

978-1-4244-1694-3/08/$25.00 ©2008 IEEE

ContinuStreaming: Achieving High Playback Continuity of Gossip-based
Peer-to-Peer Streaming

Zhenhua Li
State Key Lab for Novel Software Technology

Nanjing University, Nanjing, P. R. China
lizhenhua@dislab.nju.edu.cn

Jiannong Cao
Internet and Mobile Computing Lab

Hong Kong Polytechnic University, Hong Kong
csjcao@comp.polyu.edu.hk

Guihai Chen
State Key Lab for Novel Software Technology

Nanjing University, Nanjing, P. R. China
gchen@nju.edu.cn

Abstract

Gossip-based Peer-to-Peer(P2P) streaming has been
proved to be an effective and resilient method to stream
qualified media contents in dynamic and heterogeneous net-
work environments. Because of the intrinsic randomness
of gossiping, some data segments cannot be disseminated
to every node in time, which seriously affects the media
playback continuity. In this paper we describe the design
of ContinuStreaming, a gossip-based P2P streaming sys-
tem which can maintain high resilience and low overhead
while bring a novel and critical property — full coverage
of the data dissemination. With the help of DHT, data seg-
ments which are likely to be missed by the gossip-based data
scheduling can be quickly fetched by the on-demand data
retrieval so as to guarantee continuous playback. We dis-
cuss the results of both theoretical analysis and comprehen-
sive simulations on various real-trace overlay topologies to
demonstrate the effectiveness of our system. Simulation re-
sults show that ContinuStreaming outperforms the existing
representative gossip-based P2P streaming systems by in-
creasing the playback continuity very close to 1.0 with only
4% or less extra overhead.

1 Introduction

Existing P2P streaming systems can be broadly classi-
fied into two categories: tree-based and gossip-based. Tree-
based systems organize nodes into a multicast tree. The root
of the tree is the media source and data segments are al-
ways delivered from parent to sons. Tree-based method can
minimize redundant data segments and ensure full coverage

of data dissemination, but cannot well adapt to network dy-
namics because the failure of a single node will partition the
tree to a forest. Besides, all leaf nodes are just consumers
and contribute little to other nodes. Taking these into con-
sideration, SplitStream [1] and CoopNet [7] use multiple
trees to increase the resilience and balance the load. How-
ever, multiple trees bring much higher maintenance over-
head.

In recent years, gossip-based P2P streaming has been
widely investigated and proved to be an effective and re-
silient method to stream qualified media contents in dy-
namic and heterogeneous network environments. In a typ-
ical gossip algorithm [3], every node maintains a limited
number of neighbors and sends a newly generated or re-
ceived data segment to a random subset of its neighbors.
The random choice of data forwarding targets achieves
high resilience to node failures and enables distributed op-
erations. Nevertheless, gossip alone for streaming is in-
effective because random push may cause significant re-
dundancy, which is particularly severe for high-bandwidth
streaming applications. As a result, existing gossip-based
P2P streaming systems, e.g. CoolStreaming [13], Peer-
Streaming [5] and AnySee [6], adopt a smart pull gossip
algorithm: every node periodically exchanges data avail-
ability information with its neighbors and then retrieves re-
quired data segments from a subset of its neighbors. How-
ever, because their data dissemination still bears much ran-
domness and uncertainty, it is very difficult to guarantee that
each data segment is disseminated to all the nodes before
the playback deadline. Consequently, these systems cannot
ensure high media playback continuity which is a critical
performance metric of media streaming.

To increase playback continuity, most existing methods

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on March 15, 2009 at 02:17 from IEEE Xplore. Restrictions apply.

focus on designing a good data scheduling algorithm for a
node to retrieve as many good data segments as possible
from its neighbors’ buffers (here good can be seen as rare,
urgent and so on). A good data scheduling algorithm is nec-
essary but far less than sufficient. For example, node A
wants a data segment d urgently but it encounters one of the
following cases : 1) none of A’s neighbors has ever received
d; 2) A’s neighbor B has received d but d has been play-
backed by B and removed from B’s buffer; 3) A’s neighbor
C has d in its buffer but C does not have sufficient avail-
able bandwidth to send d. In each of the above cases, data
scheduling algorithm does not work.

In this paper we design ContinuStreaming, a gossip-
based P2P streaming system assisted by DHT, which can
maintain high resilience and low overhead while bring a
novel and critical property — full coverage of the data dis-
semination. DHT (Distributed Hash Table) is an elegant fa-
cility which provides efficient and scalable distributed data
storage and retrieval in a wide-area network environment
[10, 9]. With the help of DHT, every data segment would
be stored in k nodes (k is a small constant). Every node
continuously predicts which data segments are likely to be
missed by the gossip-based data scheduling, and then trig-
gers its on-demand data retrieval algorithm to quickly fetch
the data in time so as to guarantee continuous playback. The
above-mentioned mechanism is referred to as “pre-fetch” in
the remaining part of this paper.

We have done theoretical analysis about the playback
continuity of our system and compared the theoretical re-
sults with the simulation results. Comprehensive simula-
tions are performed on various real-trace overlay topologies
scaling from 100 to 10000 nodes under different network
environments. Their results show that ContinuStreaming
outperforms the existing representative gossip-based P2P
streaming systems by increasing the playback continuity
very close to 1.0 with only 4% or less extra overhead.

Our contributions can be summarized as follows:

1. To the best of our knowledge, we are the first to design
a gossip-based P2P streaming system assisted by DHT
to achieve high playback continuity of streaming me-
dia. More importantly, the extra overhead brought by
our system is very low.

2. We design an Urgent Line mechanism for every node
to dynamically and adaptively predict which data seg-
ments are likely to be missed by the data scheduling
algorithm. This mechanism can efficiently avoid un-
necessary pre-fetch operations.

3. We demonstrate the effectiveness of our system
through theoretical analysis and comprehensive sim-
ulations on various real-trace overlay topologies.

The rest of this paper is organized as follows. Sec-
tion 2 reviews related work on enhancing playback conti-
nuity of gossip-based P2P streaming. Section 3 presents
the system overview. Section 4 describe in detail design of
ContinuStreaming, including its P2P overlay management,
data scheduling and on-demand data retrieval. We evaluate
the performance by theoretical analysis and comprehensive
simulations in Section 5. Finally, we conclude the paper
with the discussion of future work in Section 6.

2 Related Work

Research on gossip-based P2P streaming has a quite
short history. To our knowledge, Kermarrec et al. [4] are
the first to provide a theoretical support for gossip-based re-
liable protocols. They prove if there are n nodes and each
node gossips to log n + k other nodes on average, the prob-
ability that everyone gets the message converges to e−e−k

.
Their theoretical analysis provides guidelines for the design
of practical gossip-based P2P membership protocols [3].
The coverage ratio e−e−k

is very close to 1.0 but it is an
ideal theoretical result without considering the bandwidth
constraint, latency and so on.

CoolStreaming [13] utilizes the above gossip-based
membership protocol [3] to construct a practical and re-
silient gossip-based P2P streaming system. In order to
enhance playback continuity, CoolStreaming designs a
“rarest-first” data scheduling algorithm to assign data seg-
ments which own fewer suppliers with higher priority. Such
design is useful but not sufficient to achieve high playback
continuity. In this paper we propose a data scheduling algo-
rithm which takes both rarity and urgency of data segments
into consideration, and we design the on-demand data re-
trieval algorithm to pre-fetch the potential missed data seg-
ments.

Xu et al. [11] consider the problem of media data as-
signment for a multi-supplier peer-to-peer streaming ses-
sion. Given a requesting peer and a set of supplying peers
with heterogeneous out-bound rates, their algorithm, named
OTSp2p, computes optimal media data assignments for P2P
streaming sessions to achieve minimum buffering delay and
thus to achieve high playback continuity. But OTSp2p has
very strict assumptions that can hardly hold in practical
gossip-based P2P streaming systems.

Zhang et al. [12] observe that pure-pull method in
P2P streaming brings tremendous latency and thus propose
a push-pull system called GridMedia. They classify the
streaming packets into pulling packets and pushing pack-
ets. A pulling packet is delivered by a neighbor only when
the packet is requested, while a pushing packet is relayed by
a neighbor as soon as it is received. The main goal of Grid-
Media is to reduce latency and, as a side effect, improve
playback continuity. However, pushing packets would bring

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on March 15, 2009 at 02:17 from IEEE Xplore. Restrictions apply.

considerable communication overhead and it cannot guar-
antee high playback continuity. Likewise, the P2P live
streaming system AnySee [6] utilizes inter-overlay opti-
mization to reduce source-to-end latency and meanwhile
improve playback continuity.

The adaptive layered P2P streaming system PALS [8]
utilizes a receiver-driven approach for quality adaptive play-
back of layered encoded streaming media. PALS uses a
quality adaptive buffer mechanism to maximize the over-
all throughput and a sliding window mechanism to prevent
senders from sending packets whose deadline has already
passed. Its main idea is to dynamically configure the layers
of media so as to maintain high playback continuity. Dif-
ferent from PALS, our scheme proposed in this paper is not
limited to layered streaming and thus can be applied to a
wider range of streaming applications. Besides, the Peer-
Streaming system [5] employs a “queue and buffer” mech-
anism for throughput control, load balancing and request
indirection, but it provides no guarantee for playback conti-
nuity.

3 System Overview

The ContinuStreaming system mainly consists of three
components: 1) P2P overlay management, 2) Data schedul-
ing algorithm, and 3) On-demand data retrieval algorithm.
In this section we provide an overview of the three com-
ponents. Their design details will be discussed in the next
section.

Gossip-based P2P streaming systems usually utilize an
unstructured overlay network as its infrastructure to achieve
high resilience and low maintenance cost. However, as
mentioned before, the intrinsic randomness of gossiping se-
riously affects their playback continuity. ContinuStream-
ing adopts a lightweight hybrid P2P overlay network which
combines an unstructured overlay and a structured overlay.
The structured overlay is just a DHT used to provide ef-
ficient and scalable distributed data storage and retrieval.
The proposed hybrid P2P overlay is lightweight because
its DHT is loosely organized and the node state update is
mainly achieved by overhearing the routing messages pass-
ing by.

The data scheduling algorithm works on the unstructured
overlay. It periodically gets data availability information
from the connected neighbors and then schedules the re-
trieval of data segments. Our data scheduling algorithm
pays special attention to the rarity and urgency of data seg-
ments and greedily retrieves high-priority data segments as
early as possible, which helps reduce the number of data
segments missing their playback deadlines.

The on-demand data retrieval algorithm works on the
structured overlay (i.e. the DHT) where every data segment
would be backuped in k nodes (k is a small constant). Every

node continuously predicts which data segments are likely
to be missed by its data scheduling algorithm and then trig-
gers its on-demand data retrieval algorithm to quickly fetch
them in time so as to guarantee high playback continuity.

P2P Overlay Manager

Data

Scheduler
Rate

ControllerBuffer
VoD Data

Backup

Display

Figure 1. The software architecture of a node.

Figure 1 shows the software architecture of a node. We
briefly describe the key modules. (1) P2P Overlay Manager
behaves as the interface between the local node and over-
lay network. It maintains and updates the node state. (2)
Data Scheduler gets the information about available data
segments of connected neighbors and arranges where and
how to retrieve required data. (3) VoD Data Backup stores
the data segments this node is responsible to backup. Other
nodes can find these data segments from this VoD Data
Backup as long as this node is alive. (4) Rate Controller
monitors and estimates the receiving rate from each con-
nected neighbor.

4 Design of ContinuStreaming

4.1 P2P Overlay Management

Every node in our system maintains a Peer Table which
is composed of three parts:

(1) Connected Neighbors contains M neighbors in the
unstructured overlay. These M neighbors are connected by
TCP connections and the periodical data exchange is only
performed between connected neighbors. If a neighbor is
found to have failed or supplied little data to the local node,
it will be replaced by an overheard node which has the low-
est latency.

(2) DHT Peers contains logN DHT peers ordered in
level. N is the maximum number of nodes the overlay can
accommodate, i.e. the size of ID space. For node n, the only
restriction of its level i DHT peer is that this peer must lie
in [n + 2i−1, n + 2i) in ID space (all numbers are modulo
N). Therefore, node n has much freedom in choosing its
DHT peers and thus the DHT is loosely organized. All the
DHT peers are periodically updated by the overheard nodes
for renewal.

(3) Overheard Nodes contains H nodes which are the lat-
est overheard. H = 20 is usually enough according to our

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on March 15, 2009 at 02:17 from IEEE Xplore. Restrictions apply.

simulation experience. Every node continually overhears
the routing messages passing by and updates the overheard
node list using the latest overheard nodes.

Connected Neighbors

No PeerID IP address Latency Recent supply rate

1 369 210.29.131.34 5ms 50kbps

… … … … …

M 672 165.93.100.77 15ms 25kbps

DHT Peers

Level PeerID IP address Latency

1 442 102.119.32.30 25ms

… … … …

logN 891 219.45.128.49 30ms

Overheard Nodes

No PeerID IP address Latency

1 453 107.124.33.58 15ms

… … … …

H 120 61.173.76.44 100ms

Figure 2. Peer Table structure.

Figure 2 demonstrates the detailed structure of Peer Ta-
ble. Clearly the Connected Neighbors and DHT Peers are
both updated according to Overheard Nodes, and Overheard
Nodes are updated by local overhearing which requires no
extra communication overhead. Therefore, the P2P overlay
we design needs low maintenance cost.

A new node A first contacts the RP (Rendezvous Point)
server to join the overlay network. RP server holds a partial
list of joining nodes and assigns a unique ID to node A.
Then RP server gives node A a short list of several existing
nodes which have close IDs as node A. Assuming A gets a
list {B, C, D, E}, A will try to send them PING messages
(e.g. in UDP packets) to detect which is the nearest alive
node. The latency is approximately estimated as RTT

2 (RTT
is the round trip time). If B,C, D are alive and B is nearest
to A, then A gets B’s Peer Table as the base of its own Peer
Table, notifies B,C, D his joining, and tells the RP server
E’s failure.

The P2P overlay we proposed provides both unicast and
multicast support for ContinuStreaming. Unicast function,
i.e. the location of a node or a data segment, is supported
by the DHT routing algorithm. It is a simple greedy algo-
rithm: for every intermediate node, it chooses in its DHT
Peers the clockwise closest peer to the destination as the
next hop, until no closer peer can be found. We prove in
Appendix the upper bound of routing hops for a DHT lo-
cation is logN

log(4/3) ≈ 2.41 × logN . And we did simulations
on DHT networks with different N and n, N is the size of
ID space and n is the real number of joining nodes. Simu-
lation results in Figure 3 show the average routing hops is
very close to log n

2 and the query success rate is very close
to 1.0 even when the overlay is sparse, i.e. when n is much

smaller than N .

0 1000 2000 3000 4000 5000 6000 7000 8000
3

4

5

6

A
ve

ra
ge

 r
ou

tin
g

ho
ps

0 1000 2000 3000 4000 5000 6000 7000 8000
0.8

0.85

0.9

0.95

1

n − number of nodes, n<N, N=8192

Q
ue

ry
 s

uc
ce

ss
 r

at
e

Figure 3. Average routing hops and query
success rate of the DHT network.

Multicast function, i.e. the data exchange between con-
nected neighbors, is supported by the data scheduling al-
gorithm. The analysis in [13] shows that in a gossip-based
streaming system, the coverage ratio at a given distance d is

1 − e−
M×(M−1)d−2

(M−2)×n , where M is the number of connected
neighbors and n is the number of overlay nodes. However,
constrained by many factors, the real coverage ratio is much
less than this ideal theoretical analysis, and this is why we
consider our work to be valuable.

4.2 Data Scheduling

A node periodically exchanges buffer information with
its connected neighbors. The exchange period is called a
scheduling period, denoted as τ . So for every scheduling
period, the node’s Data Scheduler first gets the information
about available data segments of connected neighbors. All
available data segments are not contained in the local buffer,
i.e. they are all fresh to the local node. The related parame-
ters and their descriptions are listed in Table 1.

Taking both the urgency and rarity of each data segment
into consideration, the Data Scheduler computes each seg-
ment’s requesting priority through equations (1) to (3).

Ri = max{Ri1 , Ri2 , · · · , Rini
}

ti =
idi − idplay

p
− 1

Ri
then urgencyi =

1
ti

(1)

Segment i’s rarity is considered as the probability that
it will be replaced in all its suppliers’ buffers, which we
think is more reasonable than the traditional computation
rarityi = 1

ni
.

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on March 15, 2009 at 02:17 from IEEE Xplore. Restrictions apply.

Parameter Description
τ Data scheduling period.
idi The id of data segment Di.
ni How many neighbors can supply seg-

ment Di.
I Total inbound rate of the local node.

Rij The receiving rate of segment Di from
the jth neighbor.

Ri The maximum receiving rate of seg-
ment Di.

idplay id of the segment being played at this
moment.

p The number of segments being played
per second.

ti Expected deadline left time of segment
Di.

B Buffer size, i.e. the number of data seg-
ments Buffer can accommodate.

pij Segment Di’s position in the jth neigh-
bor’s buffer. The replacement strategy
of Buffer is FIFO, and the position is the
distance from the tail of Buffer.

urgencyi Urgency of segment Di, i.e. the proba-
bility of Di to miss its deadline.

rarityi Rarity of segment Di, i.e. the proba-
bility that Di will be replaced in all its
suppliers’ buffers.

priorityi Requesting priority of segment Di. It
takes both urgency and rarity into con-
sideration.

Table 1. Parameters for data scheduling

rarityi = (
pi1

B
)× (

pi2

B
)× · · · × (

pini

B
) (2)

And finally,

priorityi = max{urgencyi, rarityi} (3)

Having got each segment’s priority, the Data Scheduler
sorts them in the descending order of their priority. Suppose
the order is like D1, D2, D3, · · · , Dm. For a segment Di,
there may exist several neighbors who can supply it, and
usually the neighbor who can send it earliest will become
Di’s supplier. But here we encounter a conflict problem
where two segments choose the same supplier, so one of
them needs to wait or choose another supplier. The prob-
lem is: how to choose a proper supplier for every data seg-
ment so that the number of segments missing deadlines or
being replaced can be the minimal? In fact, even a simple
special case of this problem is NP-hard (known as the Par-
allel machine scheduling problem [2]), so we use a greedy

algorithm trying to get high-priority segments as early as
possible, see Algorithm 1. In this algorithm, the sched-
uler makes greedy efforts to minimize the expected receiv-
ing time tmin of every data segment. For segment Di, the
scheduler checks all its suppliers to find a proper supplier
which can send Di earliest.

Algorithm 1: Data Scheduling Algorithm
Input : (1) Data segments D1, D2, D3, · · · , Dm, in

descending order of priority; (2) Supplier set
for each date segment: S1, S2, · · · , Sm; (3)
Sending rate of node j: R(j); (4) Queuing
time of node j: τ(j), initially τ(j) = 0;

Output: supplieri for each data segment Di.

compute the maximum number of inbound segments1

for this scheduling period: min(m, I × τ);
for i = 1 to min(m, I × τ) do2

set segment Di’s earliest receiving time tmin=∞;3

suppose Si contains k suppliers Si1 , · · · , Sik
;4

for j = 1 to k do5

compute the expected transfer time of Di from6

Sij
: ttrans = 1

R(Sij
) ;

if ttrans+τ(Sij)<tmin and ttrans+τ(Sij)<τ7

then
tmin ← ttrans + τ(Sij

);8

supplieri ← Sij
;9

end10

end11

if supplieri 6= null then12

τ(supplieri) ← tmin;13

end14

end15

4.3 On-demand Data Retrieval

For every scheduling period, the Data Scheduler predicts
which data segments are likely to be missed by the data
scheduling algorithm. Since it is impossible to accurately
predict them, we utilize an Urgent Line mechanism for dy-
namic and adaptive prediction.

In Figure 4, the data segments in the buffer is divided into
two parts by the Urgent Line. Only the white data segments
on the left of the urgent line are predicted missed. Required
parameters for on-demand data retrieval are in Table 2.

Then we have

idurgent = idhead + α×B (4)

So α is a critical parameter for on-demand data retrieval
algorithm and how to compute α will be explained by the
end of this subsection. All the white data segments with

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on March 15, 2009 at 02:17 from IEEE Xplore. Restrictions apply.

Urgent Line

Buffer

Missed data

segments

Figure 4. Urgent line of the buffer. White seg-
ments have not been got.

Table 2. Parameters for on-demand data re-
trieval

Parameter Description
α The urgent ratio of Buffer. It is dynami-

cally computed.
B Buffer size, i.e. the number of data seg-

ments Buffer can accommodate.
idhead The id of the data segment at the head

of Buffer.
idurgent The id of the data segment at the urgent

line.
Nmiss The number of data segment predicted

to be missed.
k Each data segment is backuped in k

nodes.
l The on-demand data retrieval algorithm

can get at most l missed data segments
per time.

id ≤ idurgent are predicted missed, and their total number
is Nmiss. Then we have three cases to deal with:

• Case 1: If Nmiss=0 then the on-demand data retrieval
algorithm is not triggered.

• Case 2: If Nmiss ≤ l then the on-demand data re-
trieval algorithm is triggered to get all the missed data
segments in parallel.

• Case 3: If Nmiss > l then the on-demand data retrieval
algorithm is also not triggered to avoid too much pre-
fetch traffic cost.

For a node with ID: n, suppose its closest DHT peer in its
Peer Table is n1, then n must store in its VoD Data Backup
the received data segments with id satisfying

hash(id× i)%N ∈ [n, n1), i = 1, 2, · · · , k. (5)

so that every data segment is expected to be backuped in k
different nodes. hash() can be any common hash function

and % denotes modulo. The reason why we use id × i to
hash is to backup a data segment into dispersed nodes so
as to balance load. For example, if we use id + i to hash,
the data segments with close ids may aggregate in the same
node to bring this node heavy load.

When node n wants to leave, it should first find the node
n′ which is counter-clockwise closest to n and then hand
over the data segments in its VoD Data Backup to n′. When
node n fails abruptly, the data handover becomes difficult.
However, as time elapses, old data segments backuped by
n′ gradually become useless and n′ takes over n’s respon-
sibility to backup new data segments, so n’s failure will not
bring much bad impact.

Algorithm 2 shows the on-demand data retrieval algo-
rithm. Suppose the missed data segments are D1, · · · , Dm.
For a data segment Di, the algorithm first locates the k
nodes that may have backuped Di, and then selects the node
with the highest available sending rate as Di’s on-demand
supplier. When node n asks one backup node n0 for data
segment Di, there is a probability Pfail that n0 has not got
Di yet. Assume n and n0 have the same probability to get
Di by the data scheduling algorithm, then Pfail = 1

2 in
average. Therefore, the probability n cannot get Di from
any of the k backup nodes is (1

2)k, which is quite low.
D1, D2, · · · , Dm are downloaded directly (in UDP pack-
ets) from their on-demand suppliers in parallel to accelerate
the retrieval process. When triggered to run, the on-demand
data retrieval algorithm shares the inbound rate with the data
scheduling algorithm.

Algorithm 2: On-demand Data Retrieval Algorithm
Input : The missed data segments D1, D2, · · · , Dm,

m ≤ l, in ascending order of data id;
Output: on-demand supplieri for each segment Di.
for i = 1 to m do1

In order to get Di, send k routing messages2

targeted at k nodes n1, n2, · · · , nk in parallel:
ni = hash(Di × i)%N , i = 1, 2, · · · , k;
set Di’s maximum receiving rate Ri = 0;3

for j = 1 to k do4

For the routing message targeted at nj , the5

node n′j counter-clockwise closest to nj will
be found;
if node n′j has backuped Di and n′j’s6

available sending rate > Ri then
on-demand supplieri ← n′j ;7

end8

end9

end10

Now we discuss how to compute the critical parameter
α which determines the urgent ratio of Buffer. α must be

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on March 15, 2009 at 02:17 from IEEE Xplore. Restrictions apply.

dynamically computed to properly predict how many data
segments in Buffer are urgent. If α is too small, the on-
demand data retrieval algorithm cannot catch the speed of
playback and thus the playback continuity will be degraded.
But if α is too large, many data segments predicted missed
do not really need to be pre-fetched by on-demand data re-
trieval algorithm, i.e. Nmiss is computed much larger than
its real value, and thus much more communication cost will
be incurred than required. Therefore, α will be increased or
decreased as the situation changes.

Suppose thop is the average expected time to route one
hop in the overlay network, then the average expected time
tfetch for the on-demand data retrieval algorithm to fetch a
data segment is:

tfetch = tlocate + treply + trequest + tretrieve (6)

tfetch ≈ log n

2
× thop +3× thop = (

log n

2
+3)× thop (7)

n is the expected number of overlay nodes and it does
not need to be configured accurately. For example, we can
set n = N

2 initially. thop is also an approximate estimation
from our simulation experience.

During one scheduling period τ , the on-demand data re-
trieval algorithm must allocate enough time for a missed
data segment to be fetched before its playback deadline, so
we have:

α×B > p× τ and α×B > p× tfetch (8)

that is
α >

p

B
× max(τ, tfetch) (9)

so we get the lower bound of α and set the initial α =
p
B × max(τ, tfetch).

As time goes, situation changes. α should be updated in
the following two cases:

• Case 1 - Overdue data: When there exist pre-fetched
data segments arriving late, i.e. the missed data seg-
ments cannot be fetched by the on-demand data re-
trieval algorithm in time, then α ← α + p×thop

B ;

• Case 2 - Repeated data: When there exist pre-fetched
data segments which can still be got by the data
scheduling algorithm before their deadlines, i.e. they
are repeatedly found by both the data scheduling and
on-demand data retrieval algorithms, then α ← α −
p×thop

B ;

The increment and decrement of α are both set as p×thop

B
which is quite small to make α change smoothly. For Case
2, each pre-fetched data segment should have a tag which
indicates this segment is got by the on-demand data retrieval
algorithm, so the data scheduling algorithm can recognize
repeated data segments then.

5 Performance Evaluation

5.1 Theoretical Analysis

In this section we analyze the playback continuity of
ContinuStreaming. We use the Poisson Process to model
the arrival of data segments in gossip-based streaming, be-
cause Poisson Process has independent and stationary in-
crements, which is also the properties of gossip process.
More specifically, suppose N(t) represents the number of
data segments that have arrived at a node during time t, and
then we have P{N(t) = n} = e−λt (λt)n

n! , where λ is a
constant parameter. It is not difficult to prove

E[N(t)] =
∞∑

n=0

n·P{N(t) = n} =
∞∑

n=0

n·e−λt (λt)n

n!
= λt

(10)
and this is why the parameter λ is called the arrival rate

of the process. For gossip-based streaming, we can approx-
imately regard the inbound rate of the local node I as its
λ.

In order to playback the media continuously, λ > p
must holds, where p is the playback rate. Now we con-
sider the probability that the on-demand data retrieval algo-
rithm is triggered per scheduling period. During each data
scheduling period τ , if the number of arriving data segments
N(τ) is smaller than the number of data segments required
to playback, the on-demand data retrieval algorithm is ex-
pected to be triggered. So

P{On-demand data retrieval Algorithm is triggered} =

P{N(τ) ≤ pτ} =
pτ∑

n=0

e−λτ (λτ)n

n!
(11)

and the expected number of missed data segments is

Nmiss =
pτ−1∑
n=0

(pτ − n)P{N(τ) = n} (12)

= pτ

pτ−1∑
n=0

P{N(τ) = n} −
pτ−1∑
n=0

nP{N(τ) = n}

= pτ

pτ−1∑
n=0

e−λτ (λτ)n

n!
−

pτ−1∑
n=0

ne−λτ (λτ)n

n!
.

In the former section we have estimated that if every data
segment is backuped in k nodes then the probability that a
certain node cannot get a certain data segment is (1

2)k. Now
there exist Nmiss data segments requiring to be pre-fetched
by the on-demand data retrieval algorithm, so the probabil-
ity to successfully get all of them is (1− (1

2)k)Nmiss . Then
we can compute the old playback continuity PCold and the
new playback continuity PCnew as follows:

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on March 15, 2009 at 02:17 from IEEE Xplore. Restrictions apply.

PCold = 1− P{N(τ) ≤ pτ} (13)

PCnew = 1−P{N(τ) ≤ pτ}(1−(1−(
1
2
)k)Nmiss) (14)

so that

∆ = PCnew − PCold = P{N(τ) ≤ pτ}(1− (
1
2
)k)Nmiss

(15)
In order to check the validity of the theoretical analy-

sis above, we compare it with simulation results with 1000
nodes. The detailed simulation methodology will be de-
scribed in next subsection. Some major parameters are:
play rate p = 10, average inbound rate of nodes is I = 15
and the scheduling period τ = 1s. Every data segment is
backuped in k = 4 nodes. The following table compares
the theoretical results and the simulation results. “Homoge-
neous” means each node has the same inbound rate while
“Heterogeneous” means the nodes have different inbound
rates.

Environment PCold PCnew ∆
Theoretical result with
λ=15

0.8815 0.9989 0.1174

Theoretical result with
λ=14

0.8243 0.9975 0.1732

Homogeneous and sta-
tic environment

0.8748 0.9979 0.1231

Homogeneous and dy-
namic environment

0.8520 0.9803 0.1283

Heterogeneous and sta-
tic environment

0.8431 0.9726 0.1295

Heterogeneous and dy-
namic environment

0.8166 0.9537 0.1371

The table above illustrates the simulation results approx-
imately lies between the theoretical results with λ=14 and
λ=15, because in each simulation every node spares a small
part of its inbound rate (I=15) for data pre-fetching. How-
ever, PCnew of simulations in heterogeneous or dynamic
environments is often a little lower than the theoretical re-
sults mainly because of practical constraints and churns.

5.2 Simulation Methodology

We perform simulations on 30 real-trace unstructured
overlay topologies whose data was collected from Dec. 7th
2000 to June 15th 2001 on http://dss.clip2.com (unavailable
now). The data contains each node’s ID, IP, port, ping time
(from a central node), speed and so on, but we just use the
ID, IP and ping time information. The trace topologies scale
from 100 to 10000 nodes, with average node degree from
less than 1 to 3.5. Because the average node degree is too
small for media streaming, we add random edges into the

overlay to let every node hold M=5 connected neighbors.
According to our simulation experience, M=5 is usually a
good practical choice and using a larger M cannot bring
more benefit.

Among all the existing gossip-based P2P streaming sys-
tems, CoolStreaming [13] is the most representative. So we
compare the performances of our ContinuStreaming with
CoolStreaming under the same network environments. The
default streaming rate is 300 Kbps and each data segment
contains 30 Kbp, so the playback rate p = 300Kbp

30Kbp = 10.
Each node maintains a buffer of 600 data segments, i.e. 60
seconds of the streaming data. We randomly arrange in-
bound rate (from 300 Kbps to 1 Mbps) to each node and let
the average inbound rate be both 450 Kbps, i.e. I ∈ [10, 33]
and I = 15 in average. The arrangement of outbound rate is
alike. An exception is that the source node has zero inbound
rate and much larger outbound rate, usually its I = 100.
The data scheduling period τ = 1.0 second.

The physical latency between two overlay nodes is com-
puted as the difference between their real-trace ping times
from a central node. This estimation of latency may be not
accurate but reasonable for our simulation settings. The
average latency of one overlay hop thop ≈ 50ms, so the
average expected time tfetch for the on-demand data re-
trieval algorithm to pre-fetch a data segment is tfetch ≈
(log n

2 +3)× thop = 8×50ms = 400ms, where n = 1000.
Then the pre-fetch urgent ratio α = p

B × max(τ, tfetch) =
10
600 × max(1s, 400ms) = 1

60 initially. Besides, each data
segment is backuped in k = 4 nodes. The on-demand data
retrieval algorithm of every node can get at most l = 5
missed data segments per scheduling period. To create a dy-
namic network environment, we randomly let 5% old nodes
leave and 5% new nodes join per scheduling period. A new
joining node does not need to retrieve all the disseminated
data segments from the source, and it just requests the data
segments being played or will be played by its neighbors.
That is to say, a new joining node starts its media playback
by following its neighbors’ current steps.

5.3 Metrics

We mainly use the following three metrics to evaluate
the performance of our ContinuStreaming system.

1. Playback continuity: For every round (a round is a data
scheduling period) we record the ratio of nodes that
have collected sufficient data segments to playback.
This ratio is so-called playback continuity. Some for-
mer papers define the continuity index, which is the
ratio of segments that arrive before deadlines, to eval-
uate playback continuity. However, high continuity in-
dex does not guarantee continuous playback and we
consider the playback continuity we define to be more
accurate.

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on March 15, 2009 at 02:17 from IEEE Xplore. Restrictions apply.

2. Control overhead: For every round each node ex-
changes buffer information with its neighbors. Control
overhead is defined as the ratio of communication cost
for buffer information exchange over the real commu-
nication cost for data segments transfer.

3. Pre-fetch overhead: To pre-fetch a data segment, the
on-demand data retrieval algorithm should first locate
k backup nodes and then choose one node as the sup-
plier. This process includes about k × (log n

2 + 1) + 1
routing messages on the DHT and the transfer cost for
the missed data segment. So pre-fetch overhead is de-
fined as the ratio of above-mentioned communication
cost over the real communication cost for data seg-
ments transfer.

5.4 Simulation Results

5.4.1 Playback continuity

We first track the playback continuity of ContinuStreaming
and CoolStreaming in a static network environment with
1000 nodes and a single source. Since the streaming sys-
tem usually enters its stable playback phase within 30 sec-
onds, we record the overall playback continuity of the sys-
tem from 0 to 30 seconds. Figure 5 shows that CoolStream-
ing enters its stable phase in 26 seconds with playback con-
tinuity around 0.83, while ContinuStreaming in 18 seconds
with playback continuity around 0.97. Our data pre-fetch
scheme accelerates the streaming system’s entering its sta-
ble phase and improves the playback continuity much closer
to 1.0.

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Simulation time (s)

P
la

yb
ac

k
co

nt
in

ui
ty CoolStreaming

ContinuStreaming

Figure 5. Playback continuity track in a static
network environment.

We further track the playback continuity in a dynamic
environment still with 1000 nodes. The track is illustrated
in Figure 6. CoolStreaming enters its stable phase in 27

seconds with playback continuity around 0.78, while Conti-
nuStreaming in 20 seconds with playback continuity around
0.95. Though the dynamic PCnew = 0.95 is smaller than
the static PCnew = 0.97, the dynamic playback continu-
ity increment 0.17 is larger than the static increment 0.14.
From this point of view, ContinuStreaming improves play-
back continuity more in dynamic environments.

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Simulation time (s)
P

la
yb

ac
k

co
nt

in
ui

ty

CoolStreaming
ContinuStreaming

Figure 6. Playback continuity track in a dy-
namic network environment.

Besides, we examine the playback continuity (in sta-
ble phase) of overlay networks with different sizes, rang-
ing from 100 to 8000, working in static and dynamic net-
work environments. Every node has M = 5 neighbors.
Figure 7 and Figure 8 shows the simulation results. We
can see that as the network size increases, both PCnew

and PCold decrease but the playback continuity increment
(∆=PCnew-PCold) increases, so a larger network benefits
more from ContinuStreaming. Finally, we observe that us-
ing a larger M cannot bring notable increment to playback
continuity, because the main constraint lies in the inbound
rate of nodes.

5.4.2 Control overhead

For every round each node exchanges buffer information
with its neighbors, and the control overhead comes from
the communication of buffer information. We record the
control overhead of networks with different sizes and dif-
ferent M . Figure 9 illustrates the record information. The
buffer can accommodate B = 600 data segments, so we use
600 bits to record the data availability, with bit 1 indicating
this segment is available and bit 0 indicating this segment
is unavailable. The id of the first segment in the buffer is
indicated by 20 bits because the source will disseminate at
most 3600 × 10 × 24 = 864000 ∈ (219, 220) data seg-
ments per hour. Therefore, getting the buffer information of

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on March 15, 2009 at 02:17 from IEEE Xplore. Restrictions apply.

100 500 1000 2000 4000 8000
0.5

0.6

0.7

0.8

0.9

1

Total number of overlay nodes

P
la

yb
ac

k
C

on
tin

ui
ty

CoolStreaming
ContinuStreaming

Figure 7. Playback continuity of networks
with different sizes under static environ-
ments.

100 500 1000 2000 4000 8000
0.5

0.6

0.7

0.8

0.9

1

Total number of overlay nodes

P
la

yb
ac

k
C

on
tin

ui
ty

CoolStreaming
ContinuStreaming

Figure 8. Playback continuity of networks
with different sizes under dynamic environ-
ments.

one neighbor takes 620 bits’ communication cost in total.
Every data segment contains 30 Kbp data of streaming. If
every node can get p = 10 required data segments from its
neighbors per round, i.e. every node’s playback continuity
is 1.0, then the control overhead is about 620×M

30×1024×10 = M
495 .

Simulation results in Figure 9 are a little larger than M
495 be-

cause most nodes’ playback continuity is smaller than 1.0.
The control overhead of all networks is below 0.02, which
takes only a minor part of the total communication cost. Be-
sides, the control overhead of ContinuStreaming is similar
to that of CoolStreaming because their buffer information
exchange mechanisms are very alike.

100 500 1000 2000 4000 8000
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

Total number of overlay nodes

C
on

tr
ol

 o
ve

rh
ea

d

M=4
M=5
M=6

Figure 9. Control overhead of networks with
different sizes.

5.4.3 Pre-fetch overhead

To pre-fetch a data segment, the on-demand data retrieval
algorithm should first locate k = 4 backup nodes for that
data segment and then choose one node as the supplier. The
pre-fetch overhead consists of routing messages on the DHT
and the transfer cost for the missed data segments. Each
routing message costs 10 bytes, i.e. 80 bits. Because pre-
fetching a data segment usually requires k× (log n

2 +1)+1
routing messages, the total communication cost to pre-fetch
a data segment can be estimated as about (4× (log n

2 +1)+
1)× 80 + 30× 1024 ≈ 33000 bits (n ≤ 8000).

We track the pre-fetch overhead of a network with 1000
nodes both in a static and dynamic environment (M = 5).
Figure 10 shows the results. At the beginning the pre-fetch
overhead is very little because the number of missed data
segments of most nodes Nmiss is larger than the threshold
l (in fact most nodes did not know the existence of the me-
dia source then) and thus the on-demand pre-fetching is not
triggered to run. After several seconds the pre-fetch over-
head rises into a bit larger than that in the stable phase be-
cause all the nodes had known the source then. The pre-
fetch overhead in the stable phase is merely 0.023 for a sta-
tic environment and 0.03 for a dynamic environment.

Figure 11 shows the pre-fetch overhead of networks with
different sizes working in static and dynamic environments.
M = 5 for all the networks. Not surprisingly, for each size
the pre-fetch overhead in dynamic environments is larger
than that in static environments mainly because more data
segments will be missed by data scheduling algorithm in
dynamic networks. The pre-fetch overhead of all networks
is below 0.04, which indicates that our pre-fetch scheme
brings minor extra communication cost compared with the
real communication cost for data segments transfer. Since
the control overhead of ContinuStreaming is similar to that

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on March 15, 2009 at 02:17 from IEEE Xplore. Restrictions apply.

0 5 10 15 20 25 30
0

0.01

0.02

0.03

0.04

0.05

P
re

−
fe

tc
h

ov
er

he
ad

0 5 10 15 20 25 30
0

0.01

0.02

0.03

0.04

0.05

P
re

−
fe

tc
h

ov
er

he
ad

Simulation time (s)

Static environment

Dynamic environment

Figure 10. Pre-fetch overhead track of a net-
work with 1000 nodes.

of CoolStreaming, the pre-fetch overhead is just the ex-
tra overhead brought by ContinuStreaming compared with
CoolStreaming.

100 500 1000 2000 4000 8000
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

Total number of overlay nodes

P
re

−
fe

tc
h

ov
er

he
ad

Static environment
Dynamic environment

Figure 11. Pre-fetch overhead of networks
with different sizes.

6 Conclusions and Future Work

Gossip-based P2P streaming has proved to be a novel
and effective method for media streaming in dynamic and
heterogeneous network environments. However, it suffers
from the randomness of gossip-style data dissemination and
thus cannot guarantee high playback continuity. In this
paper we propose ContinuStreaming, a gossip-based P2P
streaming system assisted by DHT, which can achieve high
playback continuity for the streaming media with very low
overhead. Both the theoretical and simulation results con-

firm the effectiveness of our system. Next step we want to
validate our system in a practical and worldwide network
environment. We are applying to join the “Planet-lab” and
expecting to implement ContinuStreaming above this plat-
form to check the performance.

7 Acknowledgements

The work is partly supported by Hong Kong RGC un-
der the CERG grant PolyU 5103/06E, China NSF grants
(60573131, 60673154,60721002), Jiangsu High-Tech Re-
search Project of China (BG2007039), and China 973
project (2006CB303000).

References

[1] M. Castro, P. Druschel, A. Kermarrec, A. Nandi, A. Row-
stron, and A. Singh. SplitStream: high-bandwidth multicast
in cooperative environments. Proceedings of the 19th ACM
SOSP, pages 298–313, 2003.

[2] T. Cormen, C. Leiserson, and R. Rivest. Introduction to al-
gorithms. MIT Press Cambridge, MA, USA, 1990.

[3] A. Ganesh, A. Kermarrec, and L. Massoulie. Peer-to-peer
membership management for gossip-based protocols. IEEE
Transactions on Computers, 52(2):139–149, 2003.

[4] A. Kermarrec, L. Massoulie, and A. Ganesh. Probabilistic
reliable dissemination in large-scale systems. IEEE Trans-
actions on Parallel and Distributed Systems, 14(3):248–258,
2003.

[5] J. Li. PeerStreaming: An On-Demand Peer-to-Peer Media
Streaming Solution Based On A Receiver-Driven Streaming
Protocol. 2005 IEEE 7th Workshop on Multimedia Signal
Processing, pages 1–4, 2005.

[6] X. Liao, H. Jin, Y. Liu, L. Ni, and D. Deng. AnySee: Peer-
to-Peer Live Streaming. Proceedings of IEEE INFOCOM,
2006.

[7] V. Padmanabhan, H. Wang, and P. Chou. Resilient peer-to-
peer streaming. Proceedings. 11th IEEE International Con-
ference on Network Protocols, 2003., pages 16–27, 2003.

[8] R. Rejaie and A. Ortega. PALS: peer-to-peer adaptive lay-
ered streaming. Proceedings of the 13th NOSSDAV, pages
153–161, 2003.

[9] A. Rowstron and P. Druschel. Pastry: Scalable, distributed
object location and routing for large-scale peer-to-peer sys-
tems. IFIP/ACM Conference on Distributed Systems Plat-
forms (Middleware), 11:329–350, 2001.

[10] I. Stoica, R. Morris, D. Karger, M. Kaashoek, and H. Balakr-
ishnan. Chord: A scalable peer-to-peer lookup service for
internet applications. Proceedings of the 2001 SIGCOMM
conference, 31(4):149–160, 2001.

[11] D. Xu, M. Hefeeda, S. Hambrusch, and B. Bhargava. On
peer-to-peer media streaming. Proceedings. 22nd Inter-
national Conference on Distributed Computing Systems,
2002., pages 363–371, 2002.

[12] M. Zhang, J. Luo, L. Zhao, and S. Yang. A peer-to-peer net-
work for live media streaming using a push-pull approach.

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on March 15, 2009 at 02:17 from IEEE Xplore. Restrictions apply.

Proceedings of the 13th ACM international conference on
Multimedia, pages 287–290, 2005.

[13] X. Zhang, J. Liu, B. Li, and T. Yum. CoolStreaming/DONet:
A Data-driven Overlay Network for Peer-to-Peer Live Me-
dia Streaming. Proc. IEEE Infocom, 2005.

Appendix: The upper bound of routing hops for a DHT
location is logN

log(4/3) ≈ 2.41× logN . (Section 4.1)

Proof: Suppose node S wants to find node T and the rout-
ing message should be forwarded like S → H1 → H2 →
· · · . The clockwise distance from S to T dist(S, T) ∈
[2d−1, 2d], d < logN . S first chooses its clockwise closet
neighbor H1 as the next hop, then H1 must be S’s level d
or d-1 neighbor.

Case 1: H1 is S’s level d neighbor, then dist(H1, T) ≤
2d−1, dist(S,H1) ≥ 2d−1.

Case 2: H1 is S’s level d-1 neighbor, then
dist(H1, T) < 2d−1 + 2d−2 = 3 × 2d−2, dist(S,H1) ≥
2d−2.

In order to get the upper bound of routing hops, we adopt
the worst case, i.e. Case 2, for every hop. Then we can get
dist(H1, T) < 3

4 × dist(S, T) by the following steps:
because dist(S, T) = dist(S,H1) + dist(H1, T),
then 3

4 × dist(S, T)− dist(H1, T)
= 3

4 × dist(S,H1)− 1
4 × dist(H1, T)

= 3×dist(S,H1)−dist(H1,T)
4 ;

since dist(S,H1) ≥ 2d−2 and dist(H1, T) < 3× 2d−2,
then 3

4 ×dist(S, T)−dist(H1, T) > 0, i.e. dist(H1, T) <
3
4 × dist(S, T).

Likewise, dist(H2, T) < 3
4 × dist(H1, T) < (3

4)2 ×
dist(S, T), dist(Hi, T) < (3

4)i × dist(S, T) < (3
4)i ×N .

Let dist(Hi, T) = 1, i.e. Hi is sure to find target T , then
(3
4)i ×N > 1, i > logN

log(4/3) which is the upper bound. ¥

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on March 15, 2009 at 02:17 from IEEE Xplore. Restrictions apply.

