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Abstract   

Sewer assets require regular inspection and maintenance plans to avoid any disruption due to structural 

and operational defects. Therefore, decision-makers are required to allocate budgets to enhance the 

performance of sewer manholes and pipelines. However, several municipalities confront major 

constraints when planning for rehabilitation due to restricted funds to repair all defected assets. Current 

practices focus on sewer pipelines disregarding the systematic improvement of sewer manholes. The 

objective of this research is to provide a framework to implement the Particle Swarm Optimization 

(PSO) method to reach a near optimum solution that maximizes the overall network performance (ONP), 

considering pipelines and manholes, and minimizes the total life cycle costing. The constrained problem 

can be solved by examining four different decision variables. The application of PSO in sewer 

infrastructure shall enhance current practices to systematically plan for renewals. As a result, defective 

assets are lessened, and the risk of sewage exfiltration is significantly reduced.   
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1. Introduction   

Assessing the condition of infrastructure assets is essential due to its backbone need for any urban city 

(Kaddoura 2015). Sewer systems, forming one of the most capital-intensive infrastructure systems 

(Wirahadikusumah et al. 1998), transfer sewage medium from private/public outlets (i.e., buildings, 

houses, hospitals, schools, etc.) to laterals, which are connected to main pipelines that end at sewage 

treatment plants or disposal areas. They are the ultimate low-profile infrastructure assets in spite of their 

health and environmental benefits (Kirkham et al. 2000). These systems are buried in the subsurface 

and are distributed in a maze of a complex infrastructure. Their low visibility stands a reason for their 

frequent low rehabilitation and/or maintenance (Wirahadikusumah et al. 1998). Sewers are prone to 

collapse and failure, imposing severe consequences on the surroundings (Kirkham et al. 2000) and 

resulting in costly and difficult rehabilitation (Wirahadikusumah et al. 1998). Therefore, it is paramount 

to enhance the existing sewer systems by performing renewal interventions. These interventions, in the 

form of rehabilitation or replacement, will reduce any disruptions to the environment, economy, and 

society.   

Municipalities have limited allocated budgets to improve existing conditions of their infrastructure. 

With the different infrastructure components, decision-makers should wisely allocate the required 

budgets. Optimization methods are commonly used to solve budget allocation problems in 

infrastructure asset management. Hence, this paper will establish a framework for the implementation 

of the Particle Swarm Optimization (PSO) method that will maximize sewer network performance.   

1.1 Optimization Models in Infrastructure Assets  
There are four main types of optimization algorithms that are commonly used in infrastructure: linear, 

non-linear, integer, and dynamic programming (Nunoo 2001). In the construction management domain, 

the budget allocation problem could be in the form of one or more objective functions that shall be 

minimized or maximized. However, because of limited resources and diverse requirements, the 

objective functions are subject to constraints related to money, time, manpower, etc. As a result, 

defining all possible solutions while restraining the problem could be very complex (Al-Tabtabai et al. 

1999). Typical mathematical programming tools are used for unconstrained problems and as a result 

are not applicable to constrained objective functions and very large complex problems (Wang 2013).  

However, evolutionary algorithms (EAs) have emerged as alternative methods to solve large-scale and 

complex optimization problems (Veldhuizen and Lamont 1998).  

For example, in sewer infrastructure, Lin et al. (2016) designed a sewerage rehabilitation multiobjective 

management model to prioritize sewer pipeline rehabilitation decisions. The authors used the non-

dominated sorting genetic algorithm (GA)-II to design a number of Pareto surfaces considering 

desirable rehabilitation methods and the substituted material. Three conflicting objectives were 

determined: minimizing rehabilitation costs, maximizing pipe service and minimizing traffic disruption. 

The model was conducted on a real case study and the authors claimed that it saved almost 20% of the 

rehabilitation costs determined by the experts.   

Marzouk and Omar (2013) presented a model for life-cycle maintenance planning for sewer network. 

Prior to developing a prioritization model, the authors developed a Markov chain model to predict the 

future deterioration of sewer pipelines. Next, they used a multi-objective GA model to build the 

prioritization model. Three objective functions were considered: improving the overall network, 

improving the intended network service life and reducing the present value of the life-cycle maintenance 

cost. Six different variables with different relevant states and benefits were considered: do nothing, 

routine cleaning, shotcrete, CIPP, reinforced fiberglass sliplining, and dig and replace with concrete 

pipeline.   

On the other hand, Halfawy et al. (2008) proposed an integrated approach for systemizing the sewer 

renewal planning procedure after utilizing a multi-objective GA model. The authors relied on three main 

objectives: to minimize the average condition index, minimize the average risk measure of the network 
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and minimize the total life-cycle cost. The proposed model was claimed to support short- and long-term 

planning situations as well as network-level and project-level planning.   

Furthermore, Yang and Su (2007) established a GA-based optimization model to supply an optimal 

rehabilitation plan for sewer assets. The authors considered the three most popular rehabilitation 

methods: renewal, renovation and excavation, and trenchless replacement. The cost associated for each 

method was determined by an equation that is dependent on the pipeline diameter. In addition, the 

authors considered the substitution materials in the decision making process. After applying the 

methodology on a case study, they stated that the approach could reduce the rehabilitation costs by 20% 

of the actual rehabilitation expense.  

DeMonsabert et al. (1999) utilized the integer programming method to optimize and prioritize a sewer 

rehabilitation schedule. The model was developed to choose the repair method that yielded the 

minimum present value-cost solution over a 20-year planning period with maintenance at 5-year 

intervals. The objective of the approach was to select the optimal repair strategy to minimize the total 

cost, subject to budget constraints.   

Wirahadikusumah and Abraham (2003) suggested a decision-making framework to select the 

appropriate M&R plan, based on dynamic programming in conjunction with a Markov chain model. 

Before commencing the decision-making approach, the authors designed a Markov chain-based 

deterioration curve to predict the future condition of the sewer pipelines. The decision making approach 

considered five different states from 1 to 5 for the assets, and six different alternatives corresponding to 

a specific state: no maintenance/rehabilitation, routine cleaning, shotcrete, CIPP, reinforced fiberglass 

sliplining and dig and replace with concrete pipe.   

Despite the multiple researches conducted in sewer assets, many of the models did not consider the 

overall network performance (ONP), which includes pipelines and manholes. Most of the models 

relied on optimizing the budget allocated on pipelines only. In addition, this paper will pioneer the 

application of PSO in buried infrastructure budget allocation.  

1.2 Particle Swarm Optimization  
Among the many EAs, the PSO method is easier to implement and has more competitive exploration 

and detection capabilities  (Kennedy and Eberhart 2001);    Parsopoulos and Vrahatis 2002). The PSO  

also has a faster convergence when compared to other EA methods. Several researchers have evaluated 

the performance of multiple optimization methods. For example, Koay and Srinivasan (2003) optimized 

a power plant maintenance scheduling problem using GA, Evolutionary Strategy (ES) and the PSO, and 

stated that the PSO method supplied better results and performance than GA and ES. Coello et al.  (2004) 

and Baltar and Fontane (2006) utilized four distinct optimization tools to evaluate five multi-objective 

problems and concluded that the PSO attained faster convergence; they concluded that it is well-suited 

to the multi-objective optimization problem. El-Ghandour and Elbeltagi (2017) compared five different 

optimization techniques, the GA, PSO, Ant Colony (AC), Memetic Algorithm (MA) and Shuffled Frog 

Leaping (SFL) methods, on two benchmark water networks to determine the least cost for one and the 

least rehabilitation cost for the other.  They concluded that the PSO surpassed the other algorithms in 

both test situations.  

Comparing the application of the GA and PSO methods in solving single objective problems, Jung and 

Karney (2006) evaluated the performance of GA and PSO in optimizing the sizing and the selection of 

hydraulic devices for protection, and found that both methods provided similar results. However, they 

concluded that the PSO outperformed the GA method when the same number of iterations and 

population sizes were used.   

  

PSO was inspired by the flocking patterns of birds and fish that move in swarms to search for food. As 

illustrated in Figure 1, this method commences with an initial random pool of solutions represented by 

a swarm. Each swarm encompasses a number of solutions that are known as the size of the population. 

The swarm determines the number of solutions, with each exemplified as a particle. Following an 

iterative approach, the best solution is found by considering the problem at hand.   
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Figure 1: PSO Flowchart  

  

Each particle in the swarm has a specific position. The fitness of the current position of any particle is 

evaluated according to a defined fitness function. Subsequently, the best fitness solution of each particle 

is denoted as pbest (particle best) and is archived and automatically updated once a better solution 

(position) is found. Considered as a minimization problem, the personal best of particle i in the 

subsequent step can be represented as  
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𝑝𝑏𝑒𝑠𝑡𝑖 (𝑡 + 1) =  {
𝑝𝑏𝑒𝑠𝑡𝑖 (𝑡) 𝑖𝑓 𝑓(𝑥𝑖(𝑡 + 1)) >  𝑝𝑏𝑒𝑠𝑡𝑖 (𝑡)

𝑥𝑖(𝑡 + 1) 𝑖𝑓 𝑓(𝑥𝑖(𝑡 + 1)) ≤ 𝑝𝑏𝑒𝑠𝑡𝑖 (𝑡)
                   [1] 

Among the pbest found in each iteration, the best position among all the positions is also stored for 

subsequent iterations and is described as the gbest. The 𝑔𝑏𝑒𝑠𝑡 (𝑡) = 𝑚𝑖𝑛 {𝑝𝑏𝑒𝑠𝑡!(𝑡)} is always updated 

whenever new better overall position is reached.  

The particles in the swarm are always updated by a better position in every iteration by considering 

randomized values toward some directions. These changes are calculated by using the velocity. The 

velocity of the particle relies on three mean factors: pbest, gbest and the random function. The 

evaluation scheme and the modifications repeat until the termination criteria is reached.  The 

modifications are always completed through the velocity function. Considering D elements of array A 

= (zi1, zi2, zi3,…, ziD) as the search space, the gbest describes the global best particle of a swarm and pbesti 

denotes the archived best position of the ith particle in the swarm population. Therefore, the velocity of 

the particle can be calculated according to equation 2 (Shi and Eberhart 1998). Considering the velocity 

values, the particle’s updated position is computed using equation 3 (Shi and Eberhart 1998).  

𝑣!" (𝑡+1) = 𝑤∗𝑣!"(𝑡) + 𝑐!∗𝑟!!(𝑡)(𝑝𝑏𝑒𝑠𝑡!"(𝑡)−𝑥!"(𝑡))+𝑐!∗𝑟!(𝑡)(𝑔𝑏𝑒𝑠𝑡!(𝑡)−𝑥!"(𝑡)) 

                        [2]  

𝑥!"(𝑡+1) = 𝑥!"(𝑡) + 𝑣!"(𝑡+1)                [3]  

where   

t     is the iteration;     

t+1     is the subsequent iteration;     

d    is a value from the D space ranging from 1 to D;     

N     is the total number of particles in a swarm (population size);     

i     is the particle number that ranges between 1 to N     

w      is the inertia weight that is taken as a parameter;      

xid(t)    is the current position of the ith particle in the d dimension;     

xid(t+1)   is the new position of the ith particle in d dimension     

vid(t)     is the current position of the ith particle in the d dimension;     

vid(t+1)    is the new velocity of the ith particle in the d dimension;      

pbesti    is the best position of the ith particle stored;     

gbestd    is the global best position of a swarm from among all the particles;     

r1     is a uniform random number [0,1];     

r2     is a uniform random number [0,1]; and    

c1 and c2   are acceleration coefficients.    

  

The parameter vid restrains the particle to consider its previous direction and speed, thereby allowing 

the particle to discover new areas in the search space. The cognitive learning rate c1 controls the velocity 

of the particle’s movement towards the pbest, while the social learning rate c2 controls the velocity 
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towards the gbest. Large numbers of c1 and c2 can lead to expedited particle movements toward the 

current gbest or pbest; a situation which could lead to premature convergence.   

Particles with larger vid tend to move rapidly towards the global area; but, if they are close enough to 

the global area, the global position may be ignored and they can move to alternative areas. Since the 

value of the vid impacts the converging criteria to a global optimum, the global and local searches shall 

be restrained such that the search space is limited to 𝑥!" ∈ [−𝑥!"#, 𝑥!"#], 𝑣!"# = 𝑘∗𝑥!"#, 0.1≤ 𝑘≤1. 

Nevertheless, the inertia factor w was introduced by Shi and Eberhart (1998) in order to limit the particle 

movement to new search areas. Keeping a value of w =1 will maintain the standard form of PSO. In 

general, a large value of the weight expands the range towards new areas, while lower values encourage 

the particles to search in closer range areas.   

  

2. Research Methodology  

The overall optimization model is represented in Figure 2. The main two objectives for this problem are 

ensuring that the overall sewer performance is performing above a certain threshold and that the costs 

of enhancements are minimized.  Therefore, the main two objectives are:  

• Maximizing the overall sewer network performance; and  

• Minimizing the total costs.  

This research adopts the PSO algorithm because it outperformed multiple optimization methods, as 

mentioned in the literature. Building a budget allocation problem utilizing the PSO requires a process 

to represent each particle in the swarm, setting parameters to balance the exploration in the defined 

search space and accommodate the PSO algorithm in the budget allocation problem.   

In designing a rehabilitation plan, assets in the network are subject to any type of intervention action. 

Therefore, each pipeline and manhole can be considered as a project. Each project can hold different 

types of rehabilitation actions (decision variables) throughout the considered life cycle and could have 

multiple combinations over the studied number of years.  In addition, each asset shall interact with the 

other assets in order to measure the fitness of each particle in the swarm.   



 

CIB World Building Congress 2019   
Hong Kong SAR, China  

17 – 21 June 2019  

 

Figure 2: Optimized Rehabilitation Plan Model  

2.1 Objective Functions   
Each particle in a swarm is evaluated based on a fitness function. In this research, the fitness function 

is a combination of the total cost and the ONP. The aggregation of these two parameters is based on 

weights that are user-defined. An equal importance for the two parameters will establish 50% weights 

for each. To accomplish the optimization tool, the ONP shall be maximized and the total cost shall be 

minimized, given several constraints.   

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑂𝑁𝑃 =  𝑊𝑃(
∑ 𝐶𝐼_𝑃𝑖∗𝐶𝑅𝑖

𝑘
𝑖 = 1

∑ 𝐶𝑅𝑖
𝑘
𝑖 = 1

 ) +  𝑊𝑀 (
∑ 𝐶𝐼_𝑀𝑗∗𝐶𝑅𝑗

𝑛

𝑗 = 1

∑ 𝐶𝑅𝑗

𝑛

𝑗 = 1

 )    [4]  

  

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑇𝑜𝑡𝑎𝑙 𝐿𝑖𝑓𝑒 𝐶𝑦𝑐𝑙𝑒 𝐶𝑜𝑠𝑡𝑖𝑛𝑔 (𝑇𝐿𝐶𝐶) =  
1

(1+𝑟)𝑡 ∑ ∑ 𝐶𝑡𝑖
𝑘
𝑖 = 1

𝑧

𝑡 = 1
 +

 
1

(1+𝑟)𝑡 ∑ ∑ 𝐶𝑡𝑗    
𝑛

𝑗 = 1

𝑧

𝑡 = 1

     [5] 

𝑟 =  
1+𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡 𝑟𝑎𝑡𝑒

1+𝑖𝑛𝑓𝑙𝑎𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒
− 1        [6] 

where   

r     is the real interest rate;  

z     is the period from one inspection to another (in this study it is 5 years); and  

C     is the cost of the intervention plan of pipeline i and manhole j at any time t.   
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Decisions  
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Enhancments Cost 
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Condition 

Deterioration  
Model 

Network  
Performance  

Model 
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These two functions are aggregated into a single function as follows  

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐹𝑖𝑡𝑛𝑒𝑠𝑠 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 =  𝑊𝑂𝑁𝑃(
𝑂𝑁𝑃

𝑀𝑎𝑥 𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒
)  +  𝑊𝑇𝐿𝐶𝐶(

𝑇𝐿𝐶𝐶

𝐵𝑢𝑑𝑔𝑒𝑡
)  [7] 

 where  

𝑊𝑂𝑁𝑃   is the importance weight of the 𝑂𝑁𝑃 parameter; and  

𝑊𝑇𝐿𝐶𝐶   is the importance weight of the 𝑇𝐿𝐶𝐶 parameter.  These weights are user defined. The 

most significant parameter will have the higher weight.  

  

subject to:  

  

One decision variable to be rehabilitated per asset in the study period, such that   

𝑂𝑁𝑃! ≤ 𝑀𝑎𝑥 𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒  and              [8]    

𝑇𝐿𝐶𝐶 ≤ 𝑇𝑜𝑡𝑎𝑙 𝐵𝑢𝑑𝑔𝑒𝑡                 [9]  

2.2 Particle Coding  
Particle coding is key to facilitate solving the budget allocation problem as it impacts the initialization 

of the particle, fitness computation, movement and the archiving process. In this paper, a particle is 

represented as a 2D array (n x m) to propose a solution considering pre-defined objective functions. It 

is composed of rows and columns; the rows represent the number of the assets (s) in the network, and 

the columns represent the number of years considered in the study, which is five years. Each element 

in the array is considered as a potential decision variable (q) for each asset. The decision variables 

considered in this research are listed in Table 1.  

Table 1: Decision Variables  

Decision #  

Interpretation  Example  Improvement   

Cost for the  

Pipelines  

(Adjusted)   

Cost for  

Manholes 

Average  

(Adjusted)  

0  Do nothing  Do nothing  -  -  -  

1  
Minor  

Rehabilitation   

Chemical  

Grouting and 

sealing  

Max of 1 

state  
$40/m  $40/m   

2  

Major 

Rehabilitation  

Structural Liner 

(Cured-in-place)  

Max of 3 

states  

(Marzouk 

and Omar  

2013)  

$1.77  

(/mm/m)   

$55,31.149  

(Hughes 2009)  

3  

Replacement  Replace  

Return state 

to 1 (Halfawy 

et al. 2008)  

$1943.4/m 

(Marzouk 

and Omar  

2013)  

$11,434 (Hughes 

2009)   

  

As a result, the 2D array of each particle will be represented as shown in Figure 3:  
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Figure 3: Particle Encoding  

3. Conclusions  

Infrastructure is an integral part of any urban city. Sewer, as a critical infrastructure, plays a major 

role in ensuring a safe environment. Hence, municipalities are required to preserve these assets by 

conducting regular renewal interventions. Due to the large number of pipelines and manholes, 

municipalities confront major obstacle in renewing them all. Therefore, a propoer budget allocation is 

needed to enhance current network performance. This research provided an initial step toward 

implementing the PSO method in sewers networks. This method was utilized as it surpassed many of 

the other evolutionary algorithms that were used in the same domain. This research shall be further 

implemented on an actual case study to conclude the numeral outcomes.  
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