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Abstract: Landscape transformations in rapidly urbanizing Guangdong, Hong Kong, and Macao
(GHKM) regions of South China represent the most complex and dynamic processes altering the local
ecology and environment. In this study, Land Change Modeler (LCM) is applied to land use land
cover (LULC) maps for the years 2005, 2010, and 2017, derived from Landsat images, with the aim
of understanding land use land cover change patterns during 2005–2017 and, further, to predict
the future scenario of the years 2024 and 2031. Furthermore, the changes in spatial structural patterns
are quantified and analyzed using selected landscape morphological metrics. The results show that
the urban area has increased at an annual rate of 4.72% during 2005–2017 and will continue to rise
from 10.31% (20,228.95 km2) in 2017 to 16.30% (31,994.55 km2) in 2031. This increase in urban area will
encroach further into farmland and fishponds. However, forest cover will continue to increase from
45.02% (88,391.98 km2) in 2017 to 46.88% (92,049.62 km2) in 2031. This implies a decrease in the mean
Euclidian nearest neighbor distance (ENN_MN) of forest patches (from 217.57 m to 206.46 m) and
urban clusters (from 285.55 m to 245.06 m) during 2017–2031, indicating an accelerated landscape
transformation if the current patterns of the change continues over the next decade. Thus, knowledge
of the current and predicted LULC changes will help policy and decision makers to reconsider and
develop new policies for the sustainable development and protection of natural resources.

Keywords: land use land cover; land change modeler; prediction; Guangdong; Hong Kong;
Macao; Landsat

1. Introduction

Today, urban growth represents powerful engines for economic prosperity and growth. However,
changes in land use land cover (LULC) are pervasive and subjects of great concern worldwide [1]. This
is more pronounced in rapidly growing countries, such as China [2], where urban land transactions
and local land leasing revenue have exploded sharply [3], after the opening of the economic corridor
policy in 1978. The phenomena of socioeconomic development and industrialization have resulted
in an increasing urban population, rural to urban migration, reclassification of administrative rural
zones to urban zones, and subsequent expansion of urban areas and cities in peri-urban pockets, at
unparalleled rates [2,4–6]. According to the United Nations Department of Economic and Social Affairs
Population Division (2017), China’s total urban population has increased from 11.80% (7726 (10,000
persons)) in 1950 to 58.52% (139,008 (10,000 persons)) in 2017, and is predicted to reach 76.10% by
the end of 2050 [7]. This situation has simultaneously strengthened economic localism, as built land
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produces more revenue [3]. However, these significant changes cause continuous stress on agricultural
land and other natural and semi natural resources [8–10].

In China, the fragmentation of farmland into urban fringe and loss of other natural and semi natural
resources have a strong prospective of weakening an enduring coherence of human beings and their
environment, as well as a serious threat to food security [11]. Immense anthropogenic activities have
generated many ecological and environmental issues on different spatial scales, resulting in the increased
scarcity of land resources. These include unplanned land development, employment opportunities,
the escalation of slums, and insufficient infrastructure and houses [1,2,8,12–14]. The prevailing
high dynamic economic growth, urbanization, and industrialization have posed a great challenge to
policy and decision makers to achieve the goal of sustainable development [2,6,8,15,16]. Therefore,
the modeling and future prediction of land use land cover and urban growth is a pressing need to enable
comprehensive view regarding a more competent administration of urban planning, preservation of
natural resources (such as farmland), and the espousal of long-term sustainable policies.

Recently, to better understand the functioning of the land use system, the modeling of land use
land cover change has grown rapidly in the spatially explicit scientific field [16,17]. Land change models
are simplifications of reality that offers an important means of predicting future land use land cover
change pressure points [18,19] and develop ex-ante visions of urbanization process implications [1].
Models usefully simplify the complex suite of socioeconomic and biophysical forces that influence
the rate and spatial patterns of land use land cover change and enable the estimation of the impacts
of changes in land use land cover [17,20–24]. To date, a variety of models have been developed,
and are classified into the following types: (1) machine learning model, (2) cellular based model,
(3) spatial based model, (4) agent based approaches [10,18,20,25,26], and (5) hybrid approaches [27].
The performance of different modelling tools, however, is difficult to compare because land use land
cover change models can be fundamentally different in a variety of ways [16,28,29]. Several studies
have revealed that Land Change Modeler (LCM), based on integrated multilayer perceptron (MLP)
with Markov chain (MC), is a strong model for the analysis and prediction of land use land cover
change, urban growth, and the validation of results [8,16,20,26,30,31]. This is because outputs of neural
networks, acquired through the weights of evidence technique (where a user can select and modify
the weights) [20,32,33], more effectively show the transition of different types of land cover than do
individual probabilities.

Landscape morphological and structural metrics are also used to directly compute the structure,
spatio-temporal patterns of urban change, and land use land cover change from the thematic maps.
The metrics, however, provide a better illustration and explanation of spatial heterogeneity at a particular
resolution and scale. They may give a connection among the physical structure of a landscape and urban
pattern, shape, functionality, and process [34–36]. These simple quantitative indices, i.e., landscape
metrics have also been used to interpret, asses, and verify urban models [6,10,37–42]. Herold et al.
(2003) applied landscape metrics and an urban growth model in Santa Barbara, California from 1930 to
2001 and predicted the urban growth to the years 2030. They concluded more compact growth around
existing urban cores rather than a leapfrog of urban development [37]. Aithal et al. (2013) analyzed
the land use dynamics in the rapidly urbanizing of Bangalore, India using multilayer perceptron, based
on Cellular Automata (CA)-Markov and landscape metrics. Their results showed that from 2012 to
2020, urban land would expand 108% [10]. Megahed et al. (2015) modeled the urban growth of Greater
Cairo, Egypt, using landscape metrics and a land change modeler. They concluded that urbanization
had accelerated from 4.64% to 17.30% during 1984–2014 and would continue to increase to 21.93% in
2025 [20].

Guangdong, Hong Kong, and Macao (GHKM) represent one of the most significant and rapidly
developing regions in China. Guangdong, Hong Kong, and Macao have undergone a transformation
from a planned economy to a market oriented economy, with a fast regional economic and social
development policy/strategy and urbanization acceleration process, all of which have had a significant
impact on the spatial pattern of the land use land cover change [2,18,43,44]. The economic center of
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China, especially the Pearl River Delta (PRD) region of the Guangdong, Hong Kong, and Macao has
remained the primary destination region for local and international immigrants thus, causes intense
settlement [45]. The migration occurred because of the potential of remunerative job opportunities,
a better education system, and other daily life facilities. This unprecedented urbanization and
industrialization have caused the fragmentation of farmland into an urban fringe, with the loss of
traditional farming activities and a shift in the character of rural communities [11]. Consequently,
the characteristics of land use land cover in Guangdong, Hong Kong, and Macao have changed
significantly. If such circumstances continue, Guangdong, Hong Kong, and Macao will then quickly
become an urban slum with the least suitable living conditions for urban residents [46]. Thus, knowing
the state of the future land use land cover of the Guangdong, Hong Kong, and Macao is a paramount
requirement to enable the adequate design of potent urban, demographic, and economic policies and
also an increase in or protection of farmland, to ensure sustainable development [46,47]. Therefore,
the main objective of this study is to forecast future land use land cover changes, particularly urban
growth, based on land change modeler. Moreover, in the detailed analysis of the land use land cover
change patterns, landscape metrics were also used to decipher and analyze model predicted land
cover patterns in the study area, and was further extended to the year 2031. This study also aims to
provide a scientific basis for decision and policy makers to enable the development of strategies that
will ensure regional ecological protection and sustainable development.

2. Materials and Methods

2.1. Study Area

The region of Guangdong, Hong Kong, and Macao is located between latitudes 20◦13′ N and
25◦31′ N, and longitudes 109◦39′ E and 117◦19′ E and has an area of about 196,342 km2 (Figure 1).
GHKM is situated in the southernmost part of China, and is a main economic hub of the country.
The study area shared its eastern boundary with Fujian province, northern boundary with Jiangxi
and Hunan provinces, western boundary with Guangxi, and a southern boundary with the South
China Sea [44]. The geography of the study area is characterized by plains, plateaus, mountains,
hills, and rivers. Its climate is categorized by hot, humid summers and cold, windy, dry winters.
The mean annual precipitation and temperature are 1500–2000 mm and 22 ◦C, respectively [48,49].
The availability of infrastructure has been supported by government and local authorities since
the opening of the economic reform policy, 1978 and has successfully enjoyed economic prosperity. This
has made Guangdong, Hong Kong, and Macao the international, cultural, and political communication
center of China. This region has experienced an increase in population, socioeconomic development,
and changes in land use land cover over the past three decades. The significant surge in urban area
has predominantly come from the conversion of farmland into built-up areas [44]. The increase in
population is mainly the result of immigration. Guangdong, Hong Kong, and Macao accommodate ever
more unsatisfactory, jam-packed transportation systems, and consequent environmental pollution [11].
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Figure 1. The geographical location of the Guangdong, Hong Kong, and Macao regions, South China.

2.2. Data Acquisition

The land use land cover data for the Guangdong, Hong Kong, and Macao for the years 2005, 2010,
and 2017 have been produced in the author’s previous study, which was based on the supervised
classification of multi-temporal Landsat data (thematic mapper (TM)/enhanced thematic mapper
(ETM+)/operational land imager (OLI)) at a 30 m resolution [44]. The China National Standard Land
Use Classification System [50] was followed to define land use land cover classification scheme which
comprises on seven classes, forest, grassland, water, fishponds, built-up, bareland, and farmland.
The overall accuracy of the classified land use land cover maps is about 91% and kappa is 0.88 [44].
Other data sets include Shuttle Radar Topographic Mission (SRTM) 30 m Digital Elevation Model
(DEM) downloaded from the 30 m SRTM Tile downloader [51], as well as road network data and water
channel network data obtained from the “Open Street Map (OSM)” [52]. Slope, aspect, and hillshade
were derived from the DEM. All the data were projected to a common Universal Transverse Mercator
(UTM) projection, i.e., WGS-84-UTM-Zone-49N, with spatial resolution of 30 m.

2.3. Land Use Land Cover Change Modelling and Future Scenarios

Land Change Modeler (LCM) in TerrSet (formerly known as IDRISI) software was originally
designed to manage biodiversity influences, and to analyze and forecast land use land cover changes [23,
31,32,53,54]. This model is based on the artificial neural network (ANN), Markov Chain matrices, and
transition suitability maps, generated by training multilayer perceptron (MLP) or logistic regression [20,
26,28]. This model predicts the land use land cover changes from the thematic raster images having
the same number of classes in the same sequential order [26]. In this study, the Land Change Modeler
is used to forecast the future land use land cover changes in the Guangdong, Hong Kong, and Macao
for the next fourteen years (for 2024 and 2031) by following four steps, namely: (1) change analysis,
(2) transition potential and determination of explanatory variables, (3) change prediction, and (4)
model validation [20,55].
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2.3.1. Change Analysis

In the change analysis panel, the changes between two different time periods time 1 and time
2 land use land cover maps were calculated. The change analysis provides a quick evaluation of
quantitative change, by charting gains and losses, among different land cover types [31]. It also
estimates net change, persistence, and the specific transition of land cover information both in map
and geographical forms [53]. These changes are important to identify the dominant transition from
one class to another, all the dominant transitions are then grouped and targeted [20,55]. The spatial
trend of change provides the trend in the form of a map, with the best fit polynomial trend surface
adhering to the pattern of change [53].

2.3.2. Transition Potential Modeling and Driving Forces Determination

Transition Potential

The transition potential determines the area of change [20]. Land cover transitions can be
grouped into sub-models, if it is assumed that for each transition, the underlying drivers of change
are the same [33]. For example, the processes that influence the land use land cover to change from
farmland to built-up land may be the same as those that affect the change of forest to built-up land.
Thus, land use land cover changes with common driving variables were grouped into sub-models [54].
In addition, evidence likelihood was selected to determine the relative frequency of different land use
land cover types which had occurred within the transitional areas [20].

Selection of Explanatory Variables

Explanatory variables or drivers, responsible for land use land cover change, were selected on
the basis of factors that increase or decrease the appropriateness of a specific alternative for the activity
of concern [8,31]. Topography represents a significant factor for urban change. Topography influences
the city size and its spatial distribution, by possible restraints of water supply and provision of adequate
land [56]. In general, the slope, aspect, and elevation are recognized as the most imperative topographic
factors affecting urban sprawl [45,57,58]. Proximity factors such as distance to water channels and
distance to roads also play an imperative role in urban sprawl, as each provide convenience to dwellers
to access resources and everyday needs. Neighborhood effects generally show that, in a non-built-up
pixel surrounded by built-up land, it is more likely to eventually to transform into a built-up area. As
regards land use land cover planning and policy, factors differ because of the different institutional
contexts of the different study areas. For example, in this study area (GHKM), urban development
can be influenced by different planning guidelines and regulations, including master plans and
zoning [8,30,31]. In this study, both topographic and proximity factors were selected to scrutinize
the urbanization and land use land cover change impacts. These variables are expected to have
a significant influence on future changes [54,59]. The significance of each variable is tested using
Cramer’s V, a quantitative measure [53,54]. However, Cramer’s V does not assure a strong performance
of the variables, since it cannot represent the scientific prerequisites and the multifaceted nature of
the relationships. It simply helps to determine whether or not to include the particular variable as
a driving factor of land use land cover change [16,20,60].

Multilayer Perceptron (MLP)

The multilayer perceptron (MLP) neural network is a feedforward neural network with one
or more layers between the input and output layers. MLP depends on the back propagation (BP)
algorithm that is a supervised training algorithm [31,61,62]. It plays a central role in the land change
modeler, and consists of three layers, namely (1) input, (2) hidden, and (3) output [31]. Through
feed-forward algorithms, networks calculate weights for input values, input layer nodes, hidden layer
nodes, and output layer nodes, all of which propagate through the hidden layer, (set of computational
nodes) to output layers. For modeling, the multilayer perceptron allows more than one transition at
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a time [20,60]. In multilayer perceptron, through hidden layers, the data flows in one direction, from an
input layer to an output layer and determines non-linear relationships. Within the layers, the nodes are
assembled, and every node receives an input signal from the different nodes and yields a transformed
signal to other nodes. After assigning a weight to each original input layer, which includes a threshold,
it passes through either a linear or non-linear stimulation function. To reduce the error between
the observed and the expected results, the weights must be resolved in the training process, before
the system can be utilized for forecast purposes [20,60]. After the multilayer perceptron has been
trained with various influencing factors [26] for each of the sub-models, it produces time-explicit
transition potential maps that represent time-explicit change potential [2,27,54,62].

2.3.3. Change Prediction

Change prediction is the last step in which the future prediction is executed on the basis of Markov
chain, and using the historical rate of change and the transition potential maps [55].

Markov Change Model

The Markov chain model, is a stochastic modelling procedure, extensively used for land use
land cover change modelling. This model forecasts the future land use land cover from time t = 1 to
another time t + 1 [63], on the basis of the transition probability matrix and the transition area matrix
of each land use land cover class [47]. The transition matrix represents the probability of land use land
cover change in the observed time period from one land use group to another [18,64,65]. Transition
probability maps, generated through multilayer perceptron, provide a probability estimation that each
pixel will either be converted into another land cover type or persist be adjusted during annual time
steps [54].

2.3.4. Future Scenario

Land Change Modeler produces two kinds of predictions: (1) hard prediction and (2) soft
predictions. A hard prediction produces a predicted map, [20] based on a multi-objective land
allocation (MOLA) module [54]. One of the land cover classes is assigned to each pixel, on the basis
of their most likely probability. Soft prediction determines the probability of the pixel changing to
another land category by producing a vulnerability map, where the value from 0–1 is assigned to each
pixel [20].

2.3.5. Model Validation

Model validation is needed to assess the accuracy. Thus, the objective of the validation process
is to determine the quality of 2017’s simulated map in comparison with 2017’s actual land use land
cover map. For model validation, there are two well recognized methods: (1) Kappa statistics and
(2) relative operating characteristics (ROC) [31,66]. Kappa statistics is a quantitative method that
measures the goodness of fit or the best value between the model prediction and the observed maps,
revised for precision by possibility in the form of K no (overall accuracy), kappa location (kappa for
grid cell level location), K location Strata (kappa location strata), and K standard (kappa standard).
The range of Kappa values is from 1 to −1, where positive values show, by chance, an unusually
greater improved agreement, and negative values are a bad agreement [6,29,32,66,67]. Kappa values
were categorized as poor below 0.40, fair to good from 0.40 to 0.75, and excellent over 0.75 [32].
Relative operating characteristics, however, are well able to compare a Boolean map of “reality” with
a suitability map. ROC is defined as a graph between the rate of true positives on the vertical axis and
the rate of false positives on the horizontal axis. Its value ranges between 0 and 1, where, 1 shows
a perfect fit and 0.5 shows a random fit [24,26,29,53,68]. The threshold value for the relative operating
characteristics used in this study is 100. If the assessment of the simulation yields valid results [30,69],
the calibrated model with the same driving forces then predicts the 2024 and 2031 land use land cover
map, modelling the changes between 2005 and 2017 land use land cover maps.
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2.4. Landscape Metrics

Landscape metrics are used to illustrate and compute the spatial characteristics of patches,
land use land cover class area, and the whole land cover over time. This is useful for monitoring,
measuring, and analyzing land use land cover change, such as changes in urban sprawl and its
structure [70]. They illustrate significant landscape information, such as the composition and
configuration, heterogeneity, diversity, compactness, fractal dimensions, linearity and squareness,
complexity, fragmentation, and morphological characteristics. However, their selection, interpretation,
analysis, and evaluation depend on the specific study context, classified map, and the inherent process
of change [6,10,20,37,41,71]. The matrices used for this study are listed in Table 1, and are based on
similar studies [6,20,37,39,42,70–79]. These metrics were computed using the FRAGSTATS software [80]
based on land use land cover maps for the years 2005, 2010, 2017, and predicted 2024 and 2031.

Table 1. The description of landscape metrics used for morphological analysis (where, CL = class level,
LL = landscape level).

Category Metric Name Acronym
Unit

Level
Used Description Range

Patch Size
and Density

Patch Density
(PD)

Number of
patches per

100 ha
CL The number of patches per unit

area
PD ≥1, no

limit

Percentage of
Landscape
(PLAND)

% CL The aggregated area of landscape. 0–100

Mean Patch Area
(MPA) ha CL An average patch size in each class MPA > 0,

no limit

Shape and
Edge

Edge Density
(ED) m/ha CL

Calculate the total lengths of all
edge segments of corresponding
patch type per unit area. Edge
density explained the complexity
of each patch shape.

ED ≥1, no
limit

Largest Patch
Index (LPI) % CL

Ratio between the largest patch of
the corresponding patch type and
the total landscape area.

0 < LPI ≤
100

Area Weighted
Mean Fractal

Dimension Index
(AWMPFD)

None LL

Measure the average fractal
dimensions of patches of
a particulate patch type divided
by the total sum of the patch area.

1 ≤
AWMPFD
≤ 2

Proximity

Mean Euclidean
Nearest

Neighbor
Distance

(ENN_MN)

m CL

Measure the minimum edge to
edge distance to the nearest
neighbor same patch type. It
explains isolation of
corresponding patch type or
landscape.

ENN_MN >
0

Diversity
and Texture

Contagion
(CONTAG) % LL

Measure the total probability that
a patch of cells neighboring
the same type of cells.

0 <
CONTAG ≤

100

Shannon’s
Diversity Index None LL

Indicate diversity in a landscape
from the abundance of patch
types. It increases as the number
of different patch types increases
or the distribution of area/land
among patch types/classes
becomes more equitable.

Shannon’s
Entropy ≥ 0,

no limit



Sustainability 2020, 12, 4350 8 of 24

3. Results

3.1. Land Cover Change Analysis

The land use land cover maps for the years 2005, 2010, and 2017 [44] are shown in Figure 2. The area
statistics of different land use land cover categories between different years are shown in Table 2.
During 2005–2017, the built-up area increased from 5.84% (11,475.77 km2) to 10.31% (20,228.95 km2),
with a significant annual rate of change of 4.72%. The growth of built-up area is different in different
periods, i.e., 2.41% during 2005–2010 (period 1) and 2.06% during 2010–2017 (period 2). This significant
rise in built-up area has resulted in a decline in both farmland and fishponds. Farmland covered an
area of 40.77% (80,043.82 km2) in 2005 but decreased substantially to 37.63% (73,890.27 km2) in 2010
and 33.03% (64,938.68 km2) in 2017, respectively. Thus, farmland declined by 3.13% during 2005–2010,
4.60% in 2010–2017, and 7.73% in 2005–2017. Similarly, fishponds decreased from 1.56% (3059.93 km2)
in 2005 to 0.97% (1902.79 km2) in 2017, with a significant change of 3.96% (1157.13 km2). Furthermore,
as a result of different afforestation programs, forest cover increased from 40.84% (80,180.31 km2) in
2005 to 42.39% (83,223.94 km2) in 2010 and 45.02% (88,390.98 km2) in 2017, respectively (Table 2).
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Table 2. Area statistics of the land use land cover classes for the years 2005, 2010, and 2017.

Year 2005 2010 2017 Change
2005–2010 Change Change

2010–2017 Change Change
2005–2017 Change

Classes km2 % km2 % km2 % km2 % km2 % km2 %
Forest 80,180.31 40.84 83,223.94 42.39 88,391.98 45.02 3043.63 1.55 5168.03 2.58 8211.67 4.13

Grassland 399.84 0.20 143.26 0.07 189.47 0.10 −256.58 −0.13 46.21 0.02 −210.37 −0.11
Water 20,249.86 10.31 20,211.49 10.29 20,656.34 10.51 −38.37 −0.02 444.84 0.21 406.47 0.19

Fishponds 3059.93 1.56 2453.32 1.25 1902.79 0.97 −606.61 −0.31 −550.53 −0.28 −1157.14 −0.59
Built-up 11,475.77 5.84 16,203.51 8.25 20,228.95 10.31 4727.74 2.41 4025.44 2.06 8753.18 4.45
Bareland 934.47 0.48 218.44 0.11 275.21 0.14 −716.03 −0.36 56.77 0.03 −659.26 −0.34
Farmland 80,043.82 40.77 73,890.27 37.63 64,938.68 33.03 −6153.55 −3.13 −8951.59 −4.60 −15,105.14 −7.73
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The gains and losses of different land use land cover thematic classes were calculated, as shown
in Table 3. Major land use land cover changes include (1) expansion of built-up land, (2) reduction in
farmland and fishponds, and (3) increase in forest cover. During 2005–2017, gain and loss in forest cover
was 10,092.25 km2 (2.09%) and 1880.78 km2 (−0.39%), with a net gain of 8211.47 km2 (1.70%). Fishponds
loss 2276.21 km2 (−0.47%) and gained 880.06 km2 (0.18%), with a net loss of 1396.15 km2 (−0.29%).
Farmland lost 15,672.26 km2 (−3.25%) and gained 566.94 km2 (0.12%) with a net loss of 15,105.30 km2

(−3.13%). Built-up land, however, increased with a net gain of 8753.13 km2 (1.81%). During the same
period, the classes that contributed to the net change of built-up area are listed as: forest 1067.32 km2

(0.22%), grassland 47.42 km2 (0.01%), water 272.06 km2 (0.06%), fishponds 867.93 km2 (0.18%), bareland
346.48 km2, and farmland 6151.92 km2 (0.07%) were transformed to built-up area. The contribution to
the net change of other classes are shown in Table 3. In summary, the reduction in farmland concurs
with the expansion of radioactivity aligned to the urbanization growth.

Table 3. Land use land cover gains, losses, and contributions to net change in each category during
2005–2010, 2010–2017, and 2005–2017.

2005–2010

Classes
Gain Loss Net Contribution

Forest Grassland Water Fishponds Built-Up Bareland Farmland

% % % % % % % % %
Forest 0.88 0.25 0.00 −0.02 0.00 0.00 0.12 0.00 −0.73

Grassland 0.01 0.06 0.02 0.00 0.00 0.01 0.00 0.00 0.02
Water 0.18 0.19 0.00 0.00 0.00 −0.01 0.02 0.00 −0.01

Fishponds 0.23 0.36 0.00 −0.01 0.01 0.00 0.11 0.00 0.01
Built-Up 0.98 0.00 −0.12 0.00 −0.02 −0.11 0.00 −0.06 −0.67
Bareland 0.03 0.18 0.00 0.00 0.00 0.00 0.06 0.00 0.09
Farmland 0.21 1.48 0.73 −0.02 0.01 −0.01 0.67 −0.09 0.00

2010–2017

Forest 1.39 0.32 0.00 0.00 0.04 −0.02 0.14 0.02 −1.24
Grassland 0.03 0.02 0.00 0.00 0.00 0.00 0.00 0.00 −0.01

Water 0.27 0.18 −0.04 0.00 0.00 −0.07 0.04 0.00 −0.02
Fishponds 0.18 0.35 0.02 0.00 0.07 0.00 0.06 0.00 0.01
Built-up 0.83 0.00 −0.14 0.00 −0.04 −0.06 0.00 −0.01 −0.59
Bareland 0.05 0.04 −0.02 0.00 0.00 0.00 0.01 0.00 −0.01
Farmland 0.07 1.92 1.24 0.01 0.02 −0.01 0.59 0.01 0.00

2005–2017

Forest 2.09 0.39 0.00 −0.02 0.03 −0.05 0.22 −0.04 −1.84
Grassland 0.03 0.07 0.02 0.00 0.01 0.00 0.01 0.00 0.01

Water 0.27 0.19 −0.03 −0.01 0.00 −0.07 0.06 0.00 −0.03
Fishponds 0.18 0.47 0.05 0.00 0.07 0.00 0.18 0.00 −0.01
Built-up 1.81 0.00 −0.22 −0.01 −0.06 −0.18 0.00 −0.07 −1.27
Bareland 0.05 0.18 0.04 0.00 0.00 0.00 0.07 0.00 0.02
Farmland 0.12 3.25 1.84 −0.01 0.03 0.01 1.27 −0.02 0.00

3.2. Simulation

Transition Potential Modelling and Determining Driving Variables

The land use land cover change results indicated that the significant changes in urban areas
occur mainly from the deterioration of farmland and fishponds. The transitions considered in
the Land Change Modeler are: forest–built-up, grassland–built-up, water–built-up, fishponds–built-up,
bareland–built-up, farmland–built-up, and farmland–forest. All these transitions, based on visual
evidence of the urban spatial trend, had the same driving force. Table 4 illustrates the potential
explanatory power of each driving force, represented by Cramer’s V. The variable that has a Cramer’s
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V value of about 0.15 or higher are useful, while those with values of 0.4 or higher are good. Thus,
the selected factors were found to be relevant (Figure 3). Slope show significant influence on urban
growth especially in the Pearl River Delta and on the eastern side of the study area. This could be
attributed to their relatively flat terrain where the constraints of slope are not as significant as that in
the mountainous regions. Both hillshade and aspect indicate exposure to sunlight, which can play
a significant role in the selection of land for farmland and urban area encroachment. On the other hand,
it is also important factor for the increasing growth of tropical/subtropical forest types in the study area.
Hillshade may be correlated with slope and aspect as it reflects the topographic patterns associated
with both of them. Other variables are also found to represent an important spatial determination
of urban growth. After the selection of the predictor variables, transitions were modelled in one
transition sub-model, and generated the transition potential maps through multilayer perceptron with
an accuracy of above 70% (Figure 4).

Table 4. Cramer’s V values of explanatory variables.

Explanatory Variables Cramer’s V

Slope 0.3448
Aspect 0.3107
DEM 0.2665
Hillshade 0.2526
Distance to roads 0.2162
Distance to water channel 0.1787
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to forest.

3.3. Land Use Land Cover Transition Analysis

In this study, the transition probability matrices were produced for the years 2017 (using 2005
and 2010 land use land cover layers), 2024 (using 2010 and 2017 land use land cover layers), and 2031
(using 2010 and 2017 land use land cover layers) (Tables 5–7). The transition probability matrix shows
the probability of a conversion for each land use land cover class to another class, within the specified
time. The change of probabilities between two different time periods reveal the significant increase of
urban areas at the cost of a decrease in farmland and fishponds in the Guangdong, Hong Kong, and
Macao region.

Table 5. Transition probability matrix of land use land cover classes for the year 2017.

Classes Forest Grassland Water Fishponds Built-Up Bareland Farmland

Forest 0.9789 0.0007 0.0033 0.0054 0.0104 0.001 0.0000
Grassland 0.3594 0.0926 0.054 0.0708 0.0712 0.0026 0.3495

Water 0.0141 0.0001 0.9385 0.0306 0.0087 0.0004 0.0076
Fishponds 0.1502 0.0006 0.2139 0.2888 0.2244 0.0017 0.1204
Built-up 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000
Bareland 0.0851 0.0016 0.0242 0.024 0.3149 0.0098 0.5404
Farmland 0.0606 0.0000 0.0025 0.0035 0.0555 0.0008 0.877
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Table 6. Transition probability matrix of land use land cover classes for the year 2024.

Classes Forest Grassland Water Fishponds Built-Up Bareland Farmland

Forest 0.9615 0.0007 0.0076 0.0069 0.0223 0.001 0.0000
Grassland 0.4148 0.0152 0.0715 0.0347 0.1167 0.0012 0.3459

Water 0.0324 0.0001 0.8876 0.037 0.0246 0.0005 0.0178
Fishponds 0.1982 0.0004 0.2587 0.106 0.2956 0.0009 0.1403
Built-up 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000
Bareland 0.1211 0.0004 0.0294 0.0114 0.3541 0.001 0.4827
Farmland 0.113 0.0001 0.0055 0.0045 0.1057 0.0008 0.7705

Table 7. Transition probability matrix of land use land cover classes for the year 2031.

Classes Forest Grassland Water Fishponds Built-Up Bareland Farmland

Forest 0.9445 0.0007 0.0119 0.0075 0.0344 0.0010 0.0000
Grassland 0.4389 0.0017 0.0776 0.0166 0.1502 0.0008 0.3142

Water 0.0509 0.0001 0.8411 0.0381 0.0421 0.0005 0.0272
Fishponds 0.2224 0.0002 0.2667 0.0396 0.3319 0.0006 0.1385
Built-up 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000
Bareland 0.1502 0.0001 0.0317 0.0066 0.3853 0.0006 0.4256
Farmland 0.1582 0.0001 0.0084 0.0048 0.151 0.0008 0.6767

Table 5 shows that forest and built-up are the most stable classes with respective probabilities of
0.97 and 1.00. Water, farmland, and fishponds are the most dynamic classes with transition probabilities
of 0.93, 0.87, and 0.28. In these land use land cover classes, farmland was mainly converted into
built-up land and forest cover, whereas, fishponds were primarily transformed into built-up land.
The occupation of both farmland and fishponds by an urban sprawl is evident. From Tables 6 and 7
the transition of several land use land cover classes shows a consistency with the previous periods.
Forest and built-up land are still the most stable classes with respective transition probabilities 0.96 and
1.00 (Table 6), and 0.94 and 1.00 (Table 7). The most dynamic classes are farmland and fishponds, which
primarily transformed into built-up land with respective transition probabilities 0.1057 and 0.2956
(Table 6), and 0.151 and 0.3319 (Table 7). The transformation of farmland into forest had a probability
of 0.113 Table 6 and 0.1582 Table 7 indicates that different afforestation policies will continue to play
a significant role in making greener Guangdong, Hong Kong, and Macao.

3.4. Validation

Simulated and actual land use land cover maps of 2017 are shown in Figure 5. Their area statistics
of different land use land cover classes are shown in Table 8. Visual interpretation of the modeling
results shows that the simulated map for the year 2017 is reasonably similar to the actual map for that
year. A more detailed analysis was accomplished using the Kappa variations and relative operating
characteristics. Kappa variations that compared the projected land use land cover map with the actual
land use land cover map of the year 2017 resulted in a Kappa value = 0.97, Kno = 0.97, Kappa location
= 0.99, and k standard = 0.96, whereas the relative operating characteristics value, i.e., area under
the curve is 0.914 (Figure 6). Thus, high values of both Kappa and relative operating characteristics
suggest that the majority of the study area experienced no change, indicating the consistency is quite
strong between the predicted results and the actual land use situation. However, model predict less
forest cover and more built-up area and fishponds than the actual land cover map. Both Kappa and
relative operating characteristics results confirms that the model is reliable for the Guangdong, Hong
Kong, and Macao and can be used to predict future land use land cover change under different scenarios.
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Table 8. Area statistics of actual and predicted land use land cover map of 2017.

Classes
Actual Predicted

km2 km2

Forest 88,391.98 86,835.34
Grassland 189.47 133.06

Water 20,656.34 20,035.57
Fishponds 1663.83 1902.80
Built-up 20,228.95 21,975.24
Bareland 275.21 149.66
Farmland 64,938.68 65,311.12
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Figure 6. Relative operative characteristics (ROC) curve which provide the correlation between
the predicted and actual land use land cover map. The closer the curve approaches the upper left
corner, the stronger is the predictive power of the model. For this study relative operative characteristic
value is 0.914, indicating strong consistency between the predicted and actual land use land cover map.

3.5. Future Scenario/Simulation

After successful validation of the model, based on real land use land cover maps the model
predicted the urban growth and the land use land cover maps for the years 2024 and 2031 (Figure 7).
The markov model also provides the transition probability matrix for the years 2024 and 2031 (Tables 6
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and 7). The statistical change analysis of projected land cover is shown in Table 9. The model predicts
that built-up land will continue to increase by 15,710.20 km2 (136.90%) in 2024 and 20,518.78 km2

(178.80%) in 2031, compared to 11,475.77 km2 in 2005, to the detriment of a decrease of farmland
and fishponds (Table 9). Farmland will decrease by 22,313.79 km2 in 2024 and 29,000.81 km2 in 2031,
compared to the 80,043.82 km2 in 2005. Fishponds will decrease by 1331.81 km2 and 1420.87 km2

in 2024 and 2031, compared to 3059.93 km2 in 2005. However, forest cover will continue to increase
by 9536.49 km2 and 11,869.30 km2 in 2024 and 2031, compared to 80,180.31 km2 in 2005 (Table 9).
The overall change in the land use land cover in the predicted years is shown in Figure 8. In summary,
the predicted results confirm that such patterns will continue in future because of the results of
China’s economic hub, economic policy, housing, industry, and development of the infrastructure.
These changes have adverse impacts on the urban environment. Therefore, with the help of future
prediction results, proper planning and environmental management plans can control the adverse
effect of these changes.
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Table 9. Area statistics of the projected land use land cover classes in 2024 and 2031.

2017 2024 2031 Change
2017–2024

Change
2017–2031 Change Change

2005–2031 Change

Classes km2 km2 km2 km2 % km2 % km2 %

Forest 88,391.98 89,716.81 92,049.62 1324.83 1.50 3657.64 4.14 11,869.30 14.80
Grassland 189.47 126.54 121.74 −62.93 −33.21 −67.72 −35.74 −278.10 −69.55

Water 20,656.34 19,714.21 19,360.51 −942.13 −4.56 −1295.82 −6.27 −889.35 −4.39
Fishponds 1663.83 1728.12 1639.06 64.29 3.86 −24.77 −1.49 −1420.87 −46.43
Built-up 20,228.95 27,185.97 31,994.55 6957.03 34.39 11,765.61 58.16 20,518.78 178.80
Bareland 275.21 141.09 134.27 −134.12 −48.73 −140.94 −51.21 −800.20 −85.63
Farmland 64,938.68 57,730.03 51,043.01 −7208.65 −11.10 −13,895.67 −21.40 −29,000.81 −36.23
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Figure 8. Area of the land use land cover classes (a) forest, water, built-up, and farmland, (b) grassland,
fishponds, and bareland over the years 2005, 2010, 2017, and predicted 2024 and 2031.

Furthermore, it can be concluded from gain and loss Table 10 that farmland will be adversely
influenced by an upsurge in other land use types, specifically built-up areas. A significant gain in both
built-up and forest has been recorded because of the socioeconomic development process and different
land use policies such as the land administration law (LAL). Table 10 also shows the contribution to
net change in each land use land cover category, both positively and negatively in the Guangdong,
Hong Kong, and Macao during 2005–2031. It is worth noting that the loss of farmland was mostly
transferred into two classes, i.e., (1) forest (18,093.67 km2) and (2) built-up (11,323.29 km2). Table 10
shows that the loss of fishponds dominantly converted into built-up area (1320.78 km2). Due to
continuous increase in urban growth and development, the green ecosystem in the Guangdong, Hong
Kong, and Macao will be significantly influenced, making it crucial for local institutions to establish
exacting policies to protect and preserve the local environment in the long haul.

Table 10. Gains, losses, and contributions to net change in each land use land cover types in
the Guangdong, Hong Kong, and Macao during 2005–2031.

2005–2031 Gain Loss Net Contribution

Classes Forest Grassland Water Fishponds Built-Up Bareland Farmland

% % % % % % % % %
Forest 3.95 0.52 0.00 −0.02 0.03 −0.03 0.37 −0.04 −3.75

Grassland 0.02 0.07 0.02 0.00 0.01 0.00 0.02 0.00 0.00
Water 0.24 0.24 −0.03 −0.01 0.00 −0.08 0.15 −0.01 −0.03

Fishponds 0.15 0.49 0.03 0.00 0.08 0.00 0.27 0.00 −0.03
Built-up 3.27 0.00 −0.37 −0.02 −0.15 −0.27 0.00 −0.11 −2.35
Bareland 0.03 0.19 0.04 0.00 0.01 0.00 0.11 0.00 0.01
Farmland 0.05 6.20 3.75 0.00 0.03 0.03 2.35 −0.01 0.00

In order, to examine and understand the influence of land use land cover change on green lands
(i.e., forest and farmland) and the key role of urbanization, Figure 9 shows the conversion of farmland
and forest into other land use types. The spatial visualization provided by the Land Change Modeler
shows that, in the next 14 years, built-up areas represent the most momentous land use land cover
class and will negatively affect the farmlands. Figure 9b shows that the forest cover will continue to
increase in the Guangdong, Hong Kong, and Macao over the next 14 years.
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3.6. Landscape Metrics and Urban Analysis

Figure 10 reflects the changes in spatial morphology of the landscape at class and landscape
level. With the increase in the ‘percentage of the landscape’ of both forest cover and built-up land,
the patch density and edge density increased significantly (Figure 10a–c). The patch density for forests
cover increased from 0.46 to 0.53, and for built-up areas from 0.35 to 0.49 during 2005–2017, and will
continue to increase during 2017–2031 (Figure 10b). This signifies the considerable growth of landscape
complexity with the increasing human-induced activities. The largest patch index increases for both
forest cover (from 4.06% to 7.33%) and built-up land (from 0.35% to 1.03%) during 2005–2017 and
predicted result show that it will continue to increase to 11.60% in 2024 and 12.21% in 2031 (Figure 10d).
This indicates the corresponding patch type uniformity. A ‘mean patch area’, which is a critical
measure of habitat fragmentation, will decrease for forest cover from 36.17 ha in 2005 to 30.72 ha in
2031, and increase for built-up land from 6.71 ha in 2005 to 11.10 ha in 2031. Smaller ‘mean patch area’
together with larger ‘patch density’ and ‘largest patch index’ for forest cover revealed fragmentation.
However, a larger ‘mean patch area’ together with larger ‘patch density’ and ‘largest patch index’
for built-up land reflects that the landscape is expected to gradually became urban dominated as
the intensity of urbanization in the fringe as well as densification within already urbanized area
increased tremendously, leading to the dominance of urban landscape. The mean Euclidian nearest
neighbor distance (ENN_MN) shows an expected decrease for both forest and built-up land during
2005–2031 (Figure 10g). This indicates that the spaces between their neighbors decreases with time due
to high industrialization and unprecedented population density, thus suggesting coalescence.

The ‘percentage of landscape’ of both farmland and fishponds decreased substantially during
the study period. For farmland, the decrease in the ‘mean patch area’, ‘largest patch index’ and
increase in ‘patch density’ reflect that farmland is highly fragmented (Figure 10b,d,f). The ‘mean patch
area’ decreased from 38.94 ha in 2005 to 24.04 ha in 2017 and will continue to decrease to 16.64 ha in
2024 and 12.03 ha in 2031. The ‘largest patch index’ showed the similar trend as a result of gradual
urban encroachment. In contrast ‘edge density’, increases from 16.77 m/ha to 21.17 m/ha during
2005–2031 indicating that the landscape patches turn to be complex. However, the value of ‘mean
Euclidian nearest neighbor distance’ decreases from 220.56 m in 2005 to 211.41 m in 2031, indicating
coalescence. For fishponds, the ‘patch density’ decreases substantially, i.e., from 0.17 in 2005 to 0.09 in
2031, indicating aggregated fishponds areas. Similarly, a significant reduction occurred in the ‘mean
patch area’, ‘largest patch index’, and ‘edge density’ during 2005–2017 and they will continue to
decrease during 2017–2031 (Figure 10c,e,f).
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Figure 10. Temporal patterns of landscape metrics from 2005 to 2031 (a) Percentage of landscape
(PLAND), (b) Patch density (PD), (c) Edge density (ED), (d,e) Largest Patch Index (LPI), (f) Mean patch
area (MPA), and (g,h) Euclidian Mean Nearest Neighbor Distance (ENN_MN) at class level, whereas,
(i) Shannon’s diversity index (SDI), (j) Area Weighted Mean Fractal Dimension (AWMPFD), and (k)
Contagion (CONTAG)) at landscape level.

Due to more dispersed distribution, fragmentation, and heterogeneity in the landscape, ‘Shannon’s
diversity index’ and ‘area weighted mean fractal dimension’ increases while contagion value decreases
during 2005–2017 and predicted resulted shows that such trend will continue during 2017–2031
(Figure 10i–k). This indicates that urban growth will continue in the form of an increasing number of
clusters as well as the expansion of existing urban centers. On the hands, forest patches will increase
and merged to form contiguous patches thus increasing proportion in the landscape and dominating
land cover type. Decrease in farmland can be exacerbated due to isolation as indicated by increasing
trend in patch density and reduction in the relative proportion in the landscape. This demonstrates that
land development will continue to spread over the urban peripheral areas and into the neighboring
rural areas. It will be important for policy makers to carefully design and monitor urban growth with
the least impact on the farmland fragmentation.
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4. Discussion

After the settlement of political insurgency in 1978, the pace of infrastructure development,
socioeconomic development, industrialization, and urbanization accelerated in the Guangdong, Hong
Kong, and Macao. There is a complex relationship between land use land cover change, anthropogenic
activities, and sustainable future environment [2]. Today, a large number of land use land cover and
urban growth models have been developed which provide ability to choose a model according to
the characteristics of the area of interest and the research questions [17,18,73]. In this study, Land
Change Modeler was used to predict the land use land cover changes for the next fourteen years.
Long-term simulations can be used as a guide for urban studies by giving future forecasts of possible
changes under existing patterns and circumstances [30,81]. However, with the increase in simulation
periods, the simulated results may be adversely affected. For example, land use land cover and
transportation system are the two utmost imperative sub-systems that influences the long-term shape
of a city. With time, they commonly influence each other [82], and may also affect the demands for
travel and access. Construction or expansion of new or existing roads, for example, directly influences
the settlements location and density. Thus, it is assumed, that the network of static transportation
creates a substantial drawback for simulations of long-term urban development. In this regard, models
have shortcoming in temporal dynamics [30,81,83]. Thus, for this study, on the basis of the continuity
of the past trends of 2005–2017, projected maps for the years 2024 and 2031 have been simulated. To
validate the model, the simulated image was compared with the actual land use land cover image
of the same year, i.e., for 2017, all the Kappa values and relative operating characteristics value were
greater than 80%. The accuracy of this study shows consistency with previous studies, in which Land
Change Modeler and Landsat images were used [8,9,12,16,18,20,30,55,61,84,85].

4.1. Future Consequences of Land Use Land Cover Changes: Built-Up and Farmland

After the opening of the economic corridor, the Chinese government launched a series of policies
such as the “Household Production Responsibility System (HPRS)” and the “market-directed economic
system”. These policies have headed explicit conversion of land use land cover, such as transformation
of farmland into built-up land [86]. During 2005–2017, the built-up area boomed from 5.84% to
10.31% and the modeling results confirm that it will continue to increase to 16.30% by 2031, at the cost
of a substantial reduction in both farmland (from 40.77% in 2005 to 26.00% in 2031) and fishponds
(from 1.56% to 0.83% during 2005–2031). This trend is also reflected in the landscape metrics, i.e.,
patch density, largest patch index, and edge density increasing for built-up land and decreasing
for fishponds, whereas mean patch area decreases for both of them. Therefore, in each successive
period, a high industrialization rate and socioeconomic development causes the expansion of built-up
land beyond the administrative boundary of the counties, and urban growth exceeded the outskirts
of the surrounding regions. This is also because of increase in household income/personal income
level, living standards, and a reduction in traditional farming activities [8]. However, the continuous
development of historical city centers, more fragmented growth, and increasing coalescence between
land cover neighbor’s causes a decrease in the mean Euclidian nearest neighbor distance of built-up
land and farmland. Moreover, an increase in Shannon’s diversity index claims a high urban rate
and dispersion of urban development within the period of study, causing a noteworthy influence on
the urban periphery [6]. With the increase in fragmentation, the contagion value decreased due to
more individual units such as urban units.

These changes are more pronounced in the Pearl River Delta (PRD) and on the east flank of
the Guangdong, Hong Kong, and Macao. These two regions account for 57% of the Guangdong,
Hong Kong, and Macao’s total population [44]. The probable reason is that these regions lie at a low
elevation, and are more suitable for settlement than the high-elevated areas. Thus, the unprecedented
growth of built-up areas has overwhelmed the primitive rural areas and encompass an economic
corridor from the PRD and the eastern sides towards the surrounding outskirts [8,18]. However, an
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increase in the proportion of urban dwellers have confirmed a rising competition between consumers
in the property and land market [3].

Such changes in land cover are attributed to the land use land cover regulations, which allowed
the sale of the state ownership land in the property market, while the sale of collective land ownership is
not allowed [11]. This rapid development of built-up land has significantly contributed to provide much
lose space for other land use types, such as built-up areas. Additionally, the reason for the conversion
of farmland into urban land is that the local government confiscated collectively owned farmland
for public and commercial purposes and remunerated farmers for the loss of the affected lands.
The confiscated land then became state-owned and the rights of its land use transferred by sale,
tender, or agreement. A special market substance was established by the government and its related
operational departments [11].

Thus, these simulated results helped urban planners and policy decision makers to learn that further
expansion of urban land and urban population could result in increased traffic jams, transformation
of open spaces, increased travel time, residential energy consumption [87], and changes in living
standards [11].

4.2. Proximate and Underlying Factors

Proximate and underlying factors of communal facility availabilities and rural urban
connections [2] have also ominously played a key role in the population migration in the Guangdong,
Hong Kong, and Macao. The distance from roads and distance from water channels are also considered
an imperative spatial determinant for urban development, thus indicating that non-urban areas
near to the city center have a higher probability of being converted into built-up land. Such areas
were ripe for further urban planning [8]. The next important factors for urban growth were slope,
aspect, and hillshade [2,8]. The unparalleled combination of economic development, population,
and the unintended byproducts of the growth of government policies has contributed to the social
structure change of the Guangdong, Hong Kong, and Macao from a largely rural society to an urban
society. Most importantly, urbanization and industrialization have significantly provoked farmland
reduction in the Guangdong, Hong Kong, and Macao [11,86]. All the above mentioned drivers should
be considered by policy decision makers when addressing land use development and the resulting key
sustainability problems [2].

4.3. Forest Cover Increases

During 2005–2017, forest cover increased to 45.02% from 40.84% and simulation results show
that it will continue to increase to 46.88% in 2031. This trend can also be observed in the increasing
patch density, largest patch index, and edge density of forest cover. Of further interest, mean Euclidian
nearest neighbor distance of forest cover decreased as the distance between forest neighbors shrank.
This increase in forest cover indicates that forest policies and afforestation programs is likely to continue
in the study area. These programs may include “China Biodiversity Conservation Action Plan (1994)
(CBCAP)” [88], the “Forestry Action Plan for China’s Agenda 21 (1995) (FAPCA)” [89], the “China
Ecological Environment Conservation Plan (1998) (CEECP)”, the “China Wetland Protection Action
Plan (2000) (CWPAP)”, the “China Mangrove Protection Management (CMPM)”, and the “Utilization
Plan (2002) (UP)” [86,89]. Forest cover in China, also increased because of the development of
eucalyptus plantations on a large scale. The plantation of eucalyptus is not only limited to Guangdong,
but also in most of southern China, e.g., Guangxi, Sichuan, Yunnan, Hainan, and Fujian provinces,
because of the high demand for timber products and high ecological value. The development of
eucalyptus plantations on a large scale for logging, however, also prompted the conversion of farmland.
Therefore, to protect farmland conversion, it is essential to control the demand of timber products
using numerous methods, such as decreasing the usage of disposable chopsticks and avoid the wastage
of paper [87]. The significant growth of eucalyptus has caused a set of potential ecological issues, such
as water deprivation, biodiversity loss, and fertilizer consumption [86].
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In summary, the future simulation of land use land cover change, based on the land change
modeler, has significant ramifications for the urban planning and management of the Guangdong,
Hong Kong, and Macao [11]. The simulated results, given above in Sections 3.5 and 3.6, provide
significant insights into the future land use land cover development and will hence provide a better
understanding of the area’s growth patterns and the necessity for suitable sustainable development,
together with the protection of farmland during planning development. To a large extent, when
planning a city or city growth, the consequences of urban sprawl represent a necessary consideration.

5. Conclusions

During the last two decades, the Guangdong, Hong Kong, and Macao (GHKM) has experienced
substantial changes in land use land cover with induced socioeconomic activities. This study has
examined the features of land use land cover change and simulated future land use land cover and urban
growth of the GHKM using Land Change Modeler (LCM). To validate the model, the projected 2017 land
use land cover map was compared with 2017 actual land use land cover map. After successful model
validation, the land use land cover map for the years 2024 and 2031 are predicted. The simulated results
showed an expected increase in built-up areas from 10.31% in 2017 to 16.30% in 2031 with the substantial
decrease in farmland from 33.03% to 26.00% and fishponds from 0.97% to 0.83% during 2017—2031.
Forest cover, however, will increase from 45.02% in 2017 to 46.88% in 2031 due to afforestation programs
and reduction in farming activities. The spatial structure analysis of the landscape exhibits more
disperse, heterogeneous, and fragmented landscape in future. Such changes in land use land cover are
attributed to intense socioeconomic development, industrialization, and continuously sprawling urban
fabric in urban pockets at suburban and peripheral areas. This unprecedented urbanization and an
alarming loss of farmland could ultimately threaten to natural resources and food security. However,
timely actions must be taken by urban planners and policy-decision makers to enable sustainable
development as well as the protection of farmlands and other natural resources.
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