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Abstract 

The monitor concept provides a structured and 
flexible high-level programming construct to control 
concurrent accesses to shared resources. I t  has been 
widely used in a concurrent programming environment 
for  implicitly ensuring mutual exclusion and explicitly 
achieving process synchronization. This paper proposes 
an extension to the monitor construct for  detecting run 
time errors in monitor operations. Monitors are studied 
and classified according to their functional 
characteristics. A taxonomy of concurrency control 
faults over a monitor is then defined. The concepts of a 
monitor event sequence and a monitor state sequence 
provide a uniform approach to history information 
recording and fault detection. Rules for  detecting 
various types of faults are defined. Based on these rules, 
fault detection algorithms are developed. A protorypical 
implementation of the proposed monitor construct with 
run-time fault detection mechanisms has been developed 
in Java. We shall briefly report our experience with and 
the evaluation of the robust monitor protoQpe. 

1. Introduction 
The monitor construct [6, 81 has been widely used as 

a high level process synchronization mechanism in  
modern operating systems, as well as in  concurrent 
programming languages as a language level construct [ 1 ,  
5,  7, 10, 141. It is employed as a means to control the 
flow of process interactions, which is one of the essential 
sources of difficulty for both design and validation of 
concurrent programs. As such, it is very important to 
ensure correctness and reliability of monitor operations. 
The original version of the monitor construct, however, 
is specified as a device for defining shared abstract 
objects and for scheduling accesses to them, without 
provision for handling malfunction of monitor 
procedures and run time errors that occur during a 
monitor operation. 

A number of methods [8, 9, 131 have been developed 
for proving correctness of a monitor’s functional 
operations. Most of these methods are based on Hoare’s 
axiomatic system for proving data representation 
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(because of the analogy between a monitor and a data 
representation) and provide proof rules which emphasize 
reasoning on the invariants relating values of the 
permanent variables of the monitor. These axioms are 
further developed and applied by Howard [9]. Howard 
used history variables and axiomatization of the 
properties of Wait and Signal operations to prove some 
more interesting properties of monitors, not only of 
functional but also scheduling properties. Verification of 
specifications of monitor primitives to be implemented is 
also studied. Saxena and Bredt verified a specification of 
monitor primitives in terms of inputloutput assertions, 
from both the procedure viewpoint and the process 
viewpoint [ 131. 

Verification is essentially a fault-prevention 
technique. Correctness does not necessarily imply 
reliability. Many factors can lead to run time errors even 
for a program that is proved to be correct. Furthermore, 
not all the properties of a monitor can be proved from the 
monitor definition alone. For example, the external 
consistency of a monitor, defined as the observation of a 
sequential constraint upon the order of procedure 
invocation that may be initiated by any individual user, 
must be proved separately for each program that uses the 
monitor. Run-time mechanisms, therefore, are needed to 
handle exceptions of monitor operations and usage raised 
during execution. 

The fact that a monitor is an abstract data type 
makes it relatively easy to add new functional 
components and control capabilities to the monitor 
construct to improve the reliability of concurrent 
programs. In this paper, we propose an extension to the 
monitor functionality by introducing an underlying fault- 
detection mechanism, which can be applied to the 
implementation and run-time execution of monitor 
primitive operations. We describe the fault detection 
model, the development of the fault detection algorithms, 
and a prototypical implementation of the augmented 
monitor construct using Java. 

The rest of the paper is organized as follows. In 
Section 2, functional characteristics of different kinds of 
monitors are analyzed and taxonomy of monitor faults is 
introduced. We present the fault detection model and a 
classification of the abnormal behaviors of monitor 
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operations that may result in run-time concurrent control 
errors. In Section 3, we define the concepts of a monitor 
event sequence and a monitor state sequence, which will 
be used for structuring and recording the monitor 
execution history information. A set of rules governing 
well-defined monitor sequences is proposed. Based on 
these rules the fault detection algorithms are developed. 
Section 4 discusses the implementation issues and 
describes a prototypical implementation of the proposed 
monitor construct in Java. Finally, Section 5 concludes 
the paper. 

2. A Taxonomy of monitor concurrency 
control faults 

Based on the concept of an abstract data type, the 
monitor encapsulates both local data and operations on 
the data, and provides an interface which is the only 
means for user processes to request the operations. The 
data represents the status of the shared resource being 
controlled by the monitor while the local procedures 
operate on the local data variables to change the status of 
the shared resource. ‘Typically, the specification of a 
protected resource must include the integrity 
(consistency) constraints and the scheduling (timing 
order of events) constraints. In a monitor, the scheduling 
constraints are coded in its implementation and the 
integrity constraints are coded in its procedures. 
Essentially, at any one time, one and only one process is 
allowed to be inside a monitor. In this way, concurrency 
control is integrated into the monitor specification so that 
it does not have to be considered in the use of the shared 
data by the programmer. 

Apart from automatically ensuring mutual exclusion 
of contending processes, monitors could also manage the 
conditional synchronization of processes sharing the 
resources. Hoare proposed the concept of condition 
variables [SI, which are local variables of a monitor 
representing the synchronization status of the shared 
resources. A condition variable is used to delay processes 
executing in a monitor and is represented as a queue 
initialized to be empty. 

Several implementations of monitors have been 
proposed, which depend on primitives at a lower level 12, 
8, 7, 111. In the context of this paper, a monitor 
implementation is specified at a higher level, and 
consists of a set of four procedures, namely Enter, Wait, 
Signal, and Exit. The enter primitive ensures mutually 
exclusive access to the requested monitor while the exit 
primitive releases the mutual exclusion of the monitor 
being accessed by other requesting processes. The wait 
primitive blocks the execution of the calling process and 
releases the mutual exclusion of the monitor that is on 
hold by other requesting processes. The signal primitive 
activates one of the processes waiting in either the entry 

queue or the condition queues of the specified monitor 
and releases the control of the signaling process to the 
awakened one. As the signaling processes have finished 
using the resource and are no longer inside their critical 
sections, they normally exit the monitor right after 
issuing the signaling operation [8]. The signal and exit 
primitives can thus be naturally combined into one, 
named signal-exit, so as to reduce process-switching 
overheads. 

In this section, we present taxonomy of concurrency 
control faults in the monitor mechanism. The 
classification serves several purposes. First, it serves as a 
guide for building the error detection algorithm. Second, 
validation requires a system specification against which 
the actual results of operations can be assessed. A fault 
classification gives a systematic way to check which parts 
of the specification are violated. Third, it provides 
information about the frequency of each fault. For 
example. if a particular kind of fault appear frequently 
we could use a variety of methods to reduce the incidence 
of it. 

2.1 Classification of monitors 
We first present a classification of monitors, which 

provide us insight into the requirements and structures of 
different types of monitors, and thus a guide for 
identifying the faults to be detected. 

Processes may interact in two ways: (a) Directly by 
coniniunicating niessages via a conznion data area. This 
often happens when a number of processes cooperate on 
some common tasks, each of them is aware of the other’s 
existence and function and depends directly on data or 
signals produced by the others. (b) Indirectly by 
coniperitig for  the same resources. Each process may be 
functionally independent so i t  may not know the 
existence of others. Therefore, concurrent control can be 
divided into two main subcategories: resource control 
and communication control. Accordingly, we can classify 
monitors into three types, according to their functional 
characteristics. 

Conzrriunication Coordinator: Communication between 
processes requires that they be synchronized during 
data exchange. This type of monitor allows pairs of 
processes to communicate via data exchanges that are 
controlled by the monitors. All interprocess 
communication is performed by calls to entries of 
shared buffers known to each other and governed by 
the implicit mutual exclusion of the monitor calls. 
Each process simply calls the monitor procedures 
“Send” and “Receive” in their respective programs. 
Synchronization and resource operations are combined 
together in the monitor, i.e., the monitor takes care of 
both scheduling access to and operations on the buffer. 
There is no requirement on the order of procedure 
calls: either Send or Receive can be called before or 
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after each other. However, in order to ensure normal 
operation of this type of monitors, there are several 
integrity constraints, which need to be observed by the 
monitors. 
1 )  A process calling “Send” can be delayed if and 

only if the buffer is full. 
2 )  A process calling “Receive” can be delayed if and 

only if the buffer is empty. 
3) The number of successful monitor procedure calls 

of “Receive” cannot exceed the number of 
successful monitor procedure calls of “Send”. 
The number of successful monitor procedure calls 
of “Send” cannot exceed the sum of the 
maximum buffer capacity and the number of 
successful procedure calls of “Receive”. 

Resource-Access-Right Allocator: When a number of 
processes compete for the exclusive use of the same 
resource they must exclude each other in time and 
maintain invariants for shared resources. Furthermore, 
when more than one resource are to be shared andor if 
a user needs to access more than one resource, 
deadlock prevention or avoidance in resource 
allocation needs to be implemented. Usually there is an 
allocator for each shared resource to guarantee 
mutually exclusive accesses to the resource. A monitor 
of the allocator type can be used for this purpose. A 
process must declare its desire to use the resource to 
the allocator by initiating a request. When it is granted 
the right to access the resource from the monitor i t  can 
do predefined operations on the resource. After 
finishing the use of the resource the process must 
release the resource through the allocator. Note that 
the resource access operation is separated from 
resource allocation. The monitor only handles 
“request” and “release”, it does not mediate the use of 
the resource. One of the constraints to be observed by 
this type of monitor is the partial ordering of 
procedures. This partial ordering is declared in the 
monitor specification explicitly. For example, a 
procedure call to “Release” cannot precede a 
procedure call to “Request” by the same process for 
each use of the resource. A process must invoke the 
procedure “Release” after it has completed its use of 
the resource. Failure to observe this sequence clearly 
represents possible misuse of the resource. 
Resource Operation Manager: Synchronization can be 
provided by a monitor either explicitly or implicitly. In 
explicit synchronization, processes have to explicitly 
request access to the resource, perform the operations 
and finally release the resource. On the other hand, in  
implicit synchronization, monitors and resources are 
combined into shared modules; Processes only need to 
issue the access operation to the module and the 
monitor will handle all the operations including the 
requesting and releasing operations. Monitors of the 
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Resource-operation-manager type are just for providing 
the processes with implicit synchronization. This 
approach has the benefit of more modularity and 
preventing user processes from possible misuses of the 
resources. 

2.2 A taxonomy of faults 
We first define what is meant by a “concurrency control 

fault”. A monitor performing concurrency control over a 
shared resource is considered to be operating correctly if and 
only if the following conditions hold: 
1 )  It guarantees mutual exclusion and enforces 

synchronization on accesses to the shared resource. 
2) It is free of deadlock and starvation in  sharing the 

resources by concurrent processes. 
3) It maintains consistency of the states of the shared 

resource. 
4) It preserves the specified behavior of processes that 

are using the shared resource, that is, the exact 
execution sequence of the processes is observed and 
is not influenced by the monitor. 

Any event that causes one or more errors which 
violate the above concurrency control properties of a 
monitor is declared to be a concurrency control fault. 
Faults could be software faults or hardware faults, design 
faults or system faults. Attempting to catch all the faults 
requires a complete specification of both monitor 
functions (procedures) and monitor implementations. 
Since monitor procedures are application dependent, i t  is 
impossible to know what the internal function of each 
monitor procedure is. Therefore, in our classification, we 
only consider the effects of monitor procedures, rather 
than their internal logic. 

Based on the taxonomy of monitors, we identify the 
following events as concurrency control faults. They are 
classified into three levels: the implementation level, the 
monitor procedure level, and the user process level. 
I. Implementation level faults 

Four types of faults are identified at this level - the 
Enter procedure fault, the Wait procedure faults, the 
Signal-exit procedure faults, and finally the internal 
process termination fault. 
a) Enter procedure faults: arising in the following 

situations 
1 .  Mutual exclusion is not guaranteed - two or more 

processes have entered the monitor at the same 
time. 

2. The requesting process is lost - the process is 
neither queued up for entering the monitor nor 
will i t  be allowed to enter the monitor. 

3. The requesting process has not received a 
response - the process is queued up indefinitely 
for entering the monitor or the process is blocked 
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when there is no process currently running inside 
the monitor. 

4. Entry is not observed - the process that is running 
inside the monitor has not invoked the Enter 
primitive . 

b) Wait procedure faults: arising in the following 
situations 
1 .  Synchronization is not guaranteed - the calling 

process is not blocked to queue up for condition 
but continues to run inside the monitor. 

2. The calling process is lost - the process is neither 
queued up for condition nor continues to run 
inside the monitor. 

3. Entry waiting processes are not resumed - none 
of the processes waiting on the entry queue are 
resumed when the calling process is blocked. 

4. Entry waiting process is starved - the process 
waiting on the entry queue is never resumed but 
wait indefinitely. 

5. Mutual exclusion is not guaranteed - more than 
one process waiting on the entry queue is 
resumed to enter the monitor when the calling 
process is blocked to queue up for condition. 

6. Monitor is not released - the calling process is 
blocked to queue up for condition but has failed 
to release the monitor for other waiting processes 
to access. 

c) Signal-Exit procedure faults: arising in the 
following situations 
1. Waiting processes are not resumed - none of the 

processes waiting on condition queues or on the 
entry queue are resumed when the calling process 
exits the monitor. 

2. Monitor is not released - the calling process 
exits the monitor but the monitor is not 
released for other waiting processes to access. 

3. Mutual exclusion is not guaranteed - more then 
one process is resumed to access the monitor at 
the same time when the calling process exits the 
monitor. 

4. Internal process termination fault. Process is 
terminated inside the monitor - the process never 
exits the monitor after entered it but terminated 
inside the monitor. 

11. Monitor procedure level faults 
This type of faults refers to monitor procedure 

operations, which result in  inconsistent states. These 
faults cause the states of the shared resources to be 
inconsistent and thus violate the integrity constraints of 
the communication coordinator type monitors described 
in Section 2.1. Four kinds of faults are identified which 
are simply violations of the integrity constraints. 

a) A process calling the monitor procedure “Send” is 
delayed when the buffer is not full, or the buffer is 
full but the calling process is not delayed. 

b) A process calling the monitor procedure “Receive” is 
delayed when the buffer is not empty, or the buffer is 
empty but the calling process is not delayed. 

c) The number of successful calls of “Send’ is less than 
the number of successful calls of “Receive”. 

d)  The number of successful calls of “Send” is larger 
than the sum of’the maximum buffer capacity and 
the number of successful calls of “Receive”. 

Ill. User process level faults 
This class of faults refers to logic design errors or run- 

time errors in executing the monitor procedures. Three 
kinds of faults are identified which are simply violations 
of the partial-ordering constraint. 
a) Ordering of monitor procedure calls is incorrect - a 

process tries to release a resource without first 
acquiring the resource. 

b) Resource is not released - a process never releases a 
resource after it acquires the resource. 

c) Process is deadlocked - the process acquired a 
resource and attempts to acquire the same resource 
again without first releasing the resource. 

In total, twenty-one concurrency control faults are 
identified and classified into different types and levels. 
Only the user process level faults (the last three) should 
be detected during real time execution, as the execution 
sequence of the monitor procedures of the resource- 
access-right allocator type monitors must be kept correct. 
Others can be checked against during a certain execution 
time frame since they induce no immediate significant 
errors or disaster. 

3. A monitor construct augmented with An- 
time fault detection 

Extensions are made to the monitor construct in two 
respects: the visible part and the invisible part. For the 
visible part the users need to supply some information. 
Here, we require the partial ordering of procedure calls 
within a monitor be specified in the monitor declaration. 
A convenient way to specify the partial order relation is 
path-expression like notation [3]. The invisible part 
refers to internal control operations that implement the 
monitor construct. A database for collecting history 
information needs to be defined and maintained and fault 
d.etection procedures need to be incorporated into the 
monitor implementation. 
3.1. History information 

For the purpose of detecting faults we need to 
maintain his tory in formation about monitor scheduling 
operations, against which the run-time behavior of a 
monitor can be checked. The history information 
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includes which processes are invoking the monitor, at 
which time an operation is executed, and the resource 
and queue states. They can be classified into two 
categories, which define the concepts of scheduling event 
and scheduling state. 

A scheduling event is the event of invoking one of the 
three monitor primitives - Enter, Wait, and Signal- 
Exit. The set of scheduling events, EVENTset, for a 
monitor is defined as follows: 
EVENTset = { Enter(Pid, Pname, t, flag), 

Wait(Pid, Pname, Cond, t, flag), 
Signal-Exit(Pid, Pname, Cond, t, flag) ] 

Each event identifies the time t at which the event 
occurs, the process Pid that caused the event and the 
procedure Pname involved. A flag is associated with the 
events Enter and Wait to indicate whether the 
corresponding monitor primitive has been successfully 
completed (e.g., blocked or continued). With an 
unsuccessful operation, the flag is set to 0 and later 
changed to 1 when the invoking process is resumed; the 
time t is set to the time at resumption. For Signal- 
Exit the flag indicates whether a process waiting on the 
condition queue has been resumed. 

The runtime operation of a monitor can be modeled as 
a finite sequence of scheduling events, L = I1l2...ln. A 
scheduling state of a monitor is a 3-tuple <EQ, CQ[], 
R h ,  where EQ denotes the external waiting queue, CQ[ 
] is the array of condition queues, and R# denotes the 
number of currently available resources. Because each of 
the above three events will cause a new scheduling state 
to be generated, so for each scheduling event sequence L 
= I l l 2 . .  . I ,  there will be exactly one corresponding 
scheduling state sequence S = sIs 2...s, such that s, is 
generated by 1, and 

I )  
2) 
3) 

/, precedes 1, in L if and only if  i < j ;  
s, precedes s, in S if and only if i < j ;  
I, <L 1, if and only ifs, cS s/ 

We will use the symbol <L and <s to denote “precede 
i n  L” and “precede in S”, respectively. In addition, we 
define L,, to be a subsequence of L between I ,  and I,. 

The dynamic scheduling behavior of a monitor then is 
implied in its sequence of scheduling events and states. 
Under correct monitor operations the sequences must be 
consistent and correspond to the specified value. 
3.2. Fault detection rules 

Before we present the fault detection algorithm we 
first show that every class of concurrency control faults 
in the taxonomy can be detected. To do this, we first 
define a set of rules in terms of the scheduling event 
sequence and then prove that every fault in the taxonomy 
is a violation of at least one of the rules. Based on the 
proof, a detecting algorithm that checks a given 
scheduling event sequence against these rules can be 
developed. 

Let Ti0 denote the timeout period for interpreting 
deadlock or starvation, Q denote a queue (either EQ or 
any condition queue) and IQ1 be the number of processes 
waiting on Q. Then according to the definition of correct 
concurrency control, a valid scheduling sequence is a 
scheduling sequence L = l I  ... l , ,  S = so ... s, satisfying 
the following rules: 
FD-Rule 1 : Mutually exclusive access to the monitor 
a) 1, = Enter(P,Pr,t,,I) 4 

Vj<r (I, = Enter(P’,Pr’,t,I) + 3k(s<k<r A 

( l k  = Signal-Exit(P’,Pr’,cond,tk,o/l) v 
11, = Wait(P’,Pr’,Cond,tk,O)))) 

This rule requires that a process be allowed to enter the 
monitor only if  no process currently uses the monitor. 

b) 1; = Wait(P,Pr,Cond,t,O/I) v 
1; = Signal-Exit( P, Pr, Cond, ti, 0)  4 

(Is,./. Eel # 0 + (Is;. Eel = Is,.,. EQl - 1 A 

3j < i (1, = Enter(P’,Pr’,t;, I ) ) ) )  
c) 1; =Signal-Exit(P, Pr, Cond,t;, I )  -+ 

(Is;.,.CQ[Cond]l # 0 + (Is;.CQ[Cond]I = 
Is,.,.CQ[Cond]I - 1 A 

3j c i (l, = Wait(P’,Pr’,Cond,t;,l)))) 
FD-Rules 1.b) and 1.c) requires that, if  the waiting 
queue Q is not empty the proper Signal-Exit or 
Wait will activate exactly one of the processes awaiting 
on Q. 
I ,  = Wait(P, Pr, Cotid, t,, O / I )  v d) 

l i  = Signal-Exit(P, Pr, Cond,ti,O/I) + 
3j<i (1, = Enter(P, Pr,t,, I )  

This rule requires that every process operating inside 
a monitor must have called Enter. 

FD-Rule 2 : Nontermination inside a monitor 
l i  = Enter(P,Pr,t,, 1 )  4 

3 j x  (t, - t, 5 Tmax A 

l j  = Signal-Exit(P,Pr,Cond,t,,O/l )) 
FD-Rule 3 : Fair response 

1, = Eriter(P,Pr,t;,O) -+ 
3j<i (1, = Enter(P’,Pr’,t,,I) A - d k  (j<k<i A 

( 1 k  = Signal-Exit(P’,Pr’,Cond,thO/l) v 
lk = Wait(P’, Pr’, Cond,tk.O)))) 

Rule 3 requires that a requesting process can be 
delayed only when the monitor is in use already. 

1; = Enter(P,Pr,t;,O) v 1, = Wait(P,Pr,Cond,t,,O) -+ 
FD-Rule 4 : Free of starvation and losing process 

n - i < Ti0 A Isi,Ql = Is,.[.Ql + 1 
FD-Rule 5 : Correct synchronization 
a) 1; = Wait(P,Pr,Cond,t,,I) + 

i # r A 1, = Signal-Exit(P,Pr,Cond,t,,I) 
A process waiting on a condition queue can only be 
resumed by a process calling Signal on the 
condition. 
1; = Enter(P, Pr,t,, I )  -+ b) 

I ,  = Wait( P ’, Pr I ,  Cond, t k ,  O/I ) v 
I, = Signal-Exit(P’,Pr’, Cond,t,,O) 
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A process waiting on the entry queue can only be 
resumed by a process calling W a i t  or non-Signal 
Exit. 

FD-Rule 6 : Consistency of resource states 
a) Let r and s denote the number of successful calls of 

Receive and Send, respectively. Let Rnzax denote 
the maximum number of resources. For a 
communication coordinator monitor, the following 
invariant holds: 

1, = Wait(P,Send.Cond.full,t,,O/l) + s,.R# = 0 
0 I r <  s I r + Rmax 

b) 
C) I ,  = Wair(P,Receive,Cond.empty,t,,O/I) + 

FD-Rule 7 : Correct ordering of procedure calls 
a) 1, = Enter(P,AcQuire,r,,O/l) + 

s,.R# = Rmax 

3j>i (1, = Enter(P,Release,t,,O/I) A 

- J k  (i<k<j A f k  = Enter(P,AcQuire,tk,O/I))) 
b) 1, = Entei-(P,Release,t,,l) + 

3j<i (1, = Enter(P,AccrLlire,t,,I) A 

4 k  (i<k<j A lk = Enter(P,Release,tk, I ) ) )  
It can be shown that, having the history information 

database, every level of concurrency control faults in the 
taxonomy can always be detected. This is because each 
fault at the implementation level will lead to a violation 
of at least one of the FD-Rules 1 - 5, and each fault at the 
user process level will lead to a violation of at least one 
of the FD-Rules 6.a), 6.b) and 6.c). 

3.3. Fault detection algorithms 
Fault detection is achieved by detecting routing 

invoked periodically or when trouble is suspected. This 
approach leaves the main program logic largely unaltered 
by the detection logic and modifications to the detection 
routine should have little effect on the main program 
system. Our fault detection strategy includes two phases: 
real-time checking of calling orders of monitor 
procedures, which is applied only to Resource-access- 
right-allocator type monitors for correct orders of using 
shared resources, and periodical checking of other errors. 
Let Tmax and Tmin denote the maximum and minimum 
number of times any process can be inside a monitor, 
respectively. The frequency of periodical invocation of 
the detection routine is determined by a unit of time T, 
where Tmax < T. Therefore, whenever T is reached the 
detection routine is automatically invoked. 

For the sake of efficiency in both time and memory 
space, we use a fault-detection the following strategy. 
First, we find out the correct changes of monitor states 
and event relations guaranteed by the above rules. Then, 
indirectly, we detect faults by checking the given event 
sequence to see whether it maintains such consistent 
changes. In this way, events can be viewed as functions 
mapping one consistent monitor state into another 
consistent state. Only the states at the last checking time 
and the current checking time are recorded for checking 

the mapping; the state sequence in between is not 
needed. Furthermore only a small amount of information 
needs to be kept (in the last checking state) for later 
detection; most of the information can be removed after 
being used. 

We collect the information about the monitor events 
and states between the last checking time and the current 
checking time: 

At the last checking time p : 
SI, = (EQ,,, CQICondl,,. R#, ) 

. L = l,, ... lr ( recorded event information ) 

At the current checking time t ,  : 
Sr = ( EQ/, CQlCondl,, R#, ) 

With the above information, faults causing run-time 
ccincurrency control errors can then be detected by 
checking the information against the rules. The checking 
is based on state transformations - derive s, from s,, and L 
according to the state transition rules; If every step in the 
derivation gives a consistent state and finally s, can be 
derived, then we say that no fault has occurred. On the 
other hand, any inconsistency in monitor states notifies 
that concurrency control faults have occurred during the 
execution of monitor operations between the checking 
time frames. If one step in the derivation gives an error 
there must be an error in the event sequence, e.g., 1, = 
Wuit(P), l,,, = Signal-Exit(P), i.e., P resumes execution 
without being signaled. Notice, however, that even if 
every step of the derivation is correct, this does not imply 
a fault-free situation. 

Although this post-checking is less accurate due to the 
fact that the monitor states between the checking points 
are not recorded, i t  can still detect most concurrency 
control faults identified in the previous section, except 
the ones at the user process level which need to be 
checked against in real-time. By properly defining the 
checking frequency T, the checking can be made more 
accurate. When T = 1, the checking becomes real-time. 
3.3.1. Data structures 
In keeping with the above strategy, we need to modify the 
way of recording the scheduling events as follows. Since 
we want to avoid tracing back the previous events, 
whenever a blocked process (on either EQ or CQ) is 
rcsumed, its time and flag will not be changed. Actually, 
we even do not have to use the flag for Wait, as well as 
the time for all events. Therefore, the EVENTset 
becomes: 

EVENTset = { Enter(Pid, Pname, flag), 
Wait (Pid, Pname, Cond), 
Signal-Exit(Pid, Pname, Cond, flag) } 

In addition to the monitoring state, we also record the 
active process in the monitor at checking time and denote 
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it as Running. The scheduling event sequence recorded 
will be used to construct the following checking lists at 
each checking time. 
1) Enter-0-List: This list records the in and out of 

processes awaiting on the EQ; it is a list of elements 
of the form Pid(Pr), where Pid denotes the calling 
process and Pr the calling monitor procedure. 
Initially, Enter-0-List is set to EQ. During the 
execution, its value is updated as follows: 

Whenever 1k =Enter(Pid, Pr, 0) is encountered, 
Pid(Pr) is appended to Enter-0-list; 
Whenever 1k = Wait or I &  = Signal-Exit is 
encountered, the first element (at the head of the 
list) of Enter-0-List is deleted. 

2)  Wait-Cond-List: One for each condition, the list 
records the in and out of processes awaiting on 
CQ[Cond]. It is a list of elements of the form 
Pid(Pr), where Pid denotes the calling process and 
Pr the calling monitor procedure. Initially, Wait- 
Cond-list is set to CQ[Cond]; During the execution, 
its value is updated as follow: 

Whenever l k  = Wait(P, Pr, Cond) is encountered, 

Wheneve l k  = Signal-Exit(Pid, Pr, Cond, I ) ,  the 

3) Running-List: This list records the processes 
currently inside the monitor without waiting on any 
condition queue. It is a list of elements of the form 
Pid. Initially, the list is set to s, Running; during 
execution, its value is updated as follows. 

Whenever l k  = Enter(Pid, Pr, I )  is encountered, 
Pid is appended to Running-List; 
Whenever an element is deleted from Enter-0-List, 
the element is appended into Running-List; 
Whenever an element is deleted from Wait-Cond- 
List, the element is appended into Running-List; 
Whenever l k  = Wait(Pid, Pr, Cond) is encountered, 
the first element with Pid in Running-List is 
deleted; 
When l k  = Signal-Exit(Pid, Pr, Cond, O / l ) ,  the 
first element with Pid in Running-List is deleted. 

4) Resource-No: This number indicates the changes of 
the resource status of the communication coordinator 
type monitors. Its value is the number of the 
available resources. Initially, Resource-No is set to 
s,.R#; during execution, the value changes as 
follows: 

Whenever lk = Signal-Exit(Pid, Send, empty, O/I) 
is encountered, Resource-No is decreased by one; 
Whenever l k  = Signal-Exit(Pid, Receive, full, O / l )  
is encountered, Resource-No is increased b y one. 

Request-List: This list records the calling sequence 
of the monitor procedures Request and Release 
of the Resource-Access-Right-Allocator type 

Pid(Pr) is appended to Wait-Cond-List; 

first element of Wait-Cond-List is deleted. 

5 )  

monitors. It is a list of elements of the form Pid. 
Initially, it is set to empty and, during execution, its 
value is updated as follows: 

When 1, = Enter(Pid, Acquire, o/l), Pid is 

When 1, = Signal-Exit(Pid, Release, o/l), the first 
appended to Acquire-List; 

element with Pid is deleted from Request-List. 
3.3.2. Fault detection algorithms 
The design of the fault detection algorithms is based on a 
set of state transition rules. Let si, and s, be the monitor 
states at the last checking time t,, and the current 
checking time t ,  respectively; L = l l . . . l ,  be the given 
scheduling event sequence generated during the time 
period between ti, and t .  The following state transition 
rules must hold. 
ST-Rule 1 : Up to I,, s,. EQ = Enter-0-List. 
ST-Rule 2 : Up to I,, s,. CQ[Cond] = Wait-Cond-List. 
ST-Rule 3 : At any time only one process can be inside a 
monitor: 

a) At any time, IRunning-List1 51. 
b) If 1k = Wait(Pid) or lL = Signal-Exit(Pid), then upto 

1k.1, Running-List = { Pid). 
c) If l k  = EntetfPid, Pr, I), then upto lL, Running-List 

= {Pid) .  
d) If l k  = Enter(O), then upto I & ,  IRunning-List1 = 1 

ST-Rule 4 : For any event I,, up to l,.,, Pid cannot be in 
either Enter-0-List or any of the Wait-Cond- 
Lists. 

V Pid E (Wait-Cond-Lists v Running- 
List), Timer(Pid) 5 Tmax. 
V Pid E Enter-0-List, Timer(Pid) 5 Tio. 
This rule concerns the data integrity of 
the Communication-Coordinator type 
monitors. Four sub-rules are induced: 

ST-Rule 5 : 

ST-Rule 6 : 
ST-Rule 7 : 

a) 0 5 r 5  s 5 ( r  + R m a x )  
b) Is,.R#l = Is,,.R#l + r - s 
c) If l k  = Wait(Pid, Send, Cond, fu l l )  then Resource- 

No = 0. 
d) If 1k = Wait(Pid, Receive, Cond, empQ) then 

Resource-No = Rmux. 
ST-Rule 8 : This rule concerns the calling orders of the 

monitor procedures “Request” and 
“Release” of the Resource-Access-Ri ght- 
Allocator type monitors. 

a) 
b) 

c) 
It can be proved that any violation of the FD-Rules 1 -  

7 defined in Section 3.2 will lead to a violation of the ST- 
Rules. The FD-Rules and the ST-Rules are defined in 
terms of different history information. Actually, the 
checking lists are pseudo-historical since they are 
generated at checking points. If the actual intermediate 

No Pid is identical to another Pid in Request-List. 
If 1, = Enter(Pid, Release, O/l),  then Pid must be 
in  Request-List. 
No Pid can be in Request-List forever. 
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monitor states are recorded and in each derivation step 
the checking lists are checked against these states then 
any violation of FD-Rules will iead to a violation of the 
correct state transitions. In this way, the FD-Rules are 
equivalent to the state transition rules. 

Based on the state transformation rules stated in the 
previous section, three fault-detection algorithms have 
been developed, respectively, for checking (a) general 
monitor concurrency control operations, (b) the 
consistency of resource states that should be preserved by 
monitor procedures, and (c) the partial ordering of 
monitor procedure calls. See Algorithm- 1, Algorithm-2, 
and Algorithm-3. Input to these algorithms are event 
sequences generated up to the checking time. Also, the 
monitor name and type are used as parameters to the 
algorithms. 

The checking lists are initialized once to empty before 
any invocation of the detection algorithms. 

Algorithm-1: General Concurrency-Control Checking 
Input : Monitor state s,) at the last checking time t,, ; 

Monitor state s, at the current checking time t; 
Scheduling event sequence L=ll...ln generated 
from tu to t ;  

Begin ( 
Step 1: 

Initialize the checking lists; 
For each l I  in L Do 
If Pid in I ,  is in Enter-0-List or any Wait-0-list 
Then report an error; 
If 1, = Wait(Pid) or Signal-Exit(Pid) Then 

Adjust Enter-0-list accordingly; 
Adjust Wait-Cond-lists accordingly; 
Adjust Running-list accordingly; 
If IRunning-List1 > 1 Then report an error; 
If I ,  = Enter(Pid, Pr, I )  Then 

If (Pid}  # Running-list Then report an error; 

If Running-List # { Pid} Then report an error; 
If 1, = Enter(0) Then If IRunning-List1 # 1 Then 
report an error; 

Step 2: 
If I ,  is encountered Then 
If Enter-0-list # s,.EQ Then report an error; 
If Running-List # s,,Running, Then report an error; 
For all Cond Do 

If Wait-Cond-list=s,. CQ[ Condl Then 
report an error; 

For all Pid in Running-List and Wait-Cond-Lists DO 

For all Pid in Enter-0-List Do 
If Timer(Pid) 2 Tmax Then report an error; 

If Timer(Pid) 2 Ti0 Then report an error; 
} End. 

Algorithm-2:Consistency-Of-Resource-States Checking 
Input : Monitor state s,> at the last checking time tn ; 

Monitor state s, at the current checking time t ;  
Scheduling event sequence L=ll.. ,1, generated 
from t,, to t; 

Begin ( 
Step 1: 

Initialize the checking lists; 
For each 1, in L Do 

Adjust r, s accordingly; 
Adjust resource-No accordingly; 
If 0 5 r I s I r + Rmax does not hold Then 

If 1, = Wait(Pid, Receive, Cond.ful1) Then 

If 1, = Wait(Pid, Receive, Cond,empty) Then 

report an error; 

If Resource-No # 0 Then report an error; 

If Resource-No # Rmax Then report an error; 
Step 2: 

If Is,.R#l # Is,.R#l I+ r - s Then report an error; 
1 Ehd. 

- 
Algorithm-3: Calling Orders Checking 
Input : Monitor state s, at the last checking time tD ; 

Monitor state s, at the current checking time t ;  
Scheduling event sequence L=l, ... l,, generated 
from tn to t ;  

Begin ( 
Step 1: 

Initialize Resource-No; 
For each 1, in L Do 

Adjust Request-list accordingly; 
I f  lI = Entert(Pid, Release, O/l) Then 

I f  Pid is not in Request-list up to that time 
Then report an error; 

If there exists identical Pids in Request-list 
Then report an error; 

Step 2: 
For each Pid in Request-list Do 

If Timer(Pid) 2 Tlimit Then report an error 
1 IEnd. 

4.. A prototype implementation in Java 
The monitor construct is now augmented with the 

specification of the information necessary for run-time 
h u l t  detection. The information includes procedure- 
calling orders, monitor types, etc. The general form of 
the monitor specification is shown as follows. 
MonitorName: Monitor (type) ; 

Declarations of local variables; 
Declarations of condition variables; 
Specification of procedure call orders; 
Declarations of monitor procedures; 
Declarations of local procedures; 
Initialization section; 

End MonitorName. 
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Enler(ProcesslD, ProcedureName. Flag) 1 + 
Monitor 

Monitor Procedures 

b Wait(Process1D ProcedureName, Condit ion) 

* 

Shared Variables, - Condit ion Queues 

t 
Information 

for Monitor Events 
and States 

- Database 

3.0 second 

To facilitate fault detection, the system maintains a 
history information database, which consists of the 
scheduling event sequence recorded during monitor 
operation and the checking lists generated at the 
checking points. Coupled with this database the system 
would also allow for control of accesses to the database. 
Therefore, two types of routines are needed: data 
gathering routines which collect the information and 
record them into the database, and checking routines 
which operate on the data structures and report on their 
error states. The data gathering routines run in real-time 
and are invoked by the three monitor implementation 

Ratio for Ratio for Ratio for 
overheads 4.490 overheads 4.49 1 overheads 4.639 

30.168 7.491 30.823 7.371 31.41 7.57 
Ratio for Ratio for 

overheads 4.027 overheads 4.182 overheads 4.150 
Ratio for 

procedures Enter, W a i t ,  and Signal-Exit. The 
checking routines, which actually implement the fault 
detecting algorithms, are invoked periodically. Upon 
detection, all other running processes are suspended and 
are resumed only after the checking has finished. 

The overall structure of the augmented monitor 
construct is shown in Figure 1 .  It consists of four main 
functional units: the monitor, the shared resources, the 
data gathering routine, and the fault detection routine. 
The data gathering routine collects historical 
information on monitor usage and states while the fault 
detection routine uses this collected information to 
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analyze any violations of concurrency control rules. The 
two routines can be implemented outside the monitors 
so that any changes to the routines will not affect the 
monitors and vice versa. 

To evaluate the proposed robust monitor construct, 
we have developed a software prototype in Java [4]. Two 
measures are used for the evaluation: robustness and 
performance. The former is concerned with whether the 
proposed extension is effective in detecting run-time 
faults, while the latter measures the overhead incurred 
by the extension. Faults of different kinds as classified 
in Section 3.2 are injected randomly for evaluating the 
coverage of the fault detection algorithms. The results 
show that all injected faults are detected. 

To evaluate the overhead imposed by history 
information recording and fault detection, statistics of 
elapsed times spent on recordings of history information 
and on checking of concurrency control faults are 
collected with different checking time intervals. Table 1 
shows the overhead calculated as the average ratio 
between the time spent on executing monitor operations 
with the extension and that without the extension. The 
results show that, as expected, when the checking time 
interval increases, the overhead decreases. The 
performance of the fault detection model can also be 
determined. For example, when the time interval for 
invoking the fault detection routine of the 
communication coordinator type monitors is set to 0.5 
second, the performance of the augmented monitor 
construct is decreased by nearly seven times of that 
without fault detection. Therefore, in order to keep 
checking of concurrency control faults without 
scarifying too m u c h  performance,  t h e  checking t i m e  
interval must be carefully decided. 

5. Conclusions and Future Work 
In this paper, we have introduced a framework for 

detecting concurrency control faults in a 
multiprogramming system based on the monitor 
construct. We proposed an augmented monitor construct 
with run time assertion checking and underlying fault 
detection, which allows the integrated detection of 
concurrency control faults inside the monitor 
mechanism. A software prototype of the proposed robust 
monitor construct has been developed in Java. 

Extensions can be made to allow predefined and 
user-supplied assertions to be specified as part of 
monitor declarations and used for checking the 
functional operations and external use of the monitors. 
The validity of this checking is based upon the 
assumption that the implementation of the monitor 
primitives is correct. The underlying fault detection, 
applied to run time execution of the monitor primitives, 
facilitates the dynamic verification of the behavior of the 
implemented monitor mechanism. Improvements in 

these two aspects provide a more reliable monitor 
construct. 

The proposed extensions to the monitor constructs 
only enable the monitors to detect faults. A fault tolerant 
system detects errors created as the effect of a fault and 
in  addition, applies error recovery techniques to restore 
and continue the normal operations. Therefore, in order 
to make the monitor construct to be fault-tolerant, error 
recovery mechanisms should be incorporated into the 
model to handle the faults detected by recovering the 
errors. 
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