
RESEARCH ARTICLE Open Access

Diffusion-weighted magnetic resonance
imaging of primary cervical cancer in the
detection of sub-centimetre metastatic
lymph nodes
Jose Angelo Udal Perucho1 , Keith Wan Hang Chiu1 , Esther Man Fung Wong2 , Ka Yu Tse3 ,
Mandy Man Yee Chu3 , Lawrence Wing Chi Chan4 , Herbert Pang5 , Pek-Lan Khong1 and
Elaine Yuen Phin Lee1*

Abstract

Background: Magnetic resonance imaging (MRI) has limited accuracy in detecting pelvic lymph node (PLN)
metastasis. This study aimed to examine the use of intravoxel incoherent motion (IVIM) in classifying pelvic lymph
node (PLN) involvement in cervical cancer patients.

Methods: Fifty cervical cancer patients with pre-treatment magnetic resonance imaging (MRI) were examined for
PLN involvement by one subspecialist and one non-subspecialist radiologist. PLN status was confirmed by positron
emission tomography or histology. The tumours were then segmented by both radiologists. Kruskal-Wallis tests
were used to test for differences between diffusion tumour volume (DTV), apparent diffusion coefficient (ADC), pure
diffusion coefficient (D), and perfusion fraction (f) in patients with no malignant PLN involvement, those with sub-
centimetre and size-significant PLN metastases. These parameters were then considered as classifiers for PLN
involvement, and were compared with the accuracies of radiologists.

Results: Twenty-one patients had PLN involvement of which 10 had sub-centimetre metastatic PLNs. DTV
increased (p = 0.013) while ADC (p = 0.015), and f (p = 0.006) decreased as the nodal status progressed from no
malignant involvement to sub-centimetre and then size-significant PLN metastases. In determining PLN
involvement, a classification model (DTV + f) had similar accuracies (80%) as the non-subspecialist (76%; p = 0.73)
and subspecialist (90%; p = 0.31). However, in identifying patients with sub-centimetre PLN metastasis, the model
had higher accuracy (90%) than the non-subspecialist (30%; p = 0.01) but had similar accuracy with the
subspecialist (90%, p = 1.00). Interobserver variability in tumour delineation did not significantly affect the
performance of the classification model.

Conclusion: IVIM is useful in determining PLN involvement but the added value decreases with reader experience.

Keywords: Cervical Cancer, Magnetic resonance imaging, Diffusion-weighted imaging, Intravoxel incoherent
motion, Perfusion, Lymph node metastasis
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Background
The inclusion of PLN metastatic status into the recently
revised International Federation of Gynaecology and
Oncology (FIGO) staging system has shown to be prog-
nostic on historical cohort, hence may better identify
patients for radiation dose escalation to suspicious PLNs
to improve locoregional control and survival [1–4]. In
cervical cancer, MRI is used to evaluate the primary
tumour extent and at the same time to assess lymph
node involvement, in which the diagnosis of the latter
relies on size- and morphology-based criteria on T2-
weighted (T2W) images [5–7]. However, these criteria
have shortcomings in that they are susceptible to false
positives due inflammatory enlarged lymph nodes [8, 9]
and false negatives due to difficulties in detecting sub-
centimetre metastatic PLNs [10]. Ultimately, these cri-
teria have resulted in low pooled sensitivity of 53–56%
despite high specificity of 91–93% [11, 12].
Pathological assessment of resected lymph nodes pro-

vides definitive diagnosis; however, pelvic lymph node dis-
section (PLND) is not routinely performed in early bulky
and locally advanced cervical cancer (LACC) treated by
concurrent chemoradiation (CCRT) [13]. FDG-PET/CT,
which has been shown to have high accuracy [11] in iden-
tifying PLN involvement, is used clinically to determine
the nodal status but imparts substantial radiation burden
with its high cost and limited availability. Therefore, it can
be useful in identifying non-invasive imaging features of
the primary tumour on MRI that are associated with the
presence of PLN metastases in cervical cancer.
There has been interest in the use of diffusion-weighted

imaging (DWI) and apparent diffusion coefficient (ADC) to
characterize the primary tumour in cervical cancer, and
ADC has been shown to be associated with various clinico-
pathological factors such as FIGO stage, histological grade,
including nodal status [14–16]. Previous studies have dem-
onstrated the utility of ADC to distinguish between benign
and malignant mediastinal masses as well as axillary lymph
nodes in patients with breast cancer [17, 18]. However, the
diffusional signal in cervical cancer is thought to be better
ascribed to the intravoxel incoherent motion (IVIM) biexpo-
nential model and the perfusion effects are non-negligible
[19–21]. There is growing interest in applying advanced
diffusion models, such as IVIM, diffusion kurtosis imaging
(DKI), and diffusion tensor imaging (DTI) to discrim-
inate between malignant and benign masses as well as
characterize tumours [22–24]. Specifically in the fe-
male pelvis, previous studies have demonstrated the
feasibility of IVIM and suggested that this technique
could be used to aid in the clinical management of
LACC patients [20, 25, 26].
The purpose of this study was to assess the classification

performances of IVIM parameters of the primary cervical
tumour in classifying PLN involvement, particularly in the

detection of sub-centimetre lymph node metastasis, and
to compare them with lymph node staging performance
of radiologists via visual assessment.

Methods
Patients
This retrospective study was approved by and done in ac-
cordance with the regulations set by the local Institutional
Review Board. This study involved anonymized human data
without identifying information that has already been col-
lected waiving the need for informed consent. Patients were
retrospectively recruited from March 2012 to January 2018.
Inclusion criteria were: histologically confirmed squamous
cell carcinoma (SCC) or adenocarcinoma LACC; FIGO
stage of IB2 or higher; treatment-naïve; and who underwent
either additional pre-operative FDG-PET/CT staging or
subsequent PLND. A total of 50 consecutive patients were
thus identified.

MRI
Patients were asked to fast at least 6 h before the examin-
ation and 20mg hyoscine butylbromide (Buscopan, Boeh-
ringer Ingelheim, Germany) was given intramuscularly at
the beginning of each examination to reduce bowel peristal-
sis. Images were acquired with a 3 T MRI system (Achieva
3.0 T TX, Philips Healthcare, Best, the Netherlands) using a
dedicated 16-channel phased array torso coil. All patients
were imaged on the same scanner. The conventional se-
quences are tabulated on Table 1. DWI utilized single-shot
spin-echo echo-planar imaging, which was acquired imme-
diately after the axial T2W imaging. It was performed in
free breathing with background body signal suppression
(pre-saturation inversion recovery fat suppression) with
parallel imaging and sensitivity encoding (SENSE) factor of
2. Thirteen b-values (0, 10, 20, 30, 40, 50, 75, 100, 150, 300,
500, 800, and 1000 s/mm2) in the axial plane encompassing
20 slices to include the entire primary tumour motion-
probing gradients in three orthogonal axes.

Image analysis
Two board-certified radiologists, one subspecialist in
gynae-oncological imaging (> 10 years of experience in fe-
male pelvic imaging and cross-sectional imaging) and one
non-subspecialist (> 10 years of experience in cross-
sectional imaging), staged patients’ PLN status by visually
examining for PLN involvement using the size, morph-
ology and signal-based criteria on T2W images and DWI
[5–7]. In short, PLNs with short axis larger than 1 cm on
T2W-MRI, round morphology and/or containing signal
similar to the primary tumour was considered malignant.
PLN involvement was then confirmed using FDG-avidity
from pre-operative staging FDG-PET/CT or subsequent
histological findings from PLND (Figs. 1 and 2). Any FDG
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uptake more than the background liver activity along the
pelvic nodal chain was considered positive [27].
Volumes of interest (VOIs) were manually drawn by

both radiologists to encompass the entirety of primary
tumours on the b1000 images with reference to co-
registered T2W images and ADC maps. Areas of hyper-
intensity on the b1000 maps were taken as the primary
tumour and radiologists segmented the tumour with ref-
erence to co-registered T2W images and ADC maps.
These VOIs were then copied to co-registered paramet-
ric maps. IVIM maps were visually inspected and VOIs
were adjusted if needed (Fig. 3).

DWI analysis
The monoexponential model of DWI was based on the
geometric averaged DWI signal from three orthogonal
axes. ADC map was calculated with 2 b-values (0, 1000
s/mm2) using the function:

Sb
S0

¼ exp −b∙ADCð Þ ð1Þ

where Sb represents the mean signal intensity with the
diffusion gradient, b, S0 is the mean signal intensity
when b = 0 s/mm2. Diffusion tumour volume (DTV) was
calculated by multiplying the tumour areas on b1000 im-
ages by the slice thickness.
The biexponential model, IVIM, was analysed using all

13 b-values acquired and parametric maps of D, f, and
pseudo-diffusion coefficient (D*) were generated using
the biexponential model described by the function:

Sb
S0

¼ f exp −b Dþ D�ð Þð Þ þ 1− fð Þ exp −b∙Dð Þ ð2Þ

A 3 × 3 gaussian smoothing filter was first applied for pre-
processing before fitting using non-linear least squares with
non-negative constraints under a Levenberg-Marquardt

Table 1 Summary of MRI scan parameters. CE: contrast-enhanced, DWI: diffusion-weighted imaging; FFE: fast field echo; TR/TE:
repetition time/echo; TSE: turbo spin echo; SPAIR: Spectral Attenuation Inversion Recovery; SENSE: sensitivity encoding

Sequences T2W TSE T2W SPAIR T2W TSE DWI CE 3D T1W FFE

Plane Sagittal Coronal Axial Axial 3D

TR/TE (ms) 4000/80 3500/80 2800/100 2000/54 3/1.4

Turbo factor 30 21 12 NA NA

SENSE factor 2 2 2 2 2

Field of view (mm) 240 × 240 230 × 230 402 × 300 406 × 300 370 × 203

Matrix size 480 × 298 352 × 300 787 × 600 168 × 124 248 × 134

Slice thickness (mm) 4 4 4 4 1.5

Intersection gap (mm) 0 0 0 0 0

Bandwidth (Hz/pixel) 230 186 169 15.3 724

Number of excitations 2 1 1 2 1

Fig. 1 A case of a 69-year-old patient International Federation of Gynaecology and Obstetrics (FIGO) staged IIA with a sub-centimetre pelvic
lymph nodes on parametric maps of (a) axial fused 18F-fluoro-deoxyglucose positron emission tomography and computed tomography (FDG-
PET/CT) image and (b) axial T2-weighted (T2W) image. This patient was classified as metastatic by the IVIM models and correctly staged by the
subspecialist but not the non-subspecialist.
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routine by an in-house algorithm in MATLAB (The
MathWorks Inc., Natick, MA, USA). The two-step
approach was implemented by estimating D first,
then followed by f and D*. Incorrectly fitted pixels
with pixel values of ADC and D > 3 × 10− 3 mm2/s,

and f > 1 were excluded from analysis [28, 29].
Mean values of the parameters ADC, D, and f were
then calculated and considered for subsequent ana-
lysis. D* was excluded from further analysis due to
low signal-to-noise ratio [28, 30].

Fig. 2 A case of a 67-year-old patient International Federation of Gynaecology and Obstetrics (FIGO) staged IIIB with a sub-centimetre pelvic
lymph node on parametric maps of (a) coronal fused 18F-fluoro-deoxyglucose positron emission tomography and computed tomography (FDG-
PET/CT) image and (b) axial T2-weighted image. This patient was classified as metastatic by the IVIM models and correctly staged by the
subspecialist but not the non-subspecialist.

Fig. 3 Representative example of the placement of region of interest in the parametric maps of (a) T2-weighted image, (b) apparent diffusion
coefficient (ADC), (c) pure diffusion coefficient (D), and (d) perfusion fraction (f) on a case of a 66-year old patient International Federation of
Gynaecology and Obstetrics (FIGO) staged IIA2. This was repeated on subsequent slices to include the entire tumour volume.
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Statistical analysis
All statistical analyses were executed in R version 3.2.3
(R Development Core Team).

Primary tumour associations with nodal status
The cohort was stratified into three groups: patients with
no nodal involvement, patients with nodal involvement
but whose largest PLN had a short axis of less than 1 cm
on T2W images (sub-centimetre involvement), and pa-
tients with at least one PLN larger than 1 cm (size-sig-
nificant involvement). Kruskal-Wallis tests were then
used to test for ADC and IVIM parameter differences
between the nodal involvement groups and Nemenyi
tests for pairwise comparisons between groups.
The Fisher’s exact test was used to test for associations

between PLN involvement with histological sub-type
and with FIGO stage.

Interobserver and intraobserver reproducibility
Intraclass Correlation Coefficient (ICC) analysis was
used to assess interobserver variability of ADC and IVIM
parameters quantified from the VOIs of both radiolo-
gists. ICC measures agreement and ranges from 0 to 1,
where values between 0.50–0.75 are considered moder-
ate, 0.76–0.90 are considered good, and above 0.90 are
considered excellent agreement [31].

Classification models of PLN staging
A logistic regression model based on IVIM histogram fea-
tures derived from the VOIs of the subspecialist was de-
veloped to classify PLN involvement (regardless of PLN
size) where up to 2 features were selected [32]. Feature se-
lection was executed using stepwise forward regression.
To test for the effect of interobserver variation in manual
segmentation, the developed model was fitted on features
derived from the VOIs of the non-subspecialist.
Model performance were compared to the perfor-

mances of the radiologists’ nodal staging. The models
were assessed using receiver operating characteristic
(ROC) analysis. Relative performance of the models was
assessed by computing the Z-statistic of the accuracy
confidence intervals of each model’s accuracy, i.e. the
degree of CI overlap between of two models’ accuracies,

using the IVIM classification model based on the VOIs
of the subspecialist as reference [33].

Results
Clinicopathological characteristics
The median age of patients was 54 (28–78) years old.
Thirty-five patients were of the SCC sub-type and the
remaining 15 were of the adenocarcinoma sub-type.
Eighteen patients were FIGO stage IB, 5 were FIGO
stage IIA, 10 were stage IIB, 2 were FIGO stage IIIA, 14
were FIGO stage IIIB, and 1 was FIGO stage IVB. There
was an average of 12.8 days between the MRI scan and
FDG-PET/CT or PLND. Pelvic lymph node assessment
by FDG-PET/CT was done in 41 patients, while 9 pa-
tients had PLND. Twenty patients were found to have
PLN involvement by FDG-PET/CT assessment. One
PLND candidate was found to have PLN involvement.
Of the 21 patients with PLN involvement, 10 had sub-
centimetre involvement. The mean DTV was 37.68
(0.95–193.58) cm3. There were no associations between
PLN involvement with histological sub-type (p = 0.074)
and FIGO staging (p = 0.254).

Tumour characteristics
DTV increased while ADC, D, and f decreased as the
nodal status progressed from no malignant involvement
to sub-centimetre and then size-significant PLN involve-
ment, though the differences in D among the different
groups were not significant (Table 2 and Fig. 4). Pairwise
group comparisons may be found on Fig. 4. Interob-
server variability of ADC, D, and f, were excellent (ICC
= 0.961, 0.947, and 0.943 respectively).

PLN staging
Tabulated diagnostic performances of radiologists may be
found in Table 3. The optimal IVIM classification model
consisted of DTV and f. Classification accuracy of the
IVIM classification model to determine PLN involvement
regardless of size was similar to the diagnostic accuracies
of subspecialist and non-subspecialist (Table 3). However,
the IVIM model correctly identified 9 of the 10 patients
with sub-centimetre PLN involvement, which gave it the
same performance as the subspecialist (p = 1.00) but

Table 2 Apparent diffusion coefficient (ADC) and intravoxel incoherent motion (IVIM) parameter values of the primary tumour
between patients without nodal involvement, those with sub-centimetre involvement, and those with size-significant involvement.
ADC: apparent diffusion coefficient (x 10− 3 mm2/s); D: pure diffusion coefficient (x 10− 3 mm2/s); f: perfusion fraction. PLN: pelvic
lymph node

No involvement Sub-centimetre involvement Size-significant involvement p-value

DTV (cm3) 22.84 ± 22.84 54.04 ± 52.42 50.18 ± 34.63 0.013

ADC (10−3 mm2/s) 1.07 ± 0.15 0.98 ± 0.14 0.93 ± 0.11 0.015

D (10− 3 mm2/s) 0.91 ± 0.16 0.84 ± 0.12 0.80 ± 0.09 0.057

f 0.19 ± 0.04 0.15 ± 0.03 0.16 ± 0.04 0.006
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better performance that the non-subspecialist (p = 0.01)
(Table 4). The performance of the classification model
was not susceptible to interobserver variation in the man-
ual segmentation of the primary tumour.

Discussion
In this current study, we demonstrated that DTV in-
creased while ADC, D, and f decreased in the primary
tumour as the nodal status progressed from no malig-
nant involvement to sub-centimetre and then size-
significant PLN metastases. The accuracy of the IVIM
classification model was comparable to radiologists in
classifying PLN involvement regardless of size but it had

higher accuracy compared to the non-subspecialist in
the detection of sub-centimetre metastatic PLNs.
The decreasing trend in ADC observed in this study

suggests that more invasive tumours are characterized
by increased cellularity. This was in corroboration with
the previous study by Schob et al. which found that
node-positive tumours had significantly lower ADC
compared to node-negative tumours [34], though a
study by Xue et al. found no difference in ADC values
between the two groups [35]. The discrepancy may be
due to the differences in DWI acquisition, in which the
former had a similar acquisition to the present study (3
T MRI with b-values 0 and 1000 s/mm2), while the latter

Fig. 4 Boxplots of the diffusion tumour volume (DTV), perfusion fraction (f), apparent diffusion coefficient (ADC), and pure diffusion coefficient (D)
measurements of the primary tumour separated by nodal involvement with pairwise group comparisons.
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used a lower field strength and different b-value combin-
ation (1.5 T MRI with b-values 0 and 800 s/mm2).
We also observed a decreasing trend in D, though this

trend was not significant, which suggests that there are
some non-negligible perfusion effects. Immunohisto-
chemical studies have suggested that acute hypoxia from
reduced tumour perfusion increased the tumour’s meta-
static capacity [36, 37]. Similarly, dynamic contrast-
enhanced (DCE) MRI studies have shown that poor per-
fusion was associated with an increase in the nodal
metastatic capacity of the primary tumour [37, 38],
which could be related to the poor tumour oxygenation
[39, 40]. While it is believed that the two techniques do
not measure the same perfusion phenomenon [41, 42],
the study by Lee et al. found significant correlations be-
tween IVIM perfusion and DCE perfusion in cervical
cancer [43]. Moreover, a previous study found that dy-
namic susceptibility contrast (DSC) percentages were
lower in malignant cervical nodes compared to benign
nodes which indicate restricted microcapillary perfusion
[44]. This may explain why the perfusivity characteris-
tics, rather than microarchitecture of the primary

tumour, adds value in classifying the metastatic propen-
sity in cervical cancer.
It has been shown that at least part of a PLNs has simi-

lar microarchitecture to the primary tumour [45]. We ob-
served significant differences in ADC and f values of the
primary tumour between PLN involvement groups, but
not in D percentiles. Our observation partially concurred
with the study by Wu et al. that found that metastatic LNs
had lower f values; however, they found that PLNs had
higher D values [46]. In that study, lymph nodes with
small volumes were included in analysis and might affect
quantification of diffusion parameters due to partial vol-
ume effects [47], potentially accounting for the discrepant
result observed in our study. On the other hand, the
observed ADC results concur with the other studies that
attributed lower ADC in metastatic lymph nodes to
tumour tissue invasion, leading to increased cellularity
and enlarged cell size [48–50].
The IVIM classification model suggests that PLN in-

volvement is best characterised by the tumour’s diffusion
volume and perfusivity and its overall accuracy was simi-
lar to that of radiologists. When identifying patients with
sub-centimetre PLN involvement, the subspecialist per-
formed better than the non-subspecialist, likely related
to the greater experience and more emphasis placed on
the morphology and signal of the PLN over the size cri-
terion. The IVIM classification model had similar accur-
acy as the subspecialist’s staging in identifying patients
with sub-centimetre metastatic PLNs. As we did not ob-
serve any significant differences in any parameters exam-
ined between tumours with sub-centimetre involvement
and those with size significant involvement, it is likely
that these tumours have similar diffusion and perfusion
characteristics. This suggests that parametric IVIM
could serve as adjunct tool for a non-subspecialist and
provide an objective quantification when staging lymph
node involvement.
This study has several limitations. First, this was a

retrospective, single-centre study with a relatively small
sample size. Second, extended scan coverage and the dir-
ect measurements of the diffusional signals of PLNs and
were not performed due to the inherently longer scan

Table 3 Pelvic lymph node involvement classification performances of the radiologists as well as the classification performances of
the intravoxel incoherent motion (IVIM) classification models. The p-values of the relative classification performances of each model
are given where the first IVIM classification model served as the reference. The first IVIM model used parameters dervied from the
subspecialist’s tumours segmentations, and the second IVIM model used parameters dervied from the non-subspecialist’s tumour
segementations. VOI: Volume of Interest

Accuracy Sensitivity Specificity p-value

Radiologists Subspecialist 0.90 0.95 0.86 0.31

Non-subspecialist 0.76 0.62 0.86 0.73

Model Subspecialist VOI 0.80 0.71 0.86 ref

Non-subspecialist VOI 0.82 0.80 0.82 0.86

Table 4 Patients with sub-centimetre metastatic pelvic lymph
node (PLN) involvement and the nodal staging given by the
radiologists as well as the PLN classification given by the
intravoxel incoherent motion (IVIM) models. Correct staging or
classification of PLN involvement despite size-insignificance are
marked with the character ‘X’

Code Subspecialist Non-subspecialist IVIM Model
(Subspecialist)

IVIM Model (Non-
subspecialist)

1 X X X

13 X X X

17 X X X

21 X X X

23 X X X

28 X X X

30 X X X X

32 X

38 X X X X

44 X X X
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time with IVIM. Though not clinically routine, previous
studies have explored use of quantitative DWI to detect
lymph node metastasis, which was shown to have a
pooled sensitivity of 86–87% and specificity of 83–84%
[12, 51]. Third, while the existence hyperplastic lymph
nodes has been noted as a major source of false positives
in MRI PLN assessment, we could not analyse hyper-
plastic lymph nodes due to the low number of false posi-
tives in our radiologists’ classifications. Lastly, only a
small proportion of our patients (n = 9) had histological
confirmation of the nodal status and majority (n = 41)
had their nodal status determined by FDG-PET/CT.
FDG-PET/CT is supported by the latest FIGO staging
guidelines in nodal assessment given its high sensitivity
of 83%, especially in PLN staging and low false negative
rate of 4–15% in LACC [12, 52, 53].

Conclusions
IVIM analysis of the primary tumour in cervical cancer
is potentially useful in determining PLN involvement
and could provide more objective and quantifiable evalu-
ation, but its added value is diminished as reader experi-
ence increases in the detection of sub-centimetre PLNs.
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