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Abstract 

Continuous monitoring and automated recognition of activities performed by construction workers can 

help improve productivity measurements. However, manual methods are time-consuming and prone to 

errors; as such, they usually provide unreliable and inaccurate analyses. Therefore, an automated 

method can expedite the process of data collection and provide accurate analyses of activity recognition 

and productivity measurements. In this paper, a novel methodology is introduced to automatically 

recognize workers’ activities for evaluating productivity measurement based on foot plantar pressure 

distribution data measured by a wearable insole pressure system. Four supervised machine learning 

classifiers (i.e., artificial neural network (ANN), decision tree (DT), K-nearest neighbor (KNN), and 

support vector machine (SVM)) were used for classification performance using a 0.32s window size. 

Cross-validation results showed that the SVM classifier (i.e., the best classifier) obtained a classification 

performance with an accuracy of more than 94% and sensitivity of each category of activities was above 

95% using a sliding window size of 0.32s. The findings from this preliminary study have shown great 

potentials to use a wearable insole pressure system to collect foot plantar pressure distribution data for 

automated recognition of workers’ activities and extract activity durations for evaluating productivity.  
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1. Introduction 
Construction workplace is one of the most complex working environments because of its dynamic 

nature, and the combination of numerous resources and supply components (Behzadan et al. 2008). 

Despite these challenges in the construction industry, it is still crucial to promptly recognize 

construction activities in order to efficiently improve workers’ productivity, project performance and 

safety (Hughes et al. 2004; Pradhan et al. 2011). With the advancement in mobile technologies, 

smartphones onboard inertial measurement units (IMUs) sensors have been employed to capture human 

motion related data for activity recognition (Joshua and Varghese 2010; Akhavian and Behzadan 2016a). 

Notably, wearable IMU sensors have been used extensively not only in monitoring patients and older 

adults (Mathie et al. 2004; Kang et al. 2010), but also in recognizing construction activities for 

preventing work-related musculoskeletal disorders (WMSDs) (Nath et al. 2017; Yan et al. 2017) and 

fall injuries (Dzeng et al. 2014; Fang and Dzeng 2017). Despite these great potential applications in 

recognizing activities and health monitoring, they are invasive and may interfere with construction 

activity, and thus may reduce productivity (Guo et al. 2017).  

 

One common method used to measure a worker’s productivity is work-sampling. This method evaluates 

the relative durations of time allocated by the workers in performing various categories of work 

activities during a specific time duration (Joshua and Varghese 2010). Although the work-sampling 

approach has been widely used to measure a worker’s productivity, it has several inherent challenges 

during data collection. First, the manual methods (e.g., questionnaires, interview) of collecting data 

during specific activities are relatively tedious, time-consuming, subjective and susceptible to errors in 

analyses. Second, construction workers may feel uncomfortable in using wearable IMU sensors during 

a work-sampling activity since these sensors usually directly attached to the body by tapes or straps. 

Third, simultaneous real-time application and continuous monitoring of multiple workers may be 

difficult due to sensor calibration, synchronization, data storage, and data transfer. Given the limitations 

of these methods in work-sampling, it is necessary to develop a new method to monitor workers’ 

activities and extract activity durations to quantify workers’ productivity.  

 

Accordingly, this paper develops a novel method that can non-intrusively and continuously collects foot 

plantar pressure distribution data measured by wearable insole pressure sensors. Also, the proposed 

method not only is feasible for data calibration, data storage, and data transfer but also collects more 

objective and reliable data. In addition, it provides engineering control to minimize job site hazards by 

continuous monitoring of unsafe surface environmental conditions. Therefore, the main objective of 

this paper was to investigate the feasibility of using foot plantar pressure distribution data measured by 

a wearable insole pressure system for automated recognition of workers’ activities and productivity 

measurements. Recognizing workers’ activities are essentially a data mining approach that uses 

supervised machine learning classifiers for data training and validation. Antwi-Afari et al. (2018e; 2018f) 

proposed a method for automated detection and classification of workers’ loss of balance events and 

awkward working postures by using a wearable insole pressure system to illustrate the concept of 

collecting foot plantar pressure distribution data in their preliminary study. Ultimately, these authors 

showed the potentials of accurately detecting and classifying loss of balance events and awkward 

working postures by using time domain, frequency domain and spatial temporary data features. This 

paper extends their previous works to develop a systematic methodology for the automated recognition 

of workers’ activities, which may help estimate the time spent on each category of activity. By using 

the estimated activity durations, the productivity of each analysis can be measured.   
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2. Literature Review 
The construction industry is one of the most labor-intensive industries and hazardous occupations which 

involves several physically demanding activities such as repetitive lifting, pushing, carrying and pulling 

(Seo et al. 2016; Antwi-Afari et al. 2017b; 2018a). Consequently, construction workers’ are at high risk 

of developing WMSDs, which may reduce workers’ productivity (Gatti et al. 2014). In order to measure 

workers’ productivity, work-sampling is one of the simplest and most efficient data collection method, 

which is based on statistical sampling theory (Thomas et al. 1984). However, the data collection 

procedures are time-consuming, tedious, and prone to error since work sampling greatly depends on the 

subjective judgment of observers (Golparvar-Fard et al. 2013). As a result, there is a demand for an 

objective and automated work-sampling process for an efficient measurement of workers’ productivity.  

 

Several methods have been demonstrated to recognize workers’ activities. Vision-based methods have 

been previously investigated for activity recognition of workers in the construction realm. These 

approaches use pictures and videos from either a single or multiple cameras to evaluate workers’ 

productivity and to identify potential risk factors for WMSDs (Ray and Teizer 2012; Yan et al. 2017). 

In fact, marker-based optical motion tracking systems have been widely used because of their precision 

(Hwang et al. 2009). Similarly, markerless optical motion tracking systems have been investigated using 

either video cameras or depth cameras due to their non-invasiveness (Ray and Teizer 2012). Peddi et 

al. (2009) proposed a human pose analyzing algorithm, using a video camera for construction 

productivity estimation. While these methods have been proven to be useful in recognizing workers 

activities, they are limited by the fact that a direct line of sight is required to register the movements 

(Han and Lee 2013). 

 

Recently, wearable IMUs based sensors are gaining its popularity in recognizing workers’ activities. 

Joshua and Varghese (2010) clustered acceleration data into several patterns and identified specific 

activities from these patterns using accelerometers attached to the waist of a worker (i.e., mason). 

Similarly, Ryu et al. (2016) classified activity by analyzing wrist-worn accelerometer data and achieved 

high levels of accuracy. In addition, smartphone-based construction workers’ activity recognition 

method, which is an integration of accelerometer and gyroscope sensors, has been shown to be feasible 

(Akhavian and Behzadan 2016b). Akhavian and Behzadan (2016b) captured body movements via 

smartphones and used the collected data to train machine learning algorithms to simulate various 

activity types, where activity recognition was performed by machine learning classifiers. However, 

since they are relatively intrusive, workers are unwilling to attach them to their bodies while performing 

a task. 

 

To address these issues, this study proposes a novel and non-intrusive method for automated recognition 

of workers’ activities and productivity measurements based on foot plantar pressure distribution data 

measured by a wearable insole pressure system. Our proposed approach is characterized by its ubiquity, 

unobtrusiveness, cheap installation procedure and the ease of usability. Notably, the proposed approach 

has been widely used in other applications such as rehabilitation, sports, and clinical fields (Queen et 

al. 2007; Sawacha et al. 2009; Mickle et al. 2011; Harle et al. 2012). Different from previous studies, 

this research used a wearable insole pressure system to measure workers’ productivity and recognize 

workers’ activities—which are characterized as dynamic and physically demanding such as upright 

holding, carrying, lifting, lowering, pulling and pushing that may lead to WMSDs. To achieve this, the 

authors extended our previous developed methodology to automatically recognize and evaluate workers’ 

productivity of various construction activities. Ultimately, the findings of this research will have 

significant practical implications in the construction domain since the proposed method can be used as 

an objective measurement for workers’ productivity by simply inserting a wearable insole pressure 

system into workers’ safety boots.   
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3. Research Methods 
Fig. 1 illustrates the framework for construction activity recognition and productivity measurements 

based on foot plantar pressure distribution data as measured by a wearable insole pressure system. All 

data processing and machine learning classification were performed using Toolbox in MATLAB 9.2 

software (Matlab, The MathWorks Inc., MA, USA). The following sections discuss the detailed steps 

in Fig. 1. 

 

 
Figure 1. Framework for Construction Worker Activity Recognition and Productivity 

Measurement Using a Wearable Insole Pressure System 

3.1 Participants 
Four healthy male participants were recruited from a student population at The Hong Kong Polytechnic 

University. The participants mean age, weight, and height were 27.75 ± 3.40 years, 73.25 ± 3.30 kg, 

and 1.71 ± 0.04 m, respectively. All participants had no history of mechanical upper extremities or back 

pains, or lower extremities injuries. All participants provided their informed consent in accordance with 

the procedure approved by the Human Subject Ethics Subcommittee of the Hong Kong Polytechnic 

University (reference number: HSEARS20170605001).  

3.2 Foot plantar pressure data acquisition 
An OpenGo system (Moticon GmbH, Munich, Germany) that contained 13 capacitive pressure sensors 

within a single wearable insole was used for measuring foot plantar pressure distribution. Each insole 

system incorporates a flash memory of 16 MB and a wireless module for data transmission. A detailed 

description of proposed wearable insole pressure system has been reported in previous research (Antwi-

Afari and Li 2018g).  

 
This study involved a single visit in a controlled laboratory setting (Fig. 2). Each participant wore a 

hard hat, and a safety boot. Generally, our participants conducted laboratory simulated manual material 

handling activities performed by workers in the construction workplace. They included upright holding, 

carrying, lifting, lowering, pulling and pushing (Fig. 2). In this study, these activities were performed 

in three different categories. The first category of activity only included an upright holding task (Fig. 

2a). The second category involved lifting (Fig. 2b), carrying (Fig. 2c), and lowering tasks (Fig. 2d). In 

the third category, participants conducted pulling (Fig. 2d) and pushing tasks (Fig. 2e). In each category 

of activities, the goal of activity recognition was to differentiate between the time the participant 

spended in conducting each activity and when they were standing (i.e., idle). In all activities, a weight 

of 15 kg was loaded into a wooden box (measuring 30 × 30 × 25 cm). Prior to data collection, the 

participants were allowed to practice twice with each activity. The experiments were recorded using a 

video camcorder to provide video data annotation. The procedure of our experimental protocol was 

fully explained to the participants. Next, the participants provided their demographic data, informed 

consent, and were allowed to train each activity. The participants performed each category of activities 

for ten repetitive trials. In order to reduce fatigue, the participants were allowed to rest for 3 minutes 

between two successive trials. 
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Figure 2. Laboratory Experimental Setup: (a) Upright Standing; (b) Lifting; (c) Carrying; 

(d) Lowering; (e) Pulling (f) Pushing  

3.3 Data segmentation 
The sliding window technique was used to divide raw foot plantar pressure distribution data into smaller 

data segments (Preece et al. 2009). The sampling frequency was set at a rate of 50 Hz and then digitized 

by a 16-bit analog to digital (A/D) converter. A window size data segment of 0.32s, which correspond 

to 16 (24) data sample was used. This window size was chosen because the conversion of the time 

domain to frequency domain using fast Fourier transforms (FFT) in MATLAB 9.2 software (Matlab, 

The MathWorks Inc., MA, USA) required the window size to be a power of 2 (Akhavian and Behzadan 

2016b). A 50% overlap of the adjacent windows was considered in this research (Ravi et al. 2005).  

3.4 Feature extraction 
In order to provide input variables for the classifiers, features extraction was performed. Common time 

domain and frequency domain feature extractions have been adopted from activity classification in the 

literature (Akhavian and Behzadan 2016b; Antwi-Afari et al. 2018e; Antwi-Afari et al. 2018f). 

Specifically, mean pressure, variance, maximum pressure, minimum pressure, range, standard deviation, 

and kurtosis comprised the seven time domain features. Spectral energy and entropy were the two 

frequency domain features extracted (Bao and Intille 2004). Additionally, the current study used a 

spatial-temporal feature known as pressure time integral (Antwi-Afari et al. 2018e; Antwi-Afari et al. 

2018f).  

3.5 Classifier assessment and performance evaluation 
Supervised machine learning classifiers require dataset for training and validation. To this end, class 

labels were provided to the classifiers to generate a model that matched the input (extracted features) to 

output variables (activity category) (Ravi et al. 2005). A multilayer perceptron artificial neural network 

(ANN), decision tree (DT), K-nearest neighbor (KNN), and support vector machine (SVM) (Preece et 

al. 2009; Akhavian and Behzadan 2016b; Antwi-Afari et al. 2018e) were the four classifiers adopted 

for performance evaluation. The performance of the classifiers was made by the stratified 10-fold cross-

validation method (Cawley and Talbot 2003). The performance indicators used to evaluate the 

classifiers were the accuracy and sensitivity (i.e., correct detection of positive instances).  

4. Results and Discussion 
4.1 Category 1 activities 

The accuracy of activity recognition for this category of activities was 99.60% (SVM) followed by the 

98.60% (KNN), 97.80% (DT), and 97.10% (ANN). The mean of the discovered activity duration for 10 

trials of 5 participants during upright holding task was 120.44 seconds while the ground truth obtained 

from the recorded video of the experiment was 120.40 seconds. Moreover, the sensitivity of classifying 

the time spent during the idle and upright holding tasks was more than 99% in each case. In addition, 

discovered activity durations showed that the participants spent 70.13% in upright holding task and was 

idle in the remaining time (Fig. 3). On the other hand, the ground truth for this category 1 activities was 

70.07% during upright holding (Fig. 3). 
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Figure 3. Discovered and Ground Truth Durations Allocation Proportion in Category 1 

Activities for Productive Measurement 

4.2 Category 2 activities 
The accuracy of activity recognition for this category was 94.40% (SVM) followed by 92.10% (KNN), 

91.50% (DT), and 87.90% (ANN). Although these accuracies were lesser than category 1 activities, the 

results may still be considered desirable considering the dynamic nature and body movements of the 

category 2 activities. Notably, our results may be attributed to the fact that category 2 activities were 

conducted with similar movements with little changes in foot plantar pressure distribution data. The 

sensitivity of classifying the time spent during category 2 activities was more than 95% in each case. 

The mean of the discovered activity duration and ground truth for ten trials of 5 participants are 

presented in Table 1. Moreover, Fig. 2 depicts the time allocation proportions in percentages using our 

developed method and the ground truth. Overall, the results showed that our developed method was 

feasible for recognizing dynamic activities and the discovered durations. This is an important leap for 

automating the process of work sampling, which traditionally relies on manual observations.  

 

Table 1. Mean Durations in Category 2 Activities 

Category 2 Activities Discovered durations Ground truth durations 

Lifting 89.98 89.06 

Lowering 122.82 122.01 

Carrying 203.97 203.10 

 

 

70.13%

29.87%

Category 1 Activities: 

Discovered durations

Upright holding Idle

70.07%

29.93%

Category 1 Activities: Ground 

truth durations

Upright holding Idle
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Figure 4. Discovered and Ground Truth Durations Allocation Proportion in Category 2 

Activities for Productive Measurement 

4.3 Category 3 activities 
The accuracy of activity recognition for this category was 97.30% (SVM) followed by 95.20% (KNN), 

93.60% (DT), and 90.80% (ANN). Although these accuracies were lesser than category 1 activities, 

they were higher than category 2 activities. Additionally, the sensitivity of classifying the time spent 

during category 3 activities was more than 97% in each case. Again, our results might be attributed to 

the fact that category 3 activities were involved similar movements with little changes in foot plantar 

pressure distribution data. Table 2 presents the mean of the discovered activity duration and ground 

truth for the 10 trials of 5 participants. Further, Fig. 3 illustrates the time allocation proportions in 

percentages using our developed method and the ground truth. Collectively, the high accuracies 

achieved by the classifiers and the discovered durations substantiate that each category of activities 

creates unique patterns of foot plantar pressure distribution data that could allow the estimation of 

productivity. 

 

Table 2. Mean Durations in Category 2 Activities 

Category 3 Activities Discovered durations Ground truth durations 

Pulling 130.86 130.26 

Pushing 120.84 120.22 

19.04%

26%43.17%

11.79%

Category 2 Activities: 

Discovered durations

Lifting Lowering Carrying Idle

18.78%

25.72%42.83%

12.66%

Category 2 Activities: Ground 

truth durations

Lifting Lowering Carrying Idle
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Figure 5. Discovered and Ground Truth Durations Allocation Proportion in Category 3 

Activities for Productive Measurement 

5. Conclusions 
This paper examined a novel and non-intrusive methodology for automated recognition of construction 

activities for productivity measurements. The developed approach used a wearable insole pressure 

system to quantify foot plantar pressure distribution. Simulated laboratory experiments were conducted 

to test the feasibility and reliability of the proposed methodology by using four types of supervised 

machine classifiers (i.e., ANN, DT, KNN, and SVM) at 0.32s window sizes. Our results showed that 

the SVM classifier obtained the best results with an accuracy of more than 94% and sensitivity of each 

category of activities above 95% using a sliding window size of 0.32s. Moreover, it was found that the 

time allocation proportions between the activity durations discovered using the developed methodology 

and the ground truth conducted during the experiment demonstrated excellent agreements. The main 

contribution of this research is the development of a novel methodology for continuous monitoring and 

automated recognition of construction activities that can improve the process of productivity 

measurements. Future research should focus on investigating ways to apply the developed methodology 

for automated identification of frequencies and intensity factors (in addition to durations) for ergonomic 

risks analyses.  
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