the posi-
tional deviation from the corresponding 2D image points.
The method is able to achieve qualified reconstruction.
Multi-view stereo (MVS) technology is mainly divided into
voxel-based [6]—[8], multiple depth map fusion [9], [10] and
spatial patch-based approaches [3]. The resolution of the
voxel grid limits the accuracy of voxel-based approaches and
makes them difficult to handle large-scale scenes. The depth
map fusion approaches calculate the depth value of all input
images and make these depth value aggregated in the same
coordinate system.

Although the stereo method is relatively mature, image
patching or regularization is still essential in reducing
noise and improving robustness. This results in shape from
shading(SFS) [11], which is a method for recovering 3D

The associate editor coordinating the review of this manuscript and
approving it for publication was Shuhan Shen.

112348

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

information from a single image. SFS mimics the human
visual system which estimates depth only from a given
reflection model that correlates image brightness with local
surface normals. Even SFS can produce fine reconstruction
results under the premise of regularization, serious problems
are caused by textured regions or, equivalently, by non-
constant albedo. Because the actual lighting situation is not
known, this method is not adapted in the scenes with varying
illumination. Therefore, it is necessary to improve the quality
of reconstruction by combining the advantages of SFS and
MVS.

Many recent works [12]-[15] initialize depth information
from MVS and use shadow variations to optimize local
depth and capture local details. So we use this framework.
Additionally, we improve it by combining geometry and
shading-based data terms into a single optimization scheme.
In the region where the image gradient changes sharply,
greater weight is exerted to alleviate the sharp image gradient.
The main contributions of this paper are:

1. The paper presents a framework that combines
multi-view stereo and shading cues in order to reconstruct
a fine 3D model. The optimization is done with various
weighting parameters.

2. This optimization framework enhances local details
and removes outliers through specific weight parame-
ters, which balances the accuracy and completeness of
reconstruction.
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Il. RELATED WORK

A. MULTI-VIEW STEREO

The multi-view stereo algorithm only relies on images and
reconstructs an accurate 3d model based on some reasonable
assumptions. For example, the photo-consistency and gra-
dient consistency assumptions are excellent condition. The
mainstream local matching models [16], [17] still depend
on the local neighborhood which is correspondingly esti-
mated for a given region. These models usually twist the
local patch into a common plane or use a matching win-
dow of the applicable geometry to prevent serious error.
As the pioneer of multi-view stereo, Okutomi and Kanade [1]
present the groundbreaking method, which accumulates sum
of squared difference (SSD) cost values from different stereo
pairs in a set of multiple images and select the depth with
the lowest cumulate cost. Since then, many multi-view stereo
approaches have been proposed. Furukawa and Ponce [3]
approach uses a strategy of matching image patches, relaxing
the requirement to find a correspondence for each pixel and
filtering the image based on visibility. Tola et al. [4] solve
the problem of high-resolution image sets by establishing
a unique response point between matched pairs of images.
Hirschmueller [18] and Galliani et al. [19] create multiple
nearest neighbor subviews for each view. They calculate the
loss value between the two different views and merge it into
robust global loss value for optimization. Besse et al. [20]
balance the photo-consistency constraint and introduce an
explicit regularization term. Our work combines the advan-
tages of their researches to optimize each views separately.
For the surface representation, we use the surface fitting
method proposed by Semerjian [13]. This approach uses bicu-
bic patches to define a surface per view which has continuous
depth and normals.

B. SHADING CUES

Combining multi-view geometry and shading cues in 3D
reconstruction has been studied for a long time. However,
the research of this area is stagnated by the limitation of
the experimental environment and hardware. Recently, the
method of finding shading cues in multi-view stereo and opti-
mizing has been used by relevant researchers. Wu et al.[12]
assume that the object is a Lambert surface and only care
about general illumination. This work simulates incident
lighting through a spherical harmonic function. Jin et al.[21]
assume a Lambert object with a constant albedo and pro-
pose a joint variation method to estimate the shape, normal,
and light source. Langguth et al. [15] also assume that the
Lambert object has a constant albedo and combine the image
gradient to optimize the framework based on the Retinex [22]
hypothesis. Mauer et al. [14] propose a variational method
to estimate depth, illumination and albedo by combining
shape from shading and stereo. Our shadow cues term is
similar to Langguth et al. [15], we calculate the albedo in
advance based on the Retinex hypothesis, and use a spherical
harmonic function to estimate the incident ray.
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Ill. MODEL FRAMEWORK

A. CAMERA SETTING

In this section, we introduce our model framework which
integrates multi-view stereo with shading cues. Specifically,
we firstly determine our camera settings and the parameter-
ization of the problem, then describe our model framework,
including a detailed discussion of all terms. Fig.1 shows the
framework of our entire work.

Let us start by defining the underlying camera setting.
It consists of n cameras under perspective projection Ci(i €
I,...,n—1), we use ith image as our example to be the
main image located at the origin of the coordinate system.
Furthermore, we assume that the projection matrices for all
cameras are known as

P = K[RIt]. 1

The terms K, R, t represent intrinsic matrix, rotation
matrix, translation vector, respectively. [R|t] is the camera’s
extrinsics matrix, which determines the camera’s pose infor-
mation.

f 0 oy
0 0 1

denote the corresponding calibration matrix that contains
the focal length f and the principal point 0 = (0Oyy, Ouy)T,
formalua (3) shows 3D points projection process. We can
express the perspective projection mj : R? — € of a 3D
points Xy = (X, Y, Z)T € R onto the image plane Q2 C R2
of the ith camera as:

PiiiX +Pi12Y +Pi13Z + Pi1a

Pi31X +Pi32Y +Pi33Z + Pjsa 3)
Pi2iX 4+ Pi2nY +Pi3Z+Piu |-

Pi3iX+PiznY +Pi33Z+Piz

mi(Xy) =

By projecting the observed scene, we obtain n images which
are denoted by |; : ©j — R3. Fig.2 shows the specific param-
eterization and perspective projection. Although there are N
cameras, we use two views to express our camera model for
simplicity. First we determine a main view |; and randomly
select a two-dimensional point X, in image lj, we get the
3D point Xy of Xy by multi-view epipolar geometry. Then,
we project the Xy onto j view and can get Pj(Xy, Zi(X,)). The
formula (4) that converts world coordinates to normalized
pixel coordinates is:

x = K(RX+1). “
Therefore, we calculate the coordinate from Xy as following
P4, Zi(x) = KRR (K% Ziw) —t) + ). (5)

Here,i € N,j € N and v € V denotes index of each image |,
index of neighbourhood of |; and index of each points of Ij,
respectively.
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FIGURE 1. Framework:reconstruction depth optimization flow chart. Firstly, the initial depth information and pose information are calculated using
structure from motion and semi-global matching algorithm. Secondly, the illumination parameters are estimated and the image is fitted using a spherical
harmonic basis function. Our framework calculates the residual of the data item and the shading cues item, and optimizes the depth information by

minimizing the residual to get the final model.

B. ENERGY FORMULATION

1) STEREO ENERGY

In multi-view stereo reconstruction, the photo-consistency is
a scalar function used to measure the visual compatibility
of a three dimensional reconstruction point Xy with a set of
images N . A simple photo-consistency function at the 3D
points is defined as follows : Xy is projected into each of the
visible images, and the similarity of the image texture near
their projections is calculated as photo-consistency. In our
geometric term, we consider the photo-consistency, i.e. the
brightness constancy of projected surface points. Therefore,
the photo-consistency energy function is:

[ s
Ei,o(xv, Zi(x)) = 3 Z i) = (PO, ZiG))Il5,  (6)
j=1

where |j represents the intensity value of the main view, |j is
the intensity value of the adjacent views of |;. The selection
of adjacent views is based on the matched feature number
between the main and adjacent views. The gradient consis-
tency is an important assumption for calculating the energy
function.

N
1
Eixy(xv, Zi(xv)) = - E 19 (i) — I QiPOWDIE. ()
=1

where J (li(%,)) and J (Ij(Pj(Xy, Z (Xv))) are the Jacobian
of li(xy) and Ij(Pj(Xy, Zi(x))), respectively. || - ||[F denotes
the Frobenius norm. we use a balancing factor y to give
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FIGURE 2. Camera parameterization and 3D projection in each image
plane. Here we take image |; as the main view and look for the projection
of each point for image |; in the neighbor view.

different weights to equation (6) and equation (7). Since
photo-consistency constraint is accustomed to match the
neighboring image set, the robustness is very weak. Because
of this, we select the 3x3 patch centered on the projection
point in the adjacent image set, and calculate the average light
intensity value of the patch to improve robustness.

Finally, in order to get better robustness of assumption
w.r.t. outliers and occlusions, we robustify the geometric
energy function by applying an auxiliary penalty term [14]:

Py o) = D) = VS + €2, ®

where € > 0 is a small constant to ensure differentiability.
In summary, we get the energy function of the final stereo
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FIGURE 3. The shading cues information graph of image |; and the image
I; formation process.

data item:
Ei,g(Xv, Zi):/ (I—-y)-®goEio+y - q’g,xyEi,xdei~ 9
Q;

Here, the choice of y is to better control the weight of E; o
and Ej xy. The experiment demonstrates that this approach is
robust and has a positive impact on the results.

2) SHADING CUES ENERGY

Wau et al. [12] propose an effective irradiance environment
mapping model based on the Legendre polynomial principle.
According to the principle of human vision, the natural envi-
ronment light is mapped into a spherical harmonic model.
An effective lighting mode is the basis of reconstructing
3D shapes from images. Similar to the work in [8] which
assumes the reconstruction object is lambert surface and the
diffuse reflection intensity changes slowly with the direction
of the normal vector. The irradiance map and the variation
characteristics are described by the quantitative formula (10).
The irradiance [E(n) is a function of the surface normal vector
n of the object. This function obtains the analytical expression
of the illumination irradiance by integrating the illumination
energy of the upper hemisphere:

E(n) = f L) - (@' - ndw, (10)
Qi

where w is the negative incident light direction, n is the

unit surface normal, L(w) stands for the incident radiance.

By multiplying the albedo of the object by the irradiance of

the illumination, the irradiance (the gray value) Rj(Xy) of the

surface of the object is obtained :

Ri(x) = / p(xv) - E(mdo, (11

Qi

where p(Xy) is the albedo at X,. Langguth et al. [15] also use
the irradiance of Lambert surface to estimate the illumination
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parameters. The spherical harmonic function is an effective
tool to process such signals:
b2
ROW) = p(%) - Y ImHm((x,)), (12)
m=1

where Hp, are the spherical harmonics basis functions, and |y,
are the corresponding spherical harmonics represented in the
spherical harmonics basis, b — 1 denotes spherical harmonics
basis’s order. We must solve for the p(Xy), Hm, Im and the unit
normal vector n of Xy. The spherical harmonics basis function
Hm are paramatrized of a unit normal vector n of Xy, and are
defined as:

Ho = 1.0 Hy = Ny
Hy =n; H3 =ny
Hy = nyny Hs = nyn;
He = 2n —n2 — ni Hy = nyny

Ho = (3n% — nf,)ny
a2 2 2
Hir = (4n; — ny — npny
Hiz = (2n; — 3n; — 3n)

Hiy = (N2 — ni)nz

Hiz = (4n; — ng — no)ny
His = (ng = 3m)nk  (13)

We use a third-order spherical harmonic function, result-
ing in 16 lighting coefficients and 16 spherical harmonic
basis functions. The calculation of lighting parameters |y
and albedo p(Xy) uses the idea of Langguth et al. [15]. Iy
is computed ahead of surface optimization using the coarse
initial surface model derived from basic stereo. Then albedo
p(Xy) of Xy is calculated by Retinex-based assumption. The
main advantage of this method is that the albedo is fixed as a
constant term and the albedo is separated.

In order to separate the albedo from the irradiance function,
we take the logarithm of the function and estimate its gradient

Vo) Yo ImVHm((X)
POV 3B Hmn(A4))

According to the Retinex-based assumption: small gradients
are caused solely by lighting. Therefore, formula(14) can be
changed as:

V log(Ri(%)) = (14)

er)nz=1 ImVHm(R(X))
S ImHm(A(X)
Here, we consider the final shading energy function
Ei s(Xv, Zi), V log(li(x,)—V log(Ri(xy)) is the residuals gener-
ated by shading energy function. So we get our shading cues
energy function:

V log(R (%)) = (15)

VI04) Y ImVHim(R04)
i) S 1 HmAOW)

Since the albedo is locally constant, it can be seen from the
above formula that the irradiance function is only determined
by the normal and lighting coefficients of the surface.

Eis(xv, Zi) = (16)
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FIGURE 4. The reconstruction result of the fountain

p11 dataset from Strecha et al. [23] The top left if the original input image. The bottom left

is the the final output result model. The top right is the local output model only using the MVS method. The bottom right is the local result model

obtained by combining MVS and shading cues.

3) JOINT ENERGY
Many works combine different method to build a model
framework. A similar approach is used in our work.

The Retinex-based assumption contains an implicit regu-
larization that the albedo is constant in local and can be pre-
computed. So we assemble our final energy function:

E(, Zi) = ) _ aEig(x, Zi) +

veV

—
T 0 Ei,S(XV7 ZI)’
1V ()13

7

where Ejg(Xy,Zj) is stereo geometry data term and
Ei s(Xv, Zi) is shading cues data term. Our energy function
optimizes each pixel in each view.

C. FRAMEWORK OPTIMIZATION

Despite the stereo term and the shading cues term are dif-
ferent, we still use the framework of Semerjian [13] to mini-
mize the residuals generated by our energy function. Semer-
jian [13] use a bicubic surface representation that relies on
computer graphics theory. The shape of the surface depends
mainly on surface depth values, the first-order derivative of
the depth value along the x-direction, the depth value of
the first-order derivative along the y-direction and the mixed
second-order derivative of the depth value. It provides a con-
tinuous definition of depth values and surface normals that
can be applied to the framework to minimize the energy func-
tion. After determining the surface representation, we opti-
mize our framework. According to the optimization method
proposed by Zollhofer et al.[8], we establish a nonlinear least
squares problem:

E(x, Zi) = [IFMIl3, (13)
IFOQI15 = [f1(X), 2%, 30, f4 001", (19)
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where E(X, Zj) is the final energy function, and ||F(X)||%
is the vector of residuals generated by our energy. f1, f2,
f3, and f4 represent the residuals of the surface depth
value, the first-order derivative of the depth value along the
x-direction, the depth value of the first-order derivative along
the y-direction and the mixed second-order derivative of the
depth value, respectively. The optimized parameters X* are
obtained by solving the minimization problem:

x* = argmin||F(x)||3. (20)
X

To this end, we linearize the vector field F(X) around Xy using
a first-order Taylor expansion to obtain an approximation of
F(Xk+1):

F(Xk+1) ~ F(Xk) + I(Xk)dk, Ok = Xk+1 — Xk,  (21)

where J(Xk) is the Jacobian matrix of F evaluated at X.
We use this approach to transform the nonlinear least squares
problem into a linear minimization problem:

8 = argmin||F(xq) + J(x)8] |- (22)
Sk

This linear system can be solved by a variety of methods.
In the paper, we choose this equation by Gauss-Newton
method to find the best least squares solution §; :

I T IS = —Ixi) T F(Xk), (23)

where 8; is the update,J(Xk)TJ(Xk) approximately equal to
the Hessian matrix of the optimization parameters. To solve
this equation, we first initialize the Xy using pre-calculated
depth values, first-order partial derivatives, second-order
mixed derivatives, and illumination parameters, and succes-
sively compute the update 8 from Xk to Xki. In order
to solve for the linear update §;, we choose a precon-
ditioned conjugate gradient(PCG) solver to optimize all
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