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An automatic and non-invasive physical fatigue assessment method for 25 

construction workers 26 

Abstract 27 

The construction industry around the globe is known to have unsatisfactory occupational health 28 

and safety records. One of the major reasons attributed to this phenomenon is high physical demands 29 

and hostile working environments. Construction workers commonly need to work: (1) for a prolonged 30 

period without enough breaks; (2) under harsh climatic conditions; and/or (3) in confined workspaces. 31 

These working environments may increase the risk of physical fatigue. To monitor such fatigue, some 32 

researchers used on-body sensors (e.g., heart rate monitors and surface electromyography sensors) in 33 

construction research. Although these devices allow continuous monitoring of fatigue, they need to be 34 

attached to the worker’s body, which may interfere work performance. Therefore, computer vision has 35 

been developed as an alternative to continuously monitor the posture-based ergonomics of construction 36 

workers. However, the causes of physical fatigue involve factors other than poor postures (e.g., 37 

external loads, worker’ capacity and working procedures). Therefore, a physical fatigue model has 38 

been proposed to evaluate physical fatigue through biomechanical analysis, making it possible to 39 

assess construction workers’ physical fatigue non-invasively and comprehensively. By combining a 40 

computer vision-based 3D motion capture algorithm and the physical fatigue assessment model, for 41 

the first time, the physical fatigue of construction workers can be estimated automatically and non-42 

intrusively. Two laboratory experiments and one field experiment were conducted to validate the 43 

accuracy of the proposed method. Additionally, two case studies were conducted to elucidate the 44 

potential of the new method in evaluating the effects of different site layouts and work-rest schedules 45 

on workers’ physical fatigue levels during different construction tasks. 46 

Keywords: occupational safety and health; construction workers; ergonomic; deep learning; machine 47 

learning; computer vision. 48 
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1. Introduction 49 

The construction industry around the globe is affected by unsatisfactory occupational health and 50 

safety records [1]. One of the major reasons for such health and safety issues is related to high physical 51 

demands of construction tasks. Construction workers usually need to work for a prolonged period 52 

without sufficient breaks, and/or work in harsh climatic conditions/confined work-spaces. Such 53 

working patterns may heighten the risk of developing physical fatigue in construction workers. If 54 

workers continue to work under the fatigued condition, they may be at risk of developing work-related 55 

musculoskeletal disorders (MSDs), making mistakes, reducing productivity and quality of work, as 56 

well as having accidents or fall incidents on construction sites. Therefore, physical fatigue is a severe 57 

occupational health and safety problem [2]. According to the Bureau of Labor Statistics [3], 33% of 58 

all occupational injuries and illnesses on the US construction sites were related to fatigue and 59 

overexertion. Further, hot and humid conditions may accelerate the fatigue development, and increase 60 

the risk of heat stroke and death. For instance, heat strokes arising from hot and humid working 61 

environments claimed 47 deaths in the Japanese industrial sector in 2010 [4]. 62 

The stakeholders in the construction industry, especially those in developed regions, should pay 63 

more attention to fatigue detection and prevention because of their ageing workforces and a shortage 64 

of manpower. For instance, a study in 2013 found that approximately 44% and 12% of the construction 65 

workforce in Hong Kong aged over 50 years and 60 years, respectively [5]. Another study has 66 

projected that there will be a shortfall of 10,000 to 15,000 construction workers from 2017 to 2021 in 67 

Hong Kong [6], which accounts for approximately 5.4% to 8.1% of the total workforce in 2017 [7]. 68 

Given the fact that older workers are more prone to physical fatigue due to declined physical work 69 

capacity and muscle strength, it is paramount to optimize the sustainability of the current construction 70 

workforce by improving their occupational health and safety. Since physical fatigue poses a major 71 

challenge to occupational health and safety, fatigue monitoring and management is utmost important. 72 
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While self-reported questionnaires are traditionally used to evaluate construction workers’ 73 

fatigue [8,9], this data collection method is not pragmatic for continuous fatigue monitoring. Therefore, 74 

some researchers have tried to use on-body sensors to objectively monitor fatigue [4,10–13]. Although 75 

prior studies have proven the concept, attaching multiple sensors to construction workers’ bodies 76 

inevitably interfere their work performance. Further, these sensors may be uncomfortable to wear and 77 

may cause skin irritation. To overcome these limitations, the current research developed a new 78 

approach by adopting a computer vision technology and biomechanical analysis to monitor 79 

construction workers’ physical fatigue. Specifically, a computer vision-based 3D motion capture 80 

algorithm was developed to model the motion of various body parts as captured by an RGB camera 81 

during the performance of construction tasks. Inverse dynamics was used to estimate the joint-level 82 

torque based on the assumptions of a fatigue model. From the empirical findings, the fatigue 83 

assessment model was applied to enable individualized fatigue monitoring. 84 

For the first time, this technology was validated for automatic assessments of construction 85 

workers’ physical fatigue in a laboratory experiment (Section 5.2) and a field experiment (Section 5.3). 86 

This technology has the potential to reduce the overexertion and fatigue of construction workers, and 87 

to improve the occupational health and safety of the construction industry. The development of such a 88 

system will also enable non-invasive fatigue monitoring of workers in various industries other than 89 

construction. 90 

2. Literature review 91 

Fatigue is defined as tiredness and reduced functional capacity that occurs during and at the end 92 

of the workday [14]. Fatigue includes physical fatigue, mental fatigue, and emotional fatigue. The 93 

current study focused on physical fatigue. Numerous methods have been proposed to measure physical 94 

fatigue level, including subjective and objective methods. The subjective method relies on workers’ 95 

self-perceived physical fatigue. Borg rate of perceived exertion (RPE) scale and Borg CR10 scale are 96 

two commonly used scales asking workers regarding their perception of fatigue on a scale from 6 to 97 
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20 or from 0.0 to 12.0 [15], where higher scores indicate more fatigue. The self-report method is easy 98 

to implement but not suitable for investigating construction workers' physical fatigue because: (1) the 99 

reporting process may interrupt the normal work activity; (2) the self-report method only provides the 100 

final fatigue status rather than monitoring the fatigue development process; and (3) the reported data 101 

may be inaccurate/inconsistent given the subjective nature of perceived fatigue. Given the above, it is 102 

important to develop an objective, non-intrusive, continuous and accurate physical fatigue monitoring 103 

method. The following section reviews previously reported objective physical fatigue assessment 104 

methods.  105 

2.1 Physiological indicators 106 

Physical fatigue involves a physiological process, which can be monitored by physiological 107 

indicators such as cardiovascular indicators and electronic indicators. Cardiovascular indicators 108 

include heart rate, skin temperature and breathing rate, which usually increase as a consequence of 109 

high physical strains [13,16,17]. These indicators can be measured by wearable sensors tied/attached 110 

to workers’ body. However, these sensors may hinder workers’ performance during work routine. In 111 

addition, these sensors need to be charged every “several hours” within a day, making it difficult to 112 

monitor physical fatigue for a prolonged period.  113 

A widely-used electronic indicator for physical fatigue detection is surface electromyography 114 

(sEMG) [18]. sEMG is a non-invasive technique to measures the myoelectric activity during muscle 115 

contraction and relaxation cycles [19]. The myoelectric signals are captured by electrodes, then 116 

amplified, filtered and transferred to digital signals. When a muscle develops fatigue, the median 117 

frequency of the digital signal will decrease [20]. Previous studies have used sEMG to measure 118 

construction worker’s muscle fatigue in laboratories [10,21]. Although sEMG can accurately measure 119 

muscle fatigue, the method may not be applicable on the construction sites. Since a pair of sEMG 120 

electrodes should be attached to the skin of each target muscle group, it is infeasible to attach a lot of 121 

electrodes to workers for whole-body muscle/physical fatigue measurements. Further, as sweating and 122 
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body movement can cause significant artifacts to sEMG signals, it is impossible to monitor muscle 123 

fatigue in real time on construction sites. 124 

In summary, while physiological indicators can objectively assess physical fatigue, workers need 125 

to wear some sensors in order to detect physiological changes, which may hinder work performance, 126 

cause discomfort, and may have questionable accuracy for continuous physical fatigue assessments on 127 

construction workers.  128 

2.2 Ergonomics indicators 129 

Ergonomics indicators estimate physical fatigue based on workers’ postural data and external 130 

load data. Such data is mainly affected by the working process (e.g., site layout and work-rest 131 

schedule), which in turn is related to construction site management. Numerous studies have adopted 132 

posture-based methods and computation models to assess/estimate workers’ physical fatigue. This 133 

section provides an overview of various posture analysis methods and modes of data collection.  134 

 Ergonomic indicator-based methods (Table 1) 135 

Posture-based method. The working posture is a critical biomechanical factor leading to physical 136 

fatigue. Previous research evaluated work postures to estimate the risk of physical fatigue development 137 

in construction workers [2]. The posture data was usually collected by observation, 2D cameras, or 138 

wearable motion sensors. Some studies assessed physical fatigue based on joint angles. By observing 139 

the joint angles of various body parts in a given work posture (e.g. trunk flexion/extension angles, 140 

shoulder flexion/abduction angles, and elbow/knee flexion angles), each joint angle was classified into 141 

a particular range of motion category, which is given a specific physical fatigue score [22–24]. Another 142 

method is to first identify the working posture (e.g. standing up, back bending, squatting, etc.) through 143 

observation and then estimate the corresponding physical fatigue based on the posture [25]. Although 144 

awkward postures may increase the risk of physical fatigue, other factors (e.g., lifting construction 145 

materials, or using heavy tools) may also modify the risk of developing physical fatigue. Therefore, 146 
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using the posture-based method alone without considering other factors may underestimate the 147 

presence of physical fatigue. 148 

Posture and exerted force-based methods. Some ergonomic scales assess physical fatigue by 149 

considering both postures and exerted forces, including Key Item Method (KIM) [26], NIOSH lifting 150 

equation [27], Ovako Working Posture Analysis System (OWAS) [28], Occupational Repetitive 151 

Actions (OCRA) [29], Rapid Upper Limb Assessment (RULA) [30], and Rapid Entire Body 152 

Assessment (REBA) [31]. Like the posture-based method, the working posture is rated on these scales 153 

based on observation. When assessing exerted forces, the external forces/loadings are classified into 154 

different categories according to the absolute value, such as 0~5kg, 5~10kg and over 10kg. The overall 155 

physical fatigue score is calculated by summing the posture-based score and the exerted force-based 156 

score. Some scales also consider the work pattern. For example, RULA and REBA take the work 157 

repetitiveness and duration into account. The final physical fatigue score will be higher if a task is 158 

repeated more than four times per minute or lasts for more than a minute.  159 

While these scales are easy to use and can provide quantitative workload assessments, they may 160 

not be suitable for evaluating risk of overall physical fatigue in construction workers because some of 161 

these scales only assess a particular body part (e.g. OCRA evaluates the upper body only). Further, 162 

these scales were originally developed to evaluate the works of manufacturing workers, whose works 163 

mainly involve repetitive motions with external loads in a static posture. However, the works of 164 

construction workers are more diverse and less repetitive, making it difficult to assess physical fatigue 165 

based on repetitiveness or duration alone. Importantly, since using different scales to assess the same 166 

workload may yield different results [26], it is difficult to compare findings across studies. To 167 

overcome these limitations, the current study developed a physical fatigue assessment method that 168 

suits the complex nature of construction activities by using biomechanical calculations.  169 

Biomechanical calculation-based methods. From the exerted forces and postures, biomechanical 170 

analysis can estimate joint workloads based on joint forces or torques. Several joint workload 171 
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estimation tools have been developed based on biomechanical calculations, including 3DSSPP, 172 

OpenSim, and AnyBody Modelling System [32–34]. Specifically, 3DSSPP estimates the joint loading 173 

under a static condition, while OpenSim and AnyBody focus on muscle workload. Both 3DSSPP and 174 

OpenSim have been applied in previous construction industry research to assess workers’ ergonomic 175 

risks, and physical fatigue [35,36]. However, these methods usually require the use of a complex 176 

motion capture system. For example, a typical whole-body motion sensor set for OpenSim requires 177 

the acquisition of 50 markers’ data on the participant’s body using multiple cameras [37]. It is 178 

impractical for workers’ fatigue monitoring on construction sites. 179 

 Modes of data collection (Table 1) 180 

All the aforementioned physical fatigue assessments require the acquisition of kinematic data 181 

(i.e., postures or joint angles) by various data collection methods.   182 

Observation. As mentioned above, this method has been used to collect kinematic data in previous 183 

research [38,39]. However, observation may not be applicable in the construction field. Since the 184 

observation results depend largely on the observer’s experience and subjective judgement, they may 185 

not be accurate enough for physical fatigue analysis. Further, as this method is time-consuming and 186 

labor-intensive, it is infeasible to monitor physical fatigue of multiple workers on a construction site 187 

[40].  188 

Inertial measurement units (IMUs). An IMU is an electronic device that measures three-axis 189 

angular speed and three-axis orientation automatically and accurately. They have been used to collect 190 

construction workers’ kinematic data for ergonomic analysis [2]. Based on the joint angle data and the 191 

posture-based method, the physical fatigue level can be assessed automatically [13,24,25]. The main 192 

disadvantage, however, is the requirement of attaching IMU sensors to the human body, which may 193 

interfere workers’ work. In addition, such sensors may not be suitable for prolonged usage because 194 

they may lead to discomfort [40,41].  195 
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Motion capture systems. Motion capture systems (e.g., the VICON system and Optotrak) are 196 

commonly used in laboratories for 3D motion capture and analysis. To capture motion data, an 197 

examiner needs to set up multiple cameras in a laboratory and then put reflective markers on the 198 

designated locations of an individual’s body. The system estimates the 3D position and movement 199 

trajectory of each marker based on the signals of the reflective markers captured by the cameras. The 200 

reported accuracy of the VICON system is as high as 2 millimeter [42]. The results are usually further 201 

processed by biomechanical calculation software, such as OpenSim, to conduct muscle 202 

loading/biomechanical analysis [33]. However, since these motion capture systems require the 203 

installation of at least 4 cameras within 10 m from the attached reflective markers on the target 204 

worker’s body in order to capture the whole-body posture, it is impractical to use on construction sites 205 

[43]. 206 

Vision-based motion capture methods. These are a non-intrusive solution for the motion capture 207 

of working postures. Depth cameras, such as Kinect, have been proven to be an effective tool to collect 208 

construction workers motion data in various indoor environments [36,44,45]. Depth cameras could 209 

generate range images, of which each pixel includes both RGB value and the distance to the camera. 210 

The 3D human skeleton, i.e. the 3D locations of the key joints, could be estimated based on the range 211 

images. The accuracy of depth cameras, however, might be very low in outdoor environments because 212 

the distance is usually calculated based on the infra-red signals, which are easily interfered under direct 213 

sunlight [45]. To solve this problem, researchers have tried to extract working postures from RGB 214 

images captured by ordinary cameras with the help of deep learning algorithms. Construction workers’ 215 

2D postures have been successfully extracted from RGB images [23,46–48]. From the outputs of 2D 216 

posture recognition methods, postures are automatically classified into different categories (e.g., 217 

squatting, bending or lifting) based on the relative joint angle ranges. However, this method can only 218 

be used for posture-based ergonomic analyses rather than physical fatigue assessments because it 219 

cannot precisely measure joint angles, which prevent the estimation of joint kinematics and loading. 220 
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To conduct detailed physical fatigue assessments on construction sites, it is important to develop 221 

an accurate and non-intrusive 3D motion capture method that suits the outdoor environment. The 222 

aforementioned data collection methods are not suitable for construction sites because: (1) manual 223 

observation is subjective and inaccurate; (2) IMUs and motion capture systems are expensive and may 224 

lead to uncomfortableness; (3) depth camera cannot work in outdoor environments; and (4) 2D posture 225 

recognition methods from RGB images cannot support physical fatigue analysis based on 3D postures. 226 

A recent advance in computer vision, the single-len 3D posture estimation algorithm, provides a 227 

potential solution to solve previous limitations [49]. The algorithm can model a 3D human skeleton 228 

from 2D RGB video frames. When applied on construction sites , this method can collect construction 229 

workers’ 3D joint locations from construction site videos. Compared with previous 3D posture data 230 

collection methods, the method can work in outdoor environments without the need of any wearable 231 

sensors. As such, the single-len 3D posture estimation algorithm was applied in this study to collect 232 

construction workers 3D postures accurately and non-invasively in outdoor environments.  233 

2.3 Muscle fatigue development models (Table 1) 234 

Several muscle fatigue models have been developed to predict physical/muscle fatigue according 235 

to various fatigue development mechanisms [50].    236 

Calcium ions cross-bridge mechanism model. The amount of calcium ions is important for the 237 

muscle fiber contraction. High concentrations of calcium ions can activate ATP (Adenosine 238 

Triphosphate) enzymes, which catalyze the hydrolysis of ATP to release energy for muscle fiber 239 

contraction [51]. Accordingly, a mathematical model, named calcium ions cross-bridge mechanism 240 

model, was proposed to simulate the negative relation between calcium ions and muscle fatigue. The 241 

model has been validated in a prior experiment [52]. Although the model can predict muscle fatigue 242 

correctly, it is not suitable for industrial application due to its complexity. For example, nearly 20 243 

variables are required for the estimation of quadriceps fatigue [50]. In addition, some variables (such 244 
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as normalized amount of calcium-ion-troponin complex, the duration of each muscle activation, and 245 

the number of activations) are difficult to measure during the construction work routine. 246 

Force-PH relationship model. The accumulation of lactic acid in a muscle is the major cause of 247 

muscle fatigue.  The close relation between low pH and decreased muscle forces has been observed 248 

due to the increased intracellular concentrations of lactate and hydrogen ion [51]. According to the 249 

muscle-force relation, a mathematical model was developed to predict muscle fatigue through curve 250 

fitting of the temporal pH level in the process of muscle activation and recovery [53]. Although the 251 

muscle activation and recovery curve fitted well with the pH level, no prior experiment has validated 252 

the model. Further, it is infeasible to measure the construction workers’ intracellular pH on 253 

construction sites continuously and non-intrusively.  254 

Joint torque model. This new model was proposed to predict physical fatigue based on joint torque 255 

[54]. The model was first theoretically built based on the muscle motor unit theory [55]. The theory 256 

assumes that a muscle consists of many motor units with different force generation capabilities and 257 

recovery properties [55]. Some motor units generate large forces and develop fatigue quickly, but they 258 

also recover quickly after fatigue. Conversely, some motor units generate smaller amount of forces for 259 

a longer duration, but they recover slowly after contraction. As a result, when a muscle contracts, the 260 

muscle capacity should first decrease rapidly then slowly; and during the recovery process, the muscle 261 

capacity should also increase first rapidly then slowly. Muscle fatigue decreases the capacity of 262 

corresponding body segments to cope with the external load, which can be expressed as the physical 263 

fatigue level of a joint in the model. The model simulates the suggested joint fatigue and recovery 264 

process through the modelling of joint torques, maximum voluntary contraction and fatigue/recovery 265 

rate. The model has been validated in a series of human studies on the elbow joint fatigue during some 266 

static tasks [54,56]. The model has also been applied in virtual construction environments to assess 267 

fatigue level of shoulder joints of construction workers [57]. Given the simplicity and applicability of 268 
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the model, it has the potential to be applied on construction sites to assess workers’ physical fatigue 269 

level although previous studies only validated the model in laboratory or virtual environments.  270 

2.4 Summary 271 

While various posture analysis methods and muscle fatigue models have been developed, not all 272 

of them can be applied to monitor physical fatigue in construction workers in the field. Table 1 shows 273 

the comparisons of different physical assessment methods and modes of data collection based on 274 

assessment indicators, accuracy, focused body parts, working pattern (if the method requires repetitive 275 

working pattern), working environments (lab environments/indoor environments/outdoor 276 

environments), and intrusiveness. The following research gaps are identified from the comparisons: 277 

1) Some data collection methods affect accuracy of kinematic data. For example, the self-report 278 

methods are not accurate/reliable due to the subjectivity of the reported data. The accuracy of the 279 

observed posture data is examiner-dependent. In addition, although some methods estimate 2D 280 

posture data from RGB images, the 2D images can only be used to determine the working postures 281 

(e.g. squatting or standing) rather than accurate joint positions or angles.  282 

2) Since the works of construction workers are diverse, different body segments are susceptible to 283 

fatigue differently. Therefore, a good fatigue assessment should estimate the physical fatigue level 284 

of the whole body. Although some methods can accurately assess physical fatigue, they only focus 285 

on certain body parts. For example, a pair of sEMG electrodes can only measure fatigue of a single 286 

muscle, while the calcium-ion cross-bridge model only estimates quadriceps fatigue.  287 

3) As the working procedures of many construction tasks do not involve monotonic repetitive 288 

movements, a pragmatic fatigue assessment method should not be restricted to a fixed working 289 

pattern. However, some existing posture-based ergonomic evaluation methods determine physical 290 

fatigue risk scores according to the duration or frequency of a particular working posture [58] , 291 

which is not suitable for construction tasks. 292 
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4) Many construction workers work outdoor, thus a good physical fatigue assessment method for 293 

construction workers should work well in outdoor environments. Some data collection methods, 294 

such as sEMG sensors and depth cameras, can only work in laboratory or indoor environments. 295 

5) Some sensor-based methods are invasive. For example, the sEMG electrodes need to be directly 296 

attached to the workers’ skin; the IMU sensors need to be tied tightly to the workers’ limbs. Such 297 

sensors may result in discomfort and compromised work performance.  298 

In short, a practical fatigue assessment method for construction workers should be accurate and 299 

non-invasive and focuses on whole-body fatigue without being limited to a given environment or 300 

working pattern.    301 
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Table 1 The comparison of physical fatigue assessment methods and modes of data collection  302 
Assessment method Assessment indicators Data collection 

methods 
Accuracy Body parts Working 

pattern 
Environment Invasiveness  

Su
bj

ec
tiv

e 

Self-report Self-perception of physical fatigue Questionnaire 
Interview 

Low (subjective 
data) 

Whole-body No 
restriction 

Outdoor Intermittent recording 
procedures 

O
bj

ec
tiv

e 

Physiological 
indicators 

Cardiovascular 
indicators 

Heart rate, skin temperature or 
breathing rate 

Wearable sensors High Whole-body No 
restriction 

Outdoor Discomfort due to the 
sensor attachment 

Myoelectric indicator The median frequency of sEMG 
signals 

sEMG electrodes High Low back No 
restriction 

Lab Discomfort due to the 
attachments of 
electrodes 

Ergonomic 
indicators 

Pose or/and exerted 
forces- based 
assessments 

Ergonomic risks due to awkward 
postures, large exerted forces, and 
prolonged or repetitive task patterns 

Observations by 
an examiner 

Low (observer 
dependence) 

Whole-body Repetitive 
and regular 

Outdoor Non-invasive 

IMU sensor High Whole-body No 
restriction 

Outdoor Discomfort due to the 
attachments of 
sensors 

Depth Camera High Whole-body No 
restriction 

Indoor Non-invasive 

RGB camera + 
2D posture data 

Low (Only posture 
classification) 

Whole-body No 
restriction 

Outdoor Non-invasive 

Biomechanical 
analysis 

Joint-level physical fatigue Motion capture 
system 

High Whole-body or 
body segments 

No 
restriction 

Lab More than ten 
markers and four 
cameras 

Muscle fatigue 
models 

Calcium ions cross-
bridge model 

Muscle-level physical fatigue - High Quadriceps No 
restriction 

Lab - 

Muscle force-pH 
model 

Maximum muscle capacity - High - No 
restriction 

Lab - 

Joint-torque model Muscle- or joint- level physical 
fatigue 

RGB camera + 
3D posture data 

High Whole-body or 
body segments 

No 
restriction 

Outdoor Non-invasive 

 IMU represents inertial measurement unit; sEMG represents surface electromyograph. 

 303 

 304 
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3. Research objectives and contributions 305 

Given the abovementioned research gaps, the aim of this study was to develop an accurate and 306 

non-invasive physical fatigue assessment method that could be suitable for construction field 307 

environments using the 3D motion data collection method and joint-torque fatigue model. In particular, 308 

accurate 3D motion data is collected from RGB video frames, which continuously collect workers’ 3D 309 

motion data without the need of attaching any sensors to the workers on construction sites. The 310 

resulting data can be entered the joint-torque fatigue analysis model without any restrictions on 311 

working patterns. Additionally, the model can estimate workers’ fatigue at the whole-body-level and 312 

the joint-level. The main contributions of this research were to: (1) apply a deep-learning-based method 313 

to automatically and continuously collect construction workers’ 3D motion data from video frames; 314 

(2) automatically evaluate construction workers’ physical fatigue on construction sites. Such a method 315 

has the potential to assist the academia and the industry to understand and prevent physical fatigue of 316 

construction workers by continuous and automatic fatigue assessments. 317 

4. Methodology 318 

To develop a new quantitative physical fatigue evaluation method for construction workers, it 319 

involved three steps (Figure 1). The first step was to collect 3D motion data automatically and non-320 

invasively using an ordinary 2D RGB camera. The second step involved the measurements of the 321 

exerted force and human body parameters, which enabled the estimation of joint torques. The third 322 

step involved the estimation of a physical fatigue index based on a muscle fatigue development model. 323 

Figure 1 An overview of the physical fatigue assessment method 324 
 325 

4.1 3D motion captured from 2D video 326 

To ensure the non-intrusive collection of 3D motion data for biomechanical analyses, the 3D 327 

motion data of the target worker must be collected accurately and automatically without interfering 328 



16 

 

work activities. Therefore, a single RGB camera-based 3D motion capture algorithm was developed 329 

to solve this problem [49]. Figure 2 layouts the framework of the algorithm. 330 

Figure 2 The single RGB camera-based 3D motion capture algorithm 331 
 332 

The algorithm first identifies key joints (neck, shoulders, elbows, wrists, hips, knees and ankles) 333 

and the locations of the joint-related pixels in the 2D RGB images using Stacked Hourglass Networks 334 

[59]. The network is composed of multiple hourglass modules placed end to end. Each hourglass model 335 

is a convolutional neural network, which extracts features from an RGB image through convolution 336 

operations. An hourglass module first reduces the original RGB image to different resolutions, and 337 

then extracts and combines features across multiple resolutions so that the hourglass module considers 338 

both local and global features, corresponding to the joint information and the whole-body information 339 

of the target individual. From the 2D locations of each joint, another network is then trained to infer 340 

the 3D locations of each joint [49].  The basic assumption of the network is that the ratio of two bones 341 

of the same person should be a constant. The network was trained on MPII datasets, which contain the 342 

2D and 3D pose data of postures such as squatting, standing and walking [60]. Then the network was 343 

trained to minimize the differences in bone length ratios between the inferred 3D postures and the 344 

ground truth 3D postures in the MPII dataset. 345 

4.2 Inverse dynamics for joint-level torque analysis 346 

The biomechanics of human musculoskeletal system are complex because the mechanical 347 

properties of bones, joints, tendons, and muscles of individuals are affected by various factors (e.g., 348 

age, gender, weight and height). Additionally, the stress-strain relations of bones, joints, tendons, and 349 

muscles also vary with the exerted forces. To facilitate the internal load analysis, this research made 350 

the following assumptions in the calculation: (1) the human body was simplified as a lever system 351 

connected with hinge joints; (2) each lever was rigid with a constant length regardless of the external 352 

load; and (3) workers’ motions on construction sites were slow and steady, which meant the lever 353 

system was in an equilibrium status. Based on the above assumptions, the force balance equation and 354 



17 

 

torque balance equation were used to solve the joint torques. Figure 3 presents the simplified human 355 

skeleton model for the biomechanical analysis, which contains 15 key joints including the torso and 356 

four limbs. The coordinates are a right-hand-rule system. The positive direction of the y-axis is upward. 357 

Figure 4 shows the force and torque of a given segment. 358 

Figure 3 The simplified biomechanical human skeleton model 359 
Figure 4 Forces and moments of a given segment 360 

 Computing joint reaction forces 361 

Newton’s equation was used to calculate joint reaction forces. For a given segment, the equation 362 

can be expressed as Eq.1. 363 

 !!" + !#$ + # = % Eq.1 

Where, 364 

!!" = ('!",& , '!",' , '!",() ∈ ℝ) is the joint reaction force at the parent joint [N]; 365 

!#$ = ('#$,& , '#$,' , '#$,() ∈ ℝ) is the joint reaction force at the child joint [N]; 366 

# = (0,−./, 0) ∈ ℝ) is the gravity of the segment [N]; m is the mass of the segment [kg]; g=9.8 367 

m/s2; 368 

The positive direction indicates the upward direction, which is the same as the positive direction 369 

of the y-axis in Figure 3. 370 

In this research, the mass of each segment (m) was calculated based on the segment percentage 371 

of total body weight, which could be referred to [61] for details. Briefly, according to the skeletal 372 

model in Figures 3, there is no child joint reaction force in the force equilibrium equations of lower 373 

arms and shanks. The forces are replaced with ground reaction force and hand load forces due to the 374 

tools or materials holding in hands. In this research, the hand load force was assumed to be the weight 375 

of the tools/materials, and the ground reactions force was assumed to be the sum of hand load force 376 

and the participant’s body weight. Given the ground reaction forces, the joint reaction forces of knees 377 

could first be calculated, while the joint reaction forces of other joints were estimated hieratically.  378 
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 Computing joint torques 379 

The torque balance equation was used to calculate joint torques. Figure 4 shows the torques on 380 

a given segment, where A is the parent joint, B is the child joint, and C is the gravity center point.  The 381 

sum of all the torques acting on the parent joint is equal to zero. The torques include parent joint torque, 382 

child joint torque, and the torques generated from the segment’s self-weight and the joint reaction force 383 

on the child joint. The torque generated from the parent joint reaction force is zero. Eq. 2 is the torque 384 

balance equation. 385 

 0*+ + 1, + 1-!" + 1./ = % 

00 =	3455555⃗ × 8 = r3:55555⃗ × 8 

1-!" = 3:55555⃗ × ;12 

 

Eq.2 

where 1!" is the reaction torque at the parent joint A; 13  is the torque produced by  #; 1-!" is the 386 

torque produced by  !#$; 1./ is the reaction force at the child joint B. The unit of torque is [N·m]. 387 

The positive direction is clockwise.  388 

3455555⃗  is the vector from the parent joint to the center of mass of the segment; 3:55555⃗  is the vector from 389 

the parent joint to the child joint; r is the ratio of 3455555⃗  to 3:55555⃗ , which represents the location of the center 390 

of mass. The value of r is given in [61]. 391 

4.3 Joint physical fatigue assessment 392 

This module aimed to determine joint physical fatigue according to the current loads on joints 393 

and the associated load history of these joints. The fatigue and recovery model developed by Ma et al. 394 

[54] was applied to predict construction workers instantaneous and cumulative fatigue alongside the 395 

posture and pressure data. 396 

The instantaneous joint physical fatigue index	<'(=)  is defined as the decrease of joint capacity 397 

in this paper (Eq.3). >45& represents the maximum joint capacity, which means the maximum torque 398 

that the joint can hold. >674(=) represents the current joint capacity. At the start of a task, the joint 399 
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capacity >674(=) equals to >45&, so <F(t) = 0. In work status, the joint capacity >674(=) will decrease, 400 

so <F(t) will increase. In rest status, the joint capacity >674(=) will increase, so <'(t) will increase. 401 

Figure 5 represents the above process. 402 

 
<'(=) =

>45& − >674(=)
>45&

× 100	
 

Eq.3 

 403 

Figure 5 An example of the instantaneous joint physical fatigue index in work and rest status 404 
 405 

The maximum joint capacity >45& is estimated based on the correlation between ages, gender, 406 

weights, height and ethnicities from Shaunak, Ang et al. (1987) and Meldrum, Cahalane et al. (2007) 407 

[62,63].  408 

The current joint capacity >674(=) at work state was simulated based on the muscle motor unit 409 

theory [55]. According to the theory, muscles generate torques because of the activation of motor units. 410 

Some units have a high muscle force generation capacity, but the capacity decreases rapidly (easy to 411 

fatigue). Other units have a lower muscle force generation capacity, which decreases slowly (fatigue 412 

resistant). When a given muscle is activated to work against a large external force, both type of motor 413 

units will be activated but the latter one would last longer. Based on the above theory, the joint capacity 414 

decreases more rapidly under a higher workload because motor units responsible for generating large 415 

force would show fatigue easier. Further, under the same constant workload, the rate of joint capacity 416 

reduction will decelerate [55]. Eq.4 depicts the above process, where k is a constant value, and equals 417 

to 1 min-1. >(=) means the joint torque at time t, which is the calculation results of 4.2.2. >674(=) can 418 

be calculated as the integral of  dΓ89:(t)/dt	 (Eq.5). 419 

 E>674(=)
E=

= −F
>674(=)
>45&

>(=) Eq.4 

 
>674(=) = >674(=;) GHI(−

F
>45&

J >(K)EK
<

<#
) Eq.5 
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 420 

The current joint capacity >674(=) at rest state. When the muscles of a certain body part are in 421 

a resting state, the respective joint capacity will recover. As shown in Figure 5, the joint muscle 422 

capacity increases when a worker is taking a rest. According to the muscle motor unit theory, the 423 

recovery process is represented by (>45& − >674(=)) in Eq.6, where R is set as 2.4 min-1, indicating 424 

the average rate of recovery according to Liu, Brown et al. (2002)[65]. >674(=) can be calculated as 425 

the integral of  dΓ89:(t)/dt	 (Eq.7). 426 

 E>674(=)
E=

= L(>45& − >674(=)) Eq.6 

 >674(=) = >674(=;) + (>45& − >674(=;))(1 − G=><) Eq.7 

 427 

The cumulative joint physical fatigue index		M'(=) development speed is positively correlated 428 

with the external load and negatively related to muscle strength capacity [64]. The formula of the joint 429 

physical fatigue model is expressed in Eq.8, where t represents time. M'(=) represents cumulative joint 430 

physical fatigue level. In Eq.8, >45&/>674(=)  is the reciprocal of current relative joint capacity, 431 

representing the personal factors. Γ(t)/>674(=)  is the current relative joint load, representing the 432 

external factors.  433 

 EM'(=)

E=
=

>45&
>674(=)

>(=)
>674(=)

	
 

Eq.8 

 434 

Finally, given >674(=), the cumulative joint physical fatigue index  M'(=) can be calculated as 435 

the integration of EM'(=) E=⁄ . Figure 6 is an example of the cumulative joint physical fatigue index 436 

M'(=), which increases rapidly in work state due to the decrease in muscle capacity and increases 437 

slowly or even decreases in rest state due to the increase of the muscle capacity.  438 

Figure 6 An example of the cumulative joint physical fatigue index at the work and rest states 439 
 440 
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In addition, in this study, the instantaneous/cumulative whole-body physical fatigue indices are 441 

defined as the average of the instantaneous/cumulative joint physical fatigue indices of all joints of an 442 

individual. 443 

5. Experiments and results 444 

To validate the accuracy and usability of the proposed method, three experiments were 445 

conducted to validate the proposed approach during some construction tasks: 1) a laboratory 446 

experiment to validate the accuracy of the motion capture method; 2) a laboratory experiment to 447 

validate the accuracy of the physical fatigue assessment method; and 3) a field experiment to validate 448 

the usefulness of the new approach in estimating physical fatigue. 449 

5.1 Testing the accuracy of the 3D motion estimation method 450 

 Experiment design 451 

This experiment aimed to validate the accuracy of the 3D motion estimation method by comparing 452 

the estimated 3D joint locations from video image frames and the ground truth 3D joint locations 453 

measured with an IMU system (3-Space™ Wireless 2.4GHz DSSS, OH, USA).  454 

Participants: A healthy male graduate student, aged 27 years, was recruited to perform three 455 

simulated construction tasks in a laboratory, including material handling, plastering, and rebar tying. 456 

He could terminate the task if he experienced discomfort.  457 

Equipment: The participant was required to wear the IMU system to determine the ground truth 458 

for the 3D motion data. The IMU sensor has an accuracy of 1° [66]. Thirteen IMU sensors were tightly 459 

tied to the head, chest, back, waist, upper arms, forearms, thighs and shanks to determine the joint 460 

positions (Figure 7).  At the same time, an RGB video camera captured the participant’s postures 461 

during the task. The sampling frequency of the IMU and video camera were 50 Hz and 30 fps, 462 

respectively.  463 
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Simulated construction tasks: After putting on the IMU sensors, the participant was instructed to 464 

perform a simulated material handling task, a plastering task, and a rebar tying task. The material 465 

handling task involved picking up 4 bricks from the floor with both hands and then carry the bricks to  466 

to a target place on the floor 3 meters away. The participant needed to repeat the task for 10 times. For 467 

the plastering task, the participant mimiced the motion of plastering an area of 5 meters width and 2 468 

meters height. For the simulated rebar tying task, the participant tied a mesh of plastic bars at every 469 

intersection. The mesh of the plastic bars consisted of 5 x 5 bars placed perpendicular to one aonther 470 

to form a mesh. The distance between the bars in both direction was 30 centimeters.  471 

To calibrate the IMU system before each task, the paricipant was requried to stand with both feet 472 

closed together and both arms stretched out to the sides and held parallel to the ground to form a T 473 

shape. The IMU data was synchronized with the RGB images during the task performance. 474 

 Experiment results 475 

The data from the IMU and the synchronized images were compared to assess the accuracy of 476 

the RGB image-based 3D motion recognition results. Table 2 shows the error of the 3D motion capture 477 

method of the key joints, including head, left shoulder (LS), right shoulder (RS), left elbow (LE), right 478 

elbow (RE), left wrist (LW), right wrist (RW), left hip (LH), right hip (RH), left knee (LK), right knee 479 

(RK), left ankle (LA) and right ankle (RA). The error was measured as the distance between the 480 

estimated joint locations and the ground truth joint locations [49,67].  The mean error of the 3D 481 

location of each joint was 3.90cm with a standard deviation of 1.59cm.   482 

Figure 7 The inertial measurement unit sensors and the tasks of the laboratory experiment 483 
 484 

Table 2 The error of the 3D motion capture method                                                                  unit: cm 485 
Task  Head LS RS LE RE LW RW LH RH LK RK LA RA Mean 

Rebar 

tying 

Mean  

(SD)* 

6.12 

(1.99) 

4.17 

(1.22) 

3.11 

(1.19) 

4.76 

(1.15) 

4.38 

(1.11) 

5.40 

(1.24) 

5.79 

(1.10 

0.88 

(0.32) 

0.88 

(0.32) 

0.88 

(0.32 

1.86 

(0.89) 

3.62 

(2.21) 

4.10 

(2.45) 

3.53 

(1.40) 

Brickl

aying 

Mean  

(SD) 

7.94 

(1.94) 

5.69 

(1.36) 

5.58 

(1.25) 

4.23 

(0.88) 

3.71 

(0.86) 

6.38 

(1.02) 

5.57 

(1.27) 

1.13 

(0.35) 

1.13 

(0.35) 

1.13 

(0.35) 

3.02 

(1.20) 

9.10 

(1.62) 

9.47 

(1.66) 

4.93 

(0.93) 

Plaste

ring 

Mean  

(SD) 

10.38 

(1.45) 

8.85 

(1.01) 

8.77 

(1.31) 

7.58 

(0.93) 

8.98 

(1.95) 

10.31 

(1.07) 

12.97 

(2.00) 

0.58 

(0.17) 

0.58 

(0.17) 

0.58 

(0.17) 

2.11 

(1.00) 

2.74 

(1.22) 

3.14 

(1.24) 

3.24 

(1.32) 
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Mean  

(SD) 

8.14 

(2.26) 

6.24 

(1.70) 

5.82 

(1.93) 

5.52 

(1.30) 

5.69 

(1.70) 

7.36 

(1.71) 

8.11 

(2.27) 

0.87 

(0.34) 

0.87 

(0.34) 

0.87 

(0.34) 

2.33 

(1.03) 

5.16 

(2.84) 

5.57 

(2.96) 

3.90 

(1.59) 

*SD represents standard deviations 

** LS represents left shoulder; RS represents right shoulder; LE represents left elbow, RE represents right elbow; LW represents left wrist; RW 

represents right wrist; LH represents left hand; RH represents right hand; LK represents left knee; RK represents right knee; LA represents left ankle; 

RA represents right ankle.  

 486 
5.2 Testing the accuracy of the physical fatigue assessment method 487 

This experiment aimed to validate the accuracy of the physical fatigue assessment method by 488 

comparing the average joint capacity with the participant’s heart rate, which is a classical and widely-489 

used assessment indicator for physical fatigue assessment [15].  490 

 Experiment design 491 

Participants: We recruited four health male participants, aged between 20 and 30 years to perform 492 

a simulated material handing task in a laboratory. They were allowed to terminate the task had they 493 

experienced intolerable fatigue, chest pain, shortness of breath, or muscle cramp. The demographic 494 

parameters (age, gender, height, and weight) of the participants were documented before the 495 

experiment.  496 

Equipment: The participants wore a heart rate monitor at the chest (EquivitalTM LifeMonitor, UK) 497 

to monitor the heart rate. The task would be terminated had a participant’s heart rate exceeded the 498 

corresponding maximum heart rate (90%* [(220 – age) - resting heart rate] + resting heart rate) for 499 

more than 2 minutes. The heart rate data was recorded every five seconds automatically by the heart 500 

rate monitor. At the same time, an RGB camera (1,920�1,080 pixels per frame, 50 frames per second) 501 

captured the participant’s postures during the task. 502 

Simulated material handling task: To ensure the accuracy of the heart rate monitoring, the 503 

experiment was conducted in a controlled laboratory environment (25℃). After putting on the heart 504 

rate monitor, participants were required to perform a simulated material handling task with both arms. 505 

Notably, the participant was instructed to lift a box (6 kg, 37 cm * 33 cm * 26 cm) from a 3 m x 4 m 506 

working platform (1 m height) and carried the box with bilateral elbows at 90º flexion to randomly 507 
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walk around the platform with for about 5 minutes. The participant was given a five-second break 508 

every minute.  509 

Data process: The normalized heart rate was standardized to the respective the heart rate at 510 

baseline (set as 100). The video data and the demographic data were used to calculate the current joint 511 

capacity and the maximum joint capacity of eight key joints (both shoulders, elbows, hips and knees). 512 

First, the eight joint capacity results were converted from 50 fps to 0.2 fps by averaging the results 513 

over every 250 frames. From the current joint capacity and the maximum joint capacity, the 514 

instantaneous joint physical fatigue indices were calculated according to Eq.3. Finally, the 515 

instantaneous whole-body physical fatigue index was calculated as the average of the eight 516 

instantaneous joint physical fatigue indices. Pearson’s correlation test was conducted to quantify the 517 

correlation between the average instantaneous whole-body physical fatigue index and normalized heart 518 

rate.  519 

 Experiment results 520 

Four participants (mean age of 28.3 years, mean height of 1.73m, and mean weight of 60.33kg) 521 

were recruited (Table 3) participated in the study.  522 

Table 3 The demographic parameters of the four male participants and the corresponding video 523 
records 524 

Participant Height [m] Weight [kg] Age [years] Task duration [second] Total number of frames 
#1 1.78 69.3 30 326 16,300 

#2 1.70 61 24 260 13,000 

#3 1.73 60 29 298 14,900 

#4 1.69 51 30 309 15,450 

 525 

Figure 8 shows the comparison between the calculated instantaneous whole-body physical 526 

fatigue index and the measured heart rate. The instantaneous whole-body physical fatigue index (solid 527 

line) increased in work state and decreased in rest state. Similarly, the normalized heart rate (dotted 528 

line) increased during work and decreased at rest. Figure 8 shows that the two lines have similar trends. 529 

Pearson’s correlation coefficients showed significant positive correlations between the instantaneous 530 

whole-body physical fatigue index and the normalized heart rate (p < 0.01, Table 4). 531 
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Figure 8 The comparisons of the average instantaneous physical fatigue index and the 532 
normalized heart rate of the four participants 533 

 534 
Table 4 The results of Pearson's correlations between average instantaneous physical fatigue indices 535 
and normalized heart rates of different individuals 536 

Participant Correlation coefficient p-value 
#1 0.74 2.33�10

-8 

#2 0.74 6.28�10
-7

 

#3 0.78 1.63�10
-7

 

#4 0.68 2.37�10
-4

 

 537 

5.3 Testing the usefulness of the physical fatigue assessment method  538 

This experiment aimed to validate the usefulness of the physical fatigue assessment method 539 

through a scaffolding task and a masonry task. One participant was recruited to perform the scaffolding 540 

task and another participant was recruited to perform the masonry task. 541 

 Experiment design 542 

For the scaffolding task, the participant was instructed to construct a cube with two-meter-long 543 

steel tubes and couplers, as shown in Figure 9. The construction site layout is shown in Figure 10. The 544 

working area was the location where the cube was built. The storage area was the place where the steel 545 

tubes and couplers were stored. The straight-line distance from the storage area to the work area was 546 

about 6 m. During the experiment, the participant first carried a tube weighted approximately 12 kg 547 

from the storage area to the working area, then assembled the tubes with couplers. This process was 548 

repeated for 16 times to finish the task. The 16 times were chosen because our pilot study showed that 549 

this number of repetitions caused fatigue in the participant. Two RGB cameras (smartphone cameras) 550 

were fixed on tripods to record the participants’ motion. The height of the tripods was 1.2 m. The 551 

tripods were 3 meters away from the working area  (Figure 10). 552 

Figure 9 The process of the scaffolding task and the finished cube 553 
 554 

Figure 10 The site layout of the scaffolding task 555 
 556 

For the masonry task, the participant was asked to build a concrete block wall as shown in Figure 557 

11. Each concrete block weighted approximately 16kg. Concrete blocks were placed 1 m away from 558 
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the target concrete block wall location. The thickness of the wall was 190 mm and the height was 1,520 559 

mm. The wall comprised eight layers. The width of each layer was either 780 mm or 970 mm (Figure 560 

11). To build the wall, the participant first bent knees to pick up a block, then turned around to lay the 561 

block. The motion was repeated until a layer of the brick wall had been properly placed. Then the 562 

participant checked the layer with a level and evened it out with a thicker layer of mortar. The 563 

procedure was repeated until the target wall was built. Two RGB cameras (smartphone cameras) were 564 

fixed on tripods to record the participants’ motion. The height of the tripods was 1.2 m. One of the 565 

tripods was 3 meter away from the working area, while the other one was 1 meter away from the 566 

working area (Figure 12).  567 

Figure 11 The process of the masonry task and the finished concrete block wall 568 
Figure 12 The site layout of the masonry task 569 

 Experiment data 570 

The demographic data (Table 5) and the video records of the two tasks (Table 6) were entered 571 

to the fatigue model.  572 

Table 5 The demographic parameters of the participants 573 
Participant Height [m] Weight [kg] Age Gender 

The scaffolder 1.70 75 27 Male 

The masonry 1.75 71 40 Male 

 574 
Table 6 The information of the video records of the two experiment tasks 575 

Task Duration [second] Frame size Data rate Frame rate [fps] No. of frames 
Scaffolding 1,433 640�480 45,00kbps 30 42,990 

Masonry 378 11,330 

 576 
Data processing. The anthropological parameters of the participants were used to estimate the 577 

respective body segment mass, the location of the center of mass of each body segment, and maximum 578 

joint capacity as explained in Section 4.3. To eliminate the effects of visual obstruction, two cameras 579 

recorded the participants’ motions simultaneously. The videos from two cameras were compared frame 580 

by frame and the one with fewer obstructions was selected to eliminate the effects of obstructions by 581 

the scaffold or the concrete brick wall. 582 
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 Experiment results 583 

Figure 13a-13d show the instantaneous and cumulative joint physical fatigue indices of eight 584 

joints (bilateral shoulders/elbows/hips/knees) during the scaffolding task and the masonry task. The 585 

instantaneous joint physical fatigue index reflects the specific fatigue level of each frame (Eq.3), while 586 

the cumulative joint physical fatigue index reflects the accumulated fatigue level from the start to a 587 

certain frame (Eq.8).  588 

Figure 13a The instantaneous joint physical fatigue index of the key joints during the 589 
scaffolding task 590 

 591 
Figure 13b The cumulative joint physical fatigue index of the key joints during the scaffolding 592 

task 593 
 594 

Figure 13c The instantaneous joint physical fatigue index of the key joints during the masonry 595 
task 596 

 597 
Figure 13d The cumulative joint physical fatigue index of the key joints during the masonry task 598 

 599 
 600 

In Figure 13a and Figure 13c, there was a general increase in the instantanuous joint phyiscal 601 

fatigue indices over time during both tasks. It is noteworthy that there were significant fluctuations in 602 

the instantaneous joint physical fatigue curves of hips and knees during the scaffolding task (Figure 603 

13a). The fluctuations might be attributed to the fact that the participant needed to return to the storage 604 

area without carrying any weights after fixing a steel tube. The participant’s body segments were in a 605 

relaxed state without staying in an awkward posture or carrying an external load. Thereby, the 606 

instantaneous joint physical fatigue indices of the eight joints recovered during that period.  607 

Figure 13b and 13d show the cumulative fatigue levels of the eight key joints (bilateral 608 

shoulders/elbows/hips/knees) during the two tasks. All cumulative joint physical fatigue level curves 609 

during the two tasks show a continuous increasing trend. When the instantaneous joint physical fatigue 610 

indices increased, the cumulative joint physical fatigue indices increased sharply. Conversely, when 611 

the instantaneous joint physical fatigue indices decreased, the joint cumulative physical fatigue indices 612 

increased slowly or even decreased.  613 
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As is shown in Figure 13a-13d, the proposed physical fatigue assessment method could estimate 614 

joint-level physical fatigue development over time. Figures 13b and 13d demonstrate that the 615 

participant’s lower limbs (including both hips and knees joints) had higher cumulative fatigue levels 616 

than upper body joints. Specifically, the left hip and the right knee demonstrated the highest and the 617 

second highest cumulative fatigue levels. This phenomenon suggested that these two joints were easier 618 

to fatigue. In the masonry case (Figure 13c and 13d), the participant’s left knee and left hip had the 619 

highest and the second highest fatigue levels. The final cumulative joint physical fatigue index of the 620 

left leg was about five times higher than the right leg. This indicated that the participant might involve 621 

more asymmetrical weightbearing during masonry task. 622 

6. Case studies: assessing construction worker’s physical fatigue under different working 623 

conditions 624 

6.1 Case #1: The influence of construction site layout on physical fatigue level 625 

Different construction site layout may result in different working postures and working 626 

durations, which may affect fatigue and productivity. Taking the scaffolding task as an example. If the 627 

distance between the working area and the storage area increases, workers need to carry the tubes for 628 

a longer period. However, workers also benefit from a longer resting period when they return to the 629 

storage area without carrying an external load. As such, the proposed physical fatigue assessment 630 

method can help provide objective comparisons between various construction site layouts to improve 631 

productivity and prevent physical fatigue.  632 

Given the above, the objective of this case study was to compare the effects of different distances 633 

between the work area and the storage area on physical fatigue level of an individual during a 634 

scaffolding task. In particular, the distances between the working area and the storage area was set at 635 

3m, 6m and 12m (similar to the scaffolding task in Experiment 5.3).  636 
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Figure 14a and 14b illustrate the instantaneous and cumulative whole-body physical fatigue 637 

indices for completing the scaffolding task among three different site layout plans. Figure 14a and 14b 638 

show that longer the distance between the work area and the storage area, lower the fatigue level. 639 

Figure 14c shows the final cumulative whole-body physical fatigue indices for completing the task 640 

under different conditions. The final cumulative fatigue levels in Figure 14c are equivalent to the 641 

whole-body cumulative physical fatigue indices at the end of the scaffolding task in Figure 14b. Figure 642 

14d demonstrates the durations for completing the task under the three conditions. Figure 14c and 14d 643 

highlight that longer the distances, lower the final whole-body cumulative physical fatigue index but 644 

longer task completion time. In other words, there was a trade-off between alleviating the risk of 645 

physical fatigue and reducing productivity. 646 

Figure 14a The comparison of the instantaneous whole-body physical fatigue indices during the 647 
scaffolding task with different distances between the working area and storage area (3m/6m/12m) 648 

 649 
Figure 14b The comparison of the cumulative whole-body physical fatigue indices during the 650 

scaffolding task with different distances between the working area and storage area (3m/6m/12m) 651 
 652 

Figure 14c The comparison of the final cumulative whole-body physical fatigue indices after the 653 
scaffolding task with different distances between the working area and storage area (3m/6m/12m) 654 

 655 
Figure 14d The comparison of the duration of the scaffolding task with different distances 656 

between the working area and storage area (3m/6m/12m) 657 
 658 

6.2 Case #2: The influence of work-rest schedule on fatigue level 659 

While it is well known that taking proper breaks are an effective way to mitigate physical fatigue, 660 

construction workers usually do not have enough time to rest at work. This experiment aimed to 661 

evaluate the influences of rest on fatigue mitigation by quantitative fatigue assessments. 662 

In Experiment 5.3, the worker performed the masonry task continuously without any breaks. In 663 

this case study, the worker had a rest after finishing each layer of the wall. The rest time was set at 5 664 

and 10 seconds. The fatigue assessment results were shown in Figure 15. Compared with continuous 665 

working, taking short breaks slowed down the extent of instantaneous whole-body physical fatigue 666 

during the masonry task. Continuous working without a break led to approximately 75% decreases in 667 



30 

 

worker’s average maximum joint capacity at the end of the task. However, 5- and 10-second breaks 668 

could keep the worker’s average joint capacity at 60% and 75% of the maximum capacity upon 669 

completion of the task. 670 

Figure 15 The comparison of the instantaneous whole-body physical fatigue indices during the 671 
masonry task with different rest time (0/5/10 seconds) 672 

7. Discussion 673 

This study, for the first time, used deep learning-based 3D posture estimation algorithms, 674 

biomechanical analysis, and a physical fatigue mathematical model to non-intrusively and 675 

automatically assess physical fatigue of construction site workers. The laboratory experiments 676 

confirmed the accuracy of the methodology, while the field experiments and case studies demonstrated 677 

the feasibility of the approach in assessing the construction worker’s physical fatigue in various 678 

outdoor environments. The two case studies also demonstrated the effects of workplace layout and 679 

breaks on the physical fatigue of construction workers. 680 

Compared to previous fatigue assessment methods for construction workers, the proposed 681 

approach has several advantages. First, the data collection is continuous and non-invasive. Second, the 682 

results are objective, and quantifiable. Third, the fatigue analysis has no limitations on working 683 

patterns (regular or repetitive working postures). Fourth, the method considers multiple factors 684 

including workers’ capacity, postures and joint loading history. These advantages make this approach 685 

suitable for estimating physical fatigue of construction workers during complex and dynamic 686 

construction works.  687 

Despite numerous advantages, the current study had a few limitations. First, while accurate 3D 688 

motion capture and analysis were needed for the ensuing fatigue assessments, the 3D motion capture 689 

method adopted in this research might be affected when there were severe visual obstructions or when 690 

the cameras were installed in high places. Accordingly, future studies should train a 3D motion 691 

estimation model with more on-site pictures, especially those with obstructions and/or top-down angles. 692 
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Second, the current method needs to measure the mass of materials or tools in order to estimate the 693 

joint loading, which may limit its applicability in real construction projects. Future studies should focus 694 

on the incorporation of automatic mass measuring methods. For instance, the camera can first identify 695 

the material or the tool and then estimating the mass with reference to material databases.  696 

8. Conclusions 697 

A non-invasive and automatic approach was proposed to assess construction workers’ physical 698 

fatigue using computer vision and a biomechanics computation model. Specifically, a 3D motion 699 

estimation method was used to detect workers’ 3D motion data by a monocular RGB camera, while 700 

the anthropological and kinematics data were used to estimate the torques of multiple upper limb, 701 

lower limb and trunk joints. The resulting data was entered a fatigue computational model to calculate 702 

the real-time joint capacity and fatigue index based on the history of joint capacity. In laboratory 703 

experiments, the high correlation between the estimated physical fatigue index and heart rate data 704 

proved the accuracy of the approach. Field experiments explored the application of the approach in 705 

construction sites management. The results showed that the method could provide suggestions on 706 

working postures thorough analyzing joint fatigue level and assess construction workers’ physical 707 

fatigue under different site-layout and work-rest schedule.  708 

This research, however, didn’t consider the influence of visual obstructions on the accuracy of 709 

3d posture data and automatic external load estimation. Future studies could focus on construction 710 

workers’ joint location inference under visual obstructions and automatically estimating the weights 711 

of tools or materials.  712 

If applied on construction site, the novel fatigue assessment method enables construction site 713 

workers to understand the fatigue level of various body segments during various construction tasks. 714 

The fatigue assessment results can also help construction site managers evaluate the construction 715 
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workers’ fatigue risks, set site-layout and work-rest schedules to different construction tasks, and 716 

enhance the safety and health performance of the construction industry. 717 
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